PROGRAM DEVELOPMENT GUIDE

APRIL 1985

Manual Mame @2 Frogram Development Guide
Order Humber: 29300
Issue date: April 158%

Mo part of this publication may be reproduced, stored in 2 retrieval system, ar
transmitted, in any form or by any means, electronic, mechanical, photocopy,
recording, or ctherwise, without the prior written permission of GRiID Systems

Corporation.

o
M
m
o

The infermation in this document is subject to change without noti

MEITHER GRiD SYSTEMS CORFORATION WOR THIS DOCUMENT MAKES AMY EZPRESSED OR IMPLIED
WARRAMTY, IMCLUDING, BUT MOT LIMITED TO THE IMFLIED NAPPANTTES oF
HERCHAGNTARBILITY, BUALITY, OF FITMESS FOR A FARTICULAR PURPOS GRi
Corporation makes no representztion as to the accuracy or Hdpquac
document. GRID Systems Corporation has no obligation to update or keep current
the informetion contained in this document,

GRiD Bvstem Corporati

nftware products are copyrighted by and shall remain
the prﬂperty of GR1D g

Corporation.

The foilowing are trademarks of GRiD Systems Corporation: GRiD, GRiD Compass,
Compass Computer, GRiD Server.

The following i= trademarks of Intel Corporation: Intel.

TABLE OF CONTENTS

CHAPTER 1: THE PROGRAM DEVELOPMENT CYCLE

The Development SEOUENCE cicicvsscasasnoszcaasacasscsnosncnsansa
velopment Environment - GREiDDevelaop .
tions for Organizing and MNaming Files5.:

File Maming Conventione ...seassavcassacssasasaasceassssaascsasas
&

- ,
% o cacezsocw3ezce:zezEsE ¥ CCE S 8 ¥ AL EAIENEEUdIEE 2N TEEEE

-

3

»

n

-

=

u
[ST vy

283 8 833 2= ¥ a s 4332 & E 8 €2 C I P88 33 3 @IS 23 83888 E B0 I AW W B AS S

CHAPTER 2: THE GRiDDEVELOP PROGRAM

The GRiDDevelop Main Menuessvssacsssssssssassnsssancssasas 271
GRiDDevelap Data Files . ..c:vvscssssasassoscansscnsaccosasarcnss 270
Creating GRiDDevelop Data Files ..ivsssvasssssssanonnssnsasss 270
GRiDDevelop TOKENS .o:c:cvsvercoesccescsssnoasrasosscaoancsnazccas L8
The GRiDDevelop Pre-Defined Tokens ...veieecvsacanensanssascan: 274
tHad TUMES .. cowsesscacransccansasacssanacsersansassscasssnsas 270
rControl controlName: .. .eisesacsoanonsssssascsansnaaszsaasas 270
sDebugs L oc:sccscarsar s s e s s s s s e sz acansae 270
TENEBr: . cascscasasacraarr e s ez e a2t s sz a1nzaaassazzca 27
2 T S |
2Gond TURNBT s ascssssasscassosasasnscasnssasnansanssaasnsassas L7
1Groups: f it acaaneazsciaesasiaaasassasseasesincer s arca 20
shinks cesec:ccannaaccasassaasansaasasssaasassceaas s anaaaass L0
tListingsy cccerscrvrarssreese s e ntetaz s et e aasacae 277
tLo0g FilBy .. issuencocesaasasasassasnsasnssssassscssanasaszaas £—10
TMBME: . scccvcesrosencsaza s anssatass s tesntarrsaareaseass 2711
sObJjectEs . .siawsseasasssasnsscencasacasnsnszsssasaraassasansn 211
tPrefiv: ..o iscarasrurassas o er st et nacan ez rans S-L2
tPrint TO! sv:osscnscaosonnssnssansceseenceasanassssssassncaas 82
tOOUFCESY L icescncrcavnraonscrconsasesnctcnssnsssansscnnranss 208
tTests ..svsc:ensacasanosasssscnsasasansasasasnsaassssssssaasss 2-15
lcer-Defined TokEMS v ivrscarenesnsssccnacnnssnzcncsssnsncannnse £-10
Command Modifier Characters ,..sesseesssscsnacascaanssssaasasssess 2-1h
The GRiDDevelop Commands Menuw .cieiersinccnsncnasssneazssnsasacses 2-18
Command Line Interpreter (CODE-C) ...icesonnnansssnnssnscansces 217
The Hex and Decimal Calculator (CODE-=) ...:ivecevovnsasnsasss 2-17
Change Source Groups (CODE-G) ...cvucseconcasnsansnssnanvassas 217
The Gptions Command CODE-0)s0scevcronccnconrncrararasneae 2-18
The Trancsfer MENL . .0 asssassancsrssascacsnsssaasasanssnsssanssass £—18
Changing the Development Pata File ...ci:vecvsnvossnvsnsncsces 2-19
Feading the Development Data Filecciuvvsscensnnnsassassnsas 2-19
Examining the Log File ..., cvenconsusscansossncenssasscsesss £-19
Frinting List and Source FIleS ..:veosovacssncansonasanssanse 2-19

CHAPTER 3. COMPILERS, LIBRARIES, AND INCLUDE FILES

Compiling Programs .oseevosesecasaansnanensensasasnennnasnonsncss
Compiler Size Controls toeeseennaceonssanassasnsnrsonssnrancs
Libraries ...cossssasacsconsnsnsnassnsascnaccannssssanannscesansnsnssa
Pascal Libraries and ModuleS .cceevevevesonrsonsanevaaansnanns
FORTRAN Libraries and ModUles ..cesesscesoancnossecnnaronanes
PL/M Libraries and Modules .ovevresvrasnnsasonscenconnesscccan
BOB7 Libraries and MoOules ..v.vsseenocnnsnsassscnnassosncnas
Invoking the Compilers ...cvssenroonsosnsscocasnanssanssnsoeesosns
The System and Language Include Files ...vecansrsnsnorsnasncnsnas
Examples of Include Control Statements .cencersoavsvcnasannna

CHAPTER 4. THE LINK PROGRAH

Invoking the Link Program .ceescssosnososansosassnanscananssannss

Link Invocation EXamplesveeeoessacorosesnrronanasoccosansan

Link Control SUMMABIrY ..ceoveaesoannonesannonansasnnanssnanassocans
AsSUMErODY . osescaoravonosasnaranansorenosoossnananoasssonssnssa
Bind ..uoisveescansveasrscasnansanesasasnsnesasansansscasesans
Fastload ...cvcrvanenosonsnsessnossanoasnsasnasacasnanssnarss
- 1
NaBMe ..:esvioevorosaonasanasssaasassasansntanassnsssnsssnansns
ODverlay .eooceaunossaasnssnonssnssonsnsnosnannsossansnnsosssaa
Print «suvecersoonnosnosnonnasrcrvoaasanasenonssssasssasanassnas
Printcontrol ...ccessessnnnosneancenanscnsonsasnnossossnsnsnsss
PUFGE s eeseannsnnssasvsosaonnossssananssnnteasssssssnnananca

= ¢ - -

The Linker's Frint File ..suceersanccnssnnareocosensnsanooracssasn
CHAPTER 3. THE DEBUGEBER

Compile and Link Considerations ...ceseesssasuscnsosonccnsnnsons
Invoking the Debugger .:.sccesvrsesnesroasassonasasnsosccsscsncss
Debugger Syntax and TerminoloQy cesosccsncevoncasssannsassascsnsss
CODE-Key Commands ,..oconsecaonscannsoosnssnnsasconcanssnassancsa
The Help (CODE-7?) Command ...sssenansonnecnsaavsssnnssonsasos
The Set Breakpoint (CODE-B) Command ..ccevcvosnsnosrracrncassus
The Clear Breakpoint Command ..cocascoscsonasnnsasnsosnnsasns
The Timing Breakpoint Commands (CODE-1 -- CODE-3) ...vavsuvss
The Duplicate Line (CODE-D) ECommand ...sceccasnssscsansasanns
The Executive (CODE-E) Command ..v.sceorncoonrsonanesasssaosaans
The Fill Memory (CODE-F) Commandovonnvraancensnssonsssnas
The Info (CODE-I) Command ..cevvesvosnarnrsnassnssoscooasassnon
The Location Display (CODE-L) Command ...csceuvsosnncensnsvcns
The Message Display (CODE-M) Commandvocvvvvsvnsvosansas
The Options (CODE-0) Command ..cosennsasensnsossssnssnsnssnons
The Proceed (CODE-P) Command ..csvevansrvesasasssanaasssascans
The Buit (CODE-8) Command .sossccessascooscsanassosunsasaassas
The Register Display (CODE-R) Command ...seevcannesssscasncsos
The Stack Trace (CODE-5) Command ...ccosvesssnssonssnasnsnasns
The Tasks/Semaphore Display (CODE-T) Command «:.ossvosovsacss

Tiv.

i i [B

i

[I — ST IR [T T S B N N O R

LA LS I % R Y TP R Y Y RO
i

1

1

i

|
LN & S L B3

[T
R el el o RS B I = B

B N O N - IO N U NS
1

1

M UA NGl QR LALoen B8N LR
i
e = g S0 0000 00 00 Q0 N NN LA R B B e A R P

(=]

The Unassemble (CODE-W) Command ..ocsesssscosnassacvaansssssse
The Window Togogle (CODE-W) Commandsc0sess0ns0vsausonnas
Command Line Commands .o.esnasssassssns CsesssssacasaTsavav e aae s
The Display Address Command ..s:vvovssescororcrorsnonnasnsnaas
The Display Contents Command0c0vaas Boscaanewseasensans
The Assign Yalue Command ...v.svernnsonas Cesbesasassan e s .
The Memory Dump Commandv.osacssannsnnnnca Kerasosenarnenns
The Evamine/Change Memory Command «..covesoonasansosssnssonns

|| I
od LA BRI P e e e

[R i T A kg AL ol R
I
P . i T

o

APPENDIN A. ALTERNATE DEVELOPMENT APPROACHES

Using the Development Executive Programccoevevsvasanssscaas
Using the DO Frogram with Command Files .cosawssecavscaasassnnes
Evecuting Command Files from the User Interface .visosasescsnnss

>
t
= 4 BT

APPENDIX B. PROGRAM DVERLAYS

The OsOverlay Frocedure ..cescssaccoes wrasoasassssasensncassanens Bl
Fascal Overlay EXample cs..coovesssnencsancescssceannnssascsnsscss B=2
Linking OverlayS os.ssasvsessvssscanossssansssonansansasesancecesess L4
fdditional Overlay Considerations .o.cosoeecovosssssoravanansssss B8
FORTRAN DOverlay Example .:cvscoossonsnsssssaasrnnnsnsannansnsssans B—o

APPENDIX C. SYSTEM FILES AND UTILITIES

1
e

Syntax NotatiOn .c.eeeasnsssnssconsasusannossansosnsnsaassscasasasss
Entering Commands ...ccevesonaonnssosasenassasosnesannasscosnsns
Mildoards osecocsrssasuansannssssosoassasasnassaasassssrsnssanssa
The System Errors File ...usivesnvsosssascvonsansasansssnsnvssnes
The Activate Program +ccossosasnroononaonssassasasnsnzsssassssnss
The Catalog Program ..sceceacsocssosssaasassrvaraasaoasaasraonnsss

Creating & Cataleg File ...ucaononausccsssanssnsnsnsnssnassannna

' (Exclamation Point) (o.sessvesnansossosscsonscesanasannsaases

7 {Question Mark) suvusscovssssssrsonssesusasansasaasasacnssna
The Compare FProgram c.scsoesoscssonrsosossvansanasasasssaasasssss
The Deactivalte Program oceoeesoereonsarnouacnnsasasncuonssnasaes
The Development Executive Program..s-coesvaoscssssansasossasansns
The DO Frogram ..cosesecscscsnessassaononsesnonnsusassnanssasassss
The Dump Program .cceesscasan o s v a o s ureresavaswEaEaae s Ecsssas0a
The Elapsed Time Program ..ococovevasssasnanossacassnsosnascansas
The Evecutive File uvssvssacossooosansntvoscaasansasarcseasssss
The LADT (List Active Device Table) Frogram ..cvsserscsvsnsassna
The Load Program ...ccccosssuvssesonoasasaasasonrsacaosasansssasese
The Prefiy Progra® cesconsoossananesaosnsascanssnossasssssnsassas
The Softkeys Files ..ucososeosssanosonnncaronssacanenanaansnssssua

Programming the Softkeys ...eacecascrvesnsnasesasnsscevsnasase

Multiple Softkey Files ..o vveoscasesansnnssssososvssavsanssna
The Status Frogram co.cossccsssosansnsncasssanssnsscosansassnasnssas
The Summarize Program .ssossarsoevscnssssssasssavsacsaosccnsnsass L=la
The Time Program s.c:cscostonnssnasnannsssesssnsnssonasaunsasossasnssns L=1&
The Unlpad ProO0ram ...ossssccaonssvsasassosonsasssosassassaaases =18
The Mork Frogram coecvszeossoenssoscanvassssaaconaasascnsvssscnse D14

| L R N S |

| I T T O T | §
ot = R == BN TN N i« S) By R S R I G T N Y |

L=

Ry

=Y

Lo B e T v T e T e T e T i T e T o s T e B s YO e Y e T e O e Ty A e O A o O o B B
i

!
[S,
(2SN SR

APPENDIX D. LINK ERROR MESSAGES

APPENDIX E. SOUND

Vi

ABOUT THIS BOOK

This book describes how to use the GRiD Compass as a proogram development tool.
To assist vou in program development, 2 powerful and easy-to-use development
tonl ~-- GRiDDevelop -- ie available. BGRiDDevelop provides a flexible
development environment where you can quickly edit your source files, compile
and link your programs, and then proceed to the debugging, re-editing cycle.

Five programming languages are currently provided: Pascal-84, PL/H-86,
FORTRAN-8&6, C and fszsembler-86.

You create proogram source files using the text editor program, GRiDWrite. The
sogurce files (along with any reguired INCLUDE files) are then compiled using
the appropriate compiler (Fascal, Fortran. PLH, T, ASM). Guidelines for using
the languages and their compilers are provided in Chapter 3 of this manual.
The INMCLUDE files are also listed and briefly described in Chapter 3.

The compilers produce list +iles and relocatable obiect modules. These
modules, alono with other modules vou may have compiled and library modules,
are then linked together using the Link program described in Chapter 4.
Frograms can be debugged on the GRiD Compass with the GRiD Debug program

=

described in Chapter 3.

A number of useful system utility programs are alsec available to ease system
maintenance tasks acrompanying the program development sequence. These

-

programs are described in Appendix C.

CHAPTER 1.

THE PROGRAM DEVELOPMENT CYCLE

The GRiD Compass gives vou great flexibility in defining how you use
the computer and its software when developing programs. The
GRiDDevelop program is a powerful and easy-to-use tool that helps
you organize your files and greatly speed up the development
process. GRiDDevelop is described in detail in Chapter 2. Before
discussing GRiDDevelop, however, let’'s take an overview of typical
development sequences and the available tools to assist program
development.

The Development Sequence
Figure 1-1 illustrates the general sequence followed when developing

programs and also shows some of the software tools that are
provided.

Frogram Development Guide 1-1

1-2

’” &=
]
‘(:r-c.dli:lp;’ﬁicii.t:-—3> fom——Compi l@—~——> | ——ece i = D> | [)Iltltl(:-’I

List Files Map Files

pgm.Pas™LST™ pgm.Pas™~MF1"Y
pam.Plm~MP1™,
pgm.Ftn™~MP1™

pgm. Asm MP1™

Relocatable Linked
Edit Source Files Compile Object Modules Link Modules Debug
pagm.Pas™Text Fascal pam. Pas. ~0b ;" pagm.Pas™Run™,
GRiD pam.Flm*Text PLM pam.Pla.~0bj™, Link pgm.Pl m‘”Rur%— Debug
Write pgm.Ftn*Text™ Fortran J/pam.Ftn.~0b ™ pgm.Ftn™~Rkun™
pam. Asm~Text™ Asm pgm.Asm. ~0bj™ m. Asm™~Run™
[]
Include Files Other Relocatable
— Object Modules
*onoFas. Ine D__

Libraries

Figure i-1. The Program Development Sequence
The development process consists of four iterative phases:
o Editing (writing) program source files with GRiDWrite

o Compiling source files with one of the language (Pascal, PLM,
Fortran, Assembler) compilers

¢ Linking compiled object modules with the Link program to produce
modules which can be executed (run)

o Testing and debugging the executable modules.

This four-step sequence is repeated while you refine and debug your
program.

When you are creating the text source file for a program, GRiDWrite
speeds the process with such features as automatic indentation and
fast substitution and duplication of phrases and whole sections of
code. For a complete description of GRiDWrite, refer to the
GRiDWrite section in the GRiD Management Tools Reference manual.

ffter you have finished writing or correcting a source program, you
rust invoke the compiler to translate your text file into an object
file.

Invoking the linker program requires a more complicated sequence
since it usually involves naming a number of files that are to be

linked together. For ewample, here is a typical linker invocation:

LINK Shell.Pas™0bji™~, FormsInit.Plm™0Obj",

The Program Development Cylce

‘w'libs DataForms.Fas*0Objv, 'w'Libs'largeException.Asm™0bj™,
PO('w' libs'SystemCalls™Pub™) TO Shell™Run™ BIND PURGE FASTLOAD
ssi{istack (+1000))

Typically, you might edit several modules, then compile thems one
atter the other, and finally link the modules together along with
various libraries. VYou would then test and debug the linked,
gxecutable module. [f errors are discovered, you would repeat the
edit/compile/link seguence. The goal of the program developaent
environment is to make this repetitive sequence as easy and fast as
possible.

THE DEVELOPMENT ENVIRONMENT -- GRiDDevelop

The GRiDDevelop prograe {(described in Chapter 2) provides a
development environment based on the assumption that most software
development consists of edit/compile/link/test cycles. You can
define many of the characteristics of the environment by filling out
8 data file with information about source file names, link command
lines, subjects for sources, listings, and objects, and other
miscellaneous commands. The GRiDDevelop program reads this file for
the data to drive the program development cycle.

You use GRiDDevelop data files to specify the files that the
GRiDDevelop program will operate on to initiate various development
activities such as editing, compiling, linking, and so on.

When you use GRiDDevelop to provide the development environeent,
GRiDWrite is automatically invoked so you can create, edit and
correct your source programs. GRiDDevelop also automatically
invokes the appropriate compiler reguired for your source programs
and lets you set any controls that you want to use during the
compilation.

Link statement files are set up in the GRibDDevliop data file zo that
you can issue a complicated link statement with a single keystroke.
You can also easily edit the link statement(s) during the
development cycle directly from GRiDDevelop.

You have several other alternatives when deciding on the environment
you want to use when developing programs using the GRiID Compass.
Although we suggest that you use the GRiDDevelop program, since it
provides the fastest and most flexible environment, we describe some
alternate approaches in Appendix A.

CONVENTIONS FOR ORGANIZING AND WAMING FILES

flthough there are vew hard and fast rules for organizing vour
directories and naming files, there are some conventions that have
bren adopted internally at GRiD and which are assumed by the
GRiDDevelop program. Even if{ you do not use GRiDDevelop, ohserving

Frogram Development Guide 1-3

these conventions will be of value to anyone doing program
development work using the GRiD Caompass.

Figure 1-2 illustrates part of a typical directory on a hard disk

device.
Hard Disk
Oenice T
Ll S—
!
i T
Subdact I I l I | L
Leuél ‘ Imcs Libs Progrsns Dbz Lzts Hu
: Froarans
Title [Include| |Librarw||Utilities ([Object| | List Saurce
Level Files Files | (Compilars || Files| | Filas Filas

Figure 1-2. Organization of Typical Directory

The purpose of this organizational style is to keep all files that
are logically related in the same directory. This keeps the number
of titles within each directory from getting too large. This
organization also simplifies such maintenance activites as backing
up files and obtaining new copies of files, and standardizes
references your programs make to include files and libraries. The
directory organization shown in Figure 1-2 puts all the include
files under one subject (Incs), all library files under one subject
(Libs}), all object files under the Objs subject, all source files
related to a particular programs under MyPrograms, and so on.

FILE NAMING CONVENTIONS

There are two file naming considerations: the file title and the
file kind (or type).

File Titles

GRiD-0S imposes two small limitations on file names. First,
characters used in the title can be any of the printable ASCII
characters between ‘space’ (ASCII code 20 hex) and DEL (ASCII code
7E Hex) encept for the single backquote (') and tilde (%)
characters. Second, the file name cannot exceed 253 characters
total including device, subject, title, kind, and the delimiter
characters.

1-4 The Program Development Cylce

The Intel compilers, however, place greater restrictions on file
names. They require that file names (including device, subject,
title, kind, and the delimiter characters) be no longer than 45
characters. VYou should therefore ensure that your program names do
not exceed this limit.

GRiDDevelop makes some assumptions about file names. (Note: Even if
vou do not use GRiDDevelop, it is recommended that you observe these
conventions.) The first assumption GRiDDevelop makes is that you
append some language identification information to all source file
titles. For example a Pascal source file should have the name
MyFrogram.Pas™Text™, a FL/M version of this program would be named
MyFrogram.Plm“Text", an assembly language version would be
MyProgram.fsm“Text"v, and a FORTRAN version would be
MyProgram.Ftn“Text™. This convention lets GRiDDevelop automatically
invoke the appropriate compiler for your source programs. It also
makes it easier to organize your files and identify the file you
want even if you do not use GRiDDevelop.

The other convention is to identify the include files (for any
language) by appending .Inc to the name: for example,
MyProgram. Inc*Text"™.

File Kinds

GRiD-0S and some GRiD applications require that files be of a
certain "kind" in order to perform some activities. For example, if
a file is an executable program, the system requires that its kind
be “Run“; otherwise, the file cannot be executed. The file kind
suffix also provides additional information about the contents of
the file so that you can tell quite a bit about a file just by
looking at its kind.

When you are running application programs under GRiD-05 with the
Executive program, you can select a data file, and the system
automatically invokes the ewecutable program to work or operate on
that data file. The program that will be implicitly invoked to do
the work must be of kind “Run fileKind™, where "filekind" matches
the Kind of the file being selected. For example, the program
GRIDWRITE“Run Text™ works with a file that has a Kind of “Text™.
The file that is to be operated on must have a kind that matches the
fileKind of the program being implicitly invoked. For example, a
file named HMemo that you want to edit using GRiDWrite would be of
kind “Text™. Thus, its complete name would be Memo“Text™.

To implicitly invoke and initiate execution of the application
program {(the program that is to do the work), just select the
subiect and title of the file you want from the File form and press
CODE-RETURN. ‘

During the program development cvcle, some file kinds are appended

Program Development Guide 1-5

i-6

automatically by various utilities; others must be appended by the
user. GSome of the file kinds vou will encounter and use are listed
below in alphabetical order.

{NOTE: Some kinds will always appear in all caps while others are
shown with just the first letter capitalized. Those in all caps are
appended by Intel software such as the compilers, GRiD-058, however,
does not differentiate between upper and lower case: vyou can use
any mix of upper and lower case in file names.)

“Com" A Com (Command) file contains a list of executable
files. You must add the “Com™ kind when naming
the file.

“LIB® This kind is usually appended by the Lib utility

program to identify modules that are part of the
library, although you can specify any kind you want
with the Lib program.

“L5T™ The compilers create LST {(LiST) files. LST files
are program listings with statement and line
numbers, error messages, and other programming
information. The compiler automatically adds the
“L8T™ kind.

vMPL™ An MF! file is the linker 's Map file. The Link
program automatically appends the “MPI™ kind.

“0BJ™ The compilers generate unlinked 0OBJ (Object) files
and append the “0BJ™ kind.

“Run™ Run files are executable files that are created by
the Link program. Note, however, that you must
specify the “Run”™ kind yourself to the output file
title in the link statement.

“"Text™ Any file created with GRiDWrite will have the kind
“Text™ appended to it unless you explicity specify
that it be of a different kind (such as “Com™).
Thus, the source text for a program that you create
using the text editor will usually have “Text®™
appended to its title.

The Program Development Cylce

THE BRIDDEVELOP PROGRAM

The GRiDDevelop program provides & development environment based on the
assumption that most software development consists of reiterative
Edit/Compile/Link/Test/Debug cycles. You can define many of the
characteristics of the environment by filling out a data file with information
about source file names, link command lines, subjects for sources, listings,
and objects, and other miscellaneous commands. The GRiDDevelop program reads
this file for the data to drive the program development cycle.

The GRiDDevelop program resides in memory at all times. In order te use it,
you must have the compilers (that you use), and the programs GRiDWrite and
Print in the programs subject.

THE GRiDDEVELOP MAIN MENU

The GRiDDevelop program is invoked by filling out the File form
specifying a file with a kind of Develop. The program then displays
the main GRiDDevelop menu shown in Figure 2-1. 7o initiate one of
the activites listed on the menu, just select and confirm. The
GRiDDevelop Main menu is the default menu; once you have invoked the
GRiDDevelop program, this menu will be displayed whenever vou press
ESC,

GRiDDevelop 2-1

Edit list file
dit _source tile {
Compl le
Lirk
Compile and link
Test
Oebws
Add ertra to log File

and confitrm

Figure 2-1. The Main GRiDDevelop Menu

The files that are to be acted on by of each of these menu items are
specified in the GRiDDevelop data file. For example, selecting
"Edit source file" brings up a menu displaying the filenames you
have specified in the data file. Figure 2-2 shows an example of a
list of source files. Confirming one of these files invokes
GRiDWrite and brings in the file you have selected so that you can
edit the source program.

File& PLM
File®. RSM

Edit soutce file: Select 1tem and contlim

Figure 2-2. The Edit Source File Menu

All of the items listed on the Main menu in Figure 2-1 will be
described as we proceed through this chapter. Since a description
of the GRiDDevelop data file provides an understanding of how the
Main menu works, we will discuss items on the Main menu in
conjunction with the data file.

GRiDDEVELOP DATA FILES

You use GRiDDevelop data files to specify the files that will be
operated on during the various development activities such as

2-2 Program Development Guide

editing, compiling, linking, debugging, and so on. The data file
consists of text comprising tokens, filenames, and command lines.
The data files have a Kind of "Develop".

You can have as many GRiDDevelop data files as you want -- use a
separate one for each development task you have in progress. Each
data file requires no more space than a small text file -- typically

one to three thousand bytes.

Once a GRiDDevelop data file has been created using GRiDWrite, it
can be easily edited to meet changing demands of the development
cycle. VYou can add source files designations, change Link command
statements, and so on, by selecting "Change this development file"
from GRiDDevelop’'s Transfer menu which is described later in this
chapter.

Creating GRiDDevelop Data Files

There are two ways that you can create a new GRiDDevelop data file:
the method you use depends on whether you already have a Develop
file in your system.

If there are np existing Develop files in your system, follow these
steps:

1. Fill in a File form specifying a file with a Kind of
“Pevelop” and confirm the form. The system will prompt you
with the message "Confirm to create new file". Confirm the
form again to create the new develop file.

2. GRiDDevelop will be lpaded into memory and will display its

Transfer menu with the selection outline surounding the item

“Change this develop file". Confirm this selection.

The GRiDWrite program will be invoked by GRiDDevelop along

with the file (currently empty) that vou specified in step

i,

4, Type the tokens you need (described beginning immediately
after this section) into the text file. When vou have
finished specifying the desired tokens, press CORE-B@ and
confirm to quit GRiDWrite. Control is returned to
GRiDDevelop which displays its Main menu., The development
process is now being guided by the new Develop file you have
just defined.

od

If you already have a Develop data file in your system, it is
usually easier to simply make a copy of the existing file (using
GRiDManager or the "Write to a file" item from GRiDWrite) making
sure that the new file also has a Kind of Develop. VYou can then
select the new file from the File form to invoke BRiDDevelop. Now
you can edit the new file (using the "Change this develop file" item

GRiDDevelap 2-

()

from GRiDDevelop’'s Transfer menu)

development project.

A sample Develop data file is provided on diskette to simplify
getting started with GRiDDevelop.

edited to fit your specific needs.
sample Develop file is provided at

GRiDDDEVELOP TOKENS

GRiDDevelop recognizes all text in a data file that is enclosed
within a pair of colons

to fit the requirements of the

Use it as a model that can be
A complete listing of this
the end of this chapter.

"tokens".

new

A token is interpreted

by GRiDDevlop as a command specifying how it should handle the text

that immediately follows the token.
pre-defined tokens and can also accept user-defined tokens.

GRiDDevelop recognizes a set of

Pre-defined tokens are operated on by GRiDDevelop in a predetermined

manner.

For example,

the GRiDDevelop token ":5ources:" tells
GRiDDevelop to treat the files listed after the token as source

files that can be edited and compiled. User-defined tokens are

simply any tokens not pre-defined by GRiDDevelop -- you specify the
activity that should be initiated by GRiDDevelop as a result of the

user-defined token.
pre-defined tokens.
described later in this chapter.

Predefined BRiDDevelop Tokens

2-4

The following tokens are pre-defined and cause GRiDDevelop to
initiate specific activities:

Program

:Bad Tune:
:Control:
:Debug:
tEnter:
sExit:
:Good Tune:
:Groups:
tLinks
:Listings:
:Log File:
:Name:
:0bjects:
iPrefix:
:Print To:
:Sources:
i Test:

Development

Guide

The paragraphs that follow describe all of the
Examples of user-defined tokens will be

Each of these tokens is described in detail in the pages that
follaw.

st Bad Tunes

Each development data file can specify one of these tokens. The Bad
Tune token lets you define a seguence of notes that will be output
to the speaker in the Compass computer. This token assumes that you
are using a Compass that is equipped with a built-in modem and that
you have the file named Sound“Device™ in the Programs subject of
your system. This device must be activated either via the Command
Line Interpreter, a System.Init file, or by using an :Enter: token.
See the :Enter: token later in this chapter for an example.

The :Bad Tune: token lets you enter a text string following the
token. The characters in this text string are interpreted as sound,
or a "tune", according to the rules described in Appendix E. The
tune defined by the character string after the :Bad Tune: token will
be "played” whenever an error occurs during a compilation or link
operation.,

st Control control Mame 3

Each development data file can specify as many of these tokens as
needed to set up controls that will be presented as choices on the
"Compile form". The token is followed by a list of the controls
that are to be used when the compiler is invoked. For example, the
following token

:Control Yes with Debug: DEBUG NOPRINT

would display the form shown below when you select Compile from the
Main menu:

o L‘l;:«mpil‘«".‘é '

M and conf v .

You can then specify which files are to be compiled and which are to
be compiled with the DEBUG NOPRINT controls applied.

GRiDDevelop 2-3

tDebug:

%]

-6

Each development data file can specify one or more Debug tokens.
Following the each Debug token, you can specify any number of
command lines each of which must be ended by pressing RETURN,
Typically, one of these command lines would be an invocatiaon of the
debugger along with your program. The following is an example of
the use of the Debug token:

:Debug:
Debug MyProgram™Run™ TestFile“Text"

Now, when you select the Debug item from the Main menu, the Debug
program is invoked to operate on the MyFrogram™Run™ file which uses
TestFile“Text™ . After this sequence has been completed, you would
automatically be returned to the Main menu.

I+ more than one debug command file is needed, then multiple debug
tokens can be defined in a GRiDDevelop data file. Any text that
follows the keyword Debug and that is enclosed within the colons
will be displayed an the Debug menu. You can then select which of
the command sequences is to be performed as part of the debugging
sequence. You can specify as many of these tokens as required in
each development data file. The following example illustrates the
use of multiple Debug tokens:

:Debug Use test data file #1:
Debug MyProgram™Run™ TestFile#l1“Text™

:Debug Use test data file #2:
Debug MyProgram™Run™ TestFile#Z2"Text™

Now, when you select Debug from the Main menu, the following Debug
menu would be displayed.

iUse test data t1le #1
Se Leck dara flie #e

o Debug Seleck iten and confivm

You can now select the debug command file you want from this menu
and the debugger will be invoked along with your program and the
desired test data file.

Frogram Development GBuide

csEnter:

st Exit

: Good

Each development data file can specify one Enter token. The token
is followed by a command or series of commands that are to be
executed the first time the development data file is brought into
memory. For example, the following token

:Enter:
Activate ' ‘Hard disk’'programs’'Sound®Device”

causes the Sound device to be activated when this development data
file is first brought into memory. (The Sound device is used in
conjunction with the :Good Tune: and :Bad Tune: tokens described
elsewhere in this chapter.)

Each development data file can specify one Exit token. The token is
followed by a command or series of commands that are to be executed
when you exit the GRiDDevelop program. For example, the following
token

tExit:
Deactivate '’'Hard disk’''programs’'Sound“device”

causes the Sound device to be deactivated when you exit the
GRiDDevelop program.

Tunmne:

Each development data file can specify one of these tokens. The Good
Tune token lets you define a sequence of notes that will be output
to the speaker in the Compass computer. This token assumes that you
are using a Compass that is equipped with a built-in modem and that
you have the file named Sound“Device™ in the Programs subject of
your system. This device must be activated either via the Command
Line Interpreter, a System.Init file, or by using an :Enter: token.
See the :Enter: token earlier in this chapter for an example.

The :Good Tune: token lets you enter a text string following the
token. The characters in this text string are interpreted as sound,
or a "tune", according to the rules described in Appendix E. The
tune defined by the character string after the :Good Tune: token

~will be "played" whenever a pause is processed (see "Command

Modifier Characters" later in this chapter for a discussion of
“pauses") or when a compile, link, or compile and link operation is
successfully completed.

GRiDDevelop 2-7

st Broups:

slink

r

-8

Each development data file can specify one of these tokens to
indicate which group or groups of source files should be displayed
as choices for such activities as editing or compiling. (Refer to
the :Sources: description for a description of how to create groups
of files.) If the :Groups: token is not specified, then all groups
will be displayed when the Develop file is first entered. The
:Groups: token lets you specify which groups of files whould be
initially displayed. For example, if you have groups named Samplel,
Sample2, and Sample3 you can specify that the files in groups
Samplel and Sample? be initially displayed with the following token:

:6roups: Samplel
Sample3d

NOTE: the :Groups: token must appear after all :Sources: tokens in
the Develop file.

While you are in GRiDDevelop, you can change the groups that are
displayed using the CODE-G command. However, settings established
using CODE-G are discarded when you leave GRiDDevelop and the
:Groups: token will be used upon reentry to GRiDDevelop.

Each development data file can specify one or more Link tokens.
Fellowing the Link token, you can specify any number of command
lines, each terminated by pressing RETURN. Typically, this would
include a command line invoking the linker program (Link™Run™) and
naming the files that are to be linked and the resultant ocutput
file., The entire link statement is one command line and must be
terminated with RETURN. The following is an example of the use of
the Link token:

tLink: .

Link '“Hard disk’'0Objs‘epMain.Pas™0bj™, ' ‘Hard

disk’ ' '0Objs ' epFolders.Pas™0bj™, " 'Hard

disk’ ' 'Objs‘'epUtility.Pas™0bj™, ' 'Hard

disk ' '0Objs ' epFormsInit.Plm~0bj™, ExecPac“Font™, ' 'Hard

disk 'Libs'CompactException.Asm™0bj™, ' "Hard

disk’'Libs CompactSystemCalls™Lib™ TO ExecPac™Run™ BIND NOFURGE
NOFASTLOAD PC(PURGE) ss(stack(2000)) PRINT(' ‘Hard

disk’ 'Lsts'ExecPac™MPL"™)

If more than one link file is needed (for example, when linking
overlays), then multiple links can be defined in a Development file.
Any text that follows the key word Link and that is enclosed within
the colons is displayed on the Link form and you can select which
link command statement is to be performed. VYou can specify as many
of these tokens as required in each development data file. The

Program Development Guide

following example illustrates the use of multiple Link tokens:

:Link Root:

LINK SampleRoot.Pas™0bj™, '‘Hard dick 'Libs pBbrn0~lib~, ' ‘Hard
disk 'Libs'pBérni™lib™, ' 'Hard disk’ ' 'Libs'pBérn2™lib"™, ' “Hard
disk 'Libs'pBérn3~lib™, ' ’'Hard disk’'Libs 8087 Lib"™, ' ‘Hard
disk’ 'Libs LargeSystemCalls™Lib™, ' 'Hard

disk " 'Libs’'DglLarge™Lnk™ TO SampleRoot™Lnk™ OVERLAY(ROOT)
MOPRINT

:Link Overlayl:

LINK Samplelverlayi.Pas™0bj™, '‘'Hard disk 'Libs pB&rn0O™lib™,
"‘Hard disk’‘Libs pBérni™lib™, ''Hard disk ' Libs pB&rn2™lib™,
‘‘Hard disk ' 'Libs'pB&rn3™lib™, ' ’'Hard disk’''Libs'B0OB7™Lib"™ TO
SampleDverlay!™Lnk™ OVERLAY(SampleOverlayl) NOPRINT

sbink Overlay2:

LINK SamplelverlayZ.Pas™0bj™, ' 'Hard disk’ 'Libs pBbrn0™1lib",
‘‘Hard disk’'Libs'pB&4rni™lib™, ' ‘Hard disk’''Libs'pBérn2™libh"™,
"‘Hard disk’'Libs 'pBérn3™1ib™, ' ‘Hard disk’''Libs 8087 Lib™ TO
Samplelverlay2®Lnk™ OVERLAY(SampleOverlay2) NOPRINT

:Link Run Sample:
LIMK SampleRoot“Lnk™, Samplellverlayl™Lnk™, SampleOverlay2”Lnk™
TO SampleRoot™Run™ BIND SS(STACK(+1500)) PC(PURGE)

Mow, when you select the Link item on the Main menu, the following
Link form will be displayed:

Foot. N i

Ouerlaul. Ho
Ouerlag2. Mo

Rurn Sample. M

You can then select which link command file{s) you want to be
executed from this foram.

sl.istings:e

You can specify one of these tokens in each development data file.
The device-subject string you specify (for example, ' "Hard
"Disk”'Lsts’) is automatically prepended to the filenames that you
have specified with the :Sources: token when those source files are
compiled. The “LST" extension is automatically appended to the
" resultant files by the compiler. Here is an example of using the
:Listings: token:

GRiDDevelop 2-9

s l.og

slistings: ' ‘Hard disk’ 'Lsts®

Then, if you compiled source files {(fileName! - fileNamed) this
would produce list files having pathnames as follows:

"'Hard disk ‘Lsts'fileMamel™LET™
‘“Hard disk’' 'Lsts'fileMameZ“LST"
‘‘Hard disk ‘Lsts ' fileName3™~LST™
‘"Hard disk ‘Lsts ' fileNamed™~LST"

Filees

You can specify one of these tokens in each development data file.
The log file can be used to record or log vour activities as you
write, debug and make changes to programs. The pathname that vou
specify following the token can be of kind Database or Text. If you
specify a log file of kind Database, the BRiDFile program will be
invoked by GRiDDevelpp to display the contents of the log file. If
you specify a kind of Text, GRiDWrite will be used to display the
file. If you do not specify a kind along with the log file token,
it is assumed that the file is a database and GRiDFile is used.
NOTE: this assumes, of course, that you have the GRiDFile program in
your system.

To make entries into the specified log file, select the "Add entry
to log file" item from the main GRiDDevelop menu. The following
farm is then displayed:

Humber [i
arzian

Module

Comment

2-10

_foni and confaen

The form provides four different fields that you can fill out to
keep track of programming activities. The information vou put into
each of the fields is entirely up to the you but the form was
designed with the following uses in mind.

The first field, "Number", can be used to record such things as
erraor-report or enhancement-request tracking numbers. The "Version"
field can be used to record the version number of the program
module(s) currently being worked on. The "Module" field can record
the name of the program module(s) being modified and the "Comment"
field can be filled out to describe the kinds of changes being made
to the module(s).

Program Development Guide

s Name

When you have completed the form with the information you want
recorded, press CODE-RETURN to log the entry. As each entry is made
in the log file, GRiDDevelop automatically appends the current date
and time into the log file as a prefix to each entry.

The Log file entry form is cleared as you confirm each entry to
indicate that the entry has been recorded. A blank form is then
displayad to allow additional entries. To return to the Main menu
after logging entries, press ESC.

To examine the contents of a log file, press CODE-T to display the
Transfer menu and then select the "Examine log file" item. If the
log file was specified with a kind of Database, GRiDFile will
automatically be invoked and you can use the Find command (CODE-F)
of GRiDFile to display the contents of the file. If the log file is
of kind Text, GRiDWrite is invoked and the contents of the file will
be displayed automatically.

H

You can specify one of these tokens in each development data file.
The string you specify is automatically displayed as the leading
phrase in the message line of the main GRiDDevelop menu. For
example, if you specify the following with this token

:Name: Sample Development

the screen displayed by GRiDDevelop would be as shown in Figure 2-3.

Edit list file

i
[@ T =ource tile 1
_omplle
Link
Compile and link
Test
Debua
Add entiry Lo log File

tObjie

Sample Develupment Selact itewn and conf irm

Figure 2-3. Using the Name Token

ctss

You can specify one of these tokens in each development data file.
The device-subject string you specify (for example, '‘Hard
Disk”'Objs’) is automatically prepended to the filenames that you
have specified with the :Sources: token when those source files are
compiled. The “0bj"™ extension is automatically appended to the

GRiDDevelop 2-11

tFre+f

sPrin

s Sour

2-1

el
-

resultant files by the compiler. Here is an example of using the
:0bjects: token:

t0bjects: '“Hard disk’''0Objs’

This would cause the object files produced by compilers to have
pathnames as follows:

‘Hard disk ' 'Objs'fileNamel™0bj™

"Hard disk " 'Objs'fileName2™0bj™

'MHard disk' '0Objs'fileNameZ™0bj"™

‘Hard disk " '0Objs'fileNamed4™~0bj"™
(and so on)

ixs

You can specify one of these tokens in each development data file.
The string you specify is the Device-Subject name or simply the
Subject name where source files reside. It is recommended that you
usually use only the subject name to specify the prefix --
GRiDDevelop will automatically prepend the current system prefix
device. This token lets you define source file names in the data
file by just specifying the Title: the prefix you specify in the
data file will automatically be prepended to the Title. After each
command, the prefix is reset to the Subject specified with this
token. Here are two examples of using the :Prefix: token

tPrefix: ‘I/0 Driver’

:Prefix: MyPrograms

t To:

You can specify one of these tokens in each development data file.
The string you specify is prepended to the destination filename
before printing and is used to direct printing to a remote device
such as GRiDServer. Here is an example of the :Frint To: token

:Print To: ‘‘Nexus.l:Printer Queue'EpsonFX80"°
If you do not specify a Print To token, then GRiDDevelop assumes
that all printing will be to your local (directly attached) printer.

See the section titled "Printing List and Source Files" later in
this chapter for additional discussion of the effects of this token.

ces s

You can specify one or more of these tokens in each development data
file. Following the token, you provide a list of source filenames.

Frogram Development Guide

Filenames must be one per line and can include spaces. Leading and
trailing spaces are ignored unless enclosed in guotes. Each
filepame title must end with a suffix indicating the compiler to be
invoked for that source file. The following title suffixes are
recognized by GRiDDevelop:

.Pas {(Pascal)
LFIm (PL/M)

.Asm (Assembler)
Ftn (FORTRAN)
.C (C)

Here is an example of the :5ources: token

sSources:
ModelPriv.Inc
ModelText.Inc
FormsInit.Flm
Unparse.Pas
‘Test Model.Pas’

Note that if the file name title ends with a suffix other than one
of the five recognized by GRiDDevelop, no compiler will be invoked.
This lets you have "include" files (.Inc) be listed with your source
files =zp that you can easily edit them using the "Edit source file"
command from the Main menu of GRiDDevelop.

If you have programs that have many source files, this token lets
you categorize a collection of source files as a “"group". Then, by
selecting the "Change source groups” item on the GRiDDevelop
Commands menu or by pressing CODE-G, you can specify which group(s)
of files should be displayed for editing, compiling, and so0 on (see
alsp the :Groups: token). You can specify as many of the :Sources:
tokens as required in each Develop data file. The following example
illustrates the use of the multiple :S5ources: tokens:

:Sources Samplels
Filel.Pas
File2.Flm
Filel.Asm

:Sources Samplel:
Filed4.Pas
File5.Plm
Filet.Asm

:Sources Samplel:
File7.Pas
File8.Flm
File9.Rsn

GRiDDevelop 2-13

Now, if you select "Change source groups"” from the Main menu, the
form shown in Figure 2-4 is displayed:

o

Samplel
Sample2.
Sampled

- Source arouUrs: Fill im form and confirm

Figure 2-4. The Change Source Groups Form

With all three groups set to "Yes" on this form, you would get a
display similar to the screen shown in Figure 2-35 if you select
"Compile” or "Edit source file" from the Main menu.

Yes Yes with Debug

Filel Pa=s..... [Na {
File2 Pa=s. <)

File3 . Fas..... Mo

Filed Ftnm..... Mz

FileS . Ftn. Hao

Files . Ftrm. He

File? . FLM. Mz

FileS PLM..... i

File3 . AsM. . .. W

Compile source files: Fill in form and confirm

Figure 2-3., The Compile Form with All Groups Enabled

If you enable only groups 1 and 3 via the Change Source Groups form,
the Compile form would be as shown in Figure 2-6.

glslt ‘2= Yoz with Debusg

14 Program Development Guide

: Testzs

Each GRiDDevelop data file can specify one or more Test tokens.
Following the Test token, you can specify any number of command
lines, each of which must be ended with RETURN. The following is an
example of the use of the Test token:

:Test:
GRiDPlan SampleData

Now, when you select Test from the Main menu, GRiDPlan would be
invoked along with the file SampleData.

If more than one test command is needed, then multiple test tokens
can be defined. The text that follows the keyword Test within the
colons is displayed on the Test form. VYou can then select which of
the test sequences is to be initiated. VYou can specify as many of
these tokens as required in each development data file. The
following example illustrates the use of multiple Test tokens:

:Test GRiDFlan:
GRiDPlan SampleData

:Test GRiDFlot:
GRiDPlot PlotTestData

Now, when you select Test from the Main menu, the Test menu shown
below will be displayed:

label 1 o

Test: Select item and confirm

You can then initiate the desired sequence by selecting it from the
Test menu.

USER-DEFINED TOKENS
You can define your own GRiDDevelop tokens which can have any number
of command lines associated with them. The tokens you define are
placed as items on the GRiDDevelop commands menu. For example, if

you have the following token in a development data file,

:GRiDManager:
GRiDManager

the Commands menu displayed when you press CODE-? would be as shown

GRiDDevelop 2-13

in Figure 2Z-7.

e e e e e

iLfanager

]
[

: B LUMM3ﬁd LTﬁ@ el pretar
GrrouEs CODE~G i oL E
Options COnE-~ Szt dwﬂwlnpmen+ characteristic
Bl Gait ConE-o Exit
Tranzsfer COOE-T Exchanze, prirnt files
Lz g ConE--U Shiow memnry USage

Caloculate CODE-= Hﬁx and decimal caloul stor
Cancel COOE~-ESC Ex

fFigure Z-7. The Commands Menpu with User-Defined Tokens

Mow, vou can invoke GRiDMansger by selecting it from the Commands
menu

Command Modifier Characters
GRiDPevelop recognizes two characters that can modify the execution
of command sequences that follow such tokens as Debug, Link and
Enter

14 the +iret character in a command line is a question mark (7},
then after the command i=s executed the evstem will pavse and not
proceed until vou press a key on the keyboard.

1f the first character in 2 command line is a semicolon i3, then
the command that follows the semicolon is simply ignored.

THE GRiDDEVELODP COMMANDS MENMU

when vou press CODBE-7 and displays the
items shown in Figure . (Remember, the first item in this
tigure, GRiDManager, i he wser-detfined token we used as an
eyample.) Many of the items on the Commands menu are gererally
self-eyplanatory and should be familiar to vyou from other GR1D
applications., The Command Line Interpreter {CODE-C), Change so
eroups (CODE-G), Optione (CODE-GY, Transfer (CORE-T), and Calcu
{C00E-=) commands, houwever, des:rve some additional discussion,

The Commands menu appe

1] _1-
oo IJ'I

L

e
ate

1

THE GRiDDEVELOP COMMAND LINE INTERPRETER (CODRE-C}

GRiDDevelop provides a command line interpreter (CLIY that can be
invoked either from the Commands menuw or by pressinog CODE-C. When

Z2-16 Program Development Guide

the CLI is invoked, it displayﬁ a field at the bottom of the screen
that lets vou enter text to be interpreted by the CLI. The text
entered into this field is interpreted as though it was a command to
the Develaopment Executive. Refer to Appendix A for a discussion of
the Development Executive program and to Appendix L for a
description of the programs tht can be invoked via the command line.

Results nf the action initiated via the CLI are displayed above the
CLT field. VYou tempovarily halt scrolling of large amounds of data
resulfing from a command {(for example, & CAT or DUNP) by pressing
CTRL-5. Press CTRL-5 a second time to resume scrolling of the
display.

You can redisplay the immediately preceding command while in CLI
mode by pressipng CODE-D. To leave the CLI field and return to the
GRiDbevelop Main menu, press ESL.

THE GRiDDEVELOP HEX AND DECIMAL CALCULATOR (CODE-=)

GRiDDevelop provides hex and decimal calculator that can be
invoked sither by selecting 1t from the Commands menu or by pressing
CODE-=, When the calculator is invoked, 1t displays a field at the
bottom of the screen that lets you enter numberic data. The
pperations handled by the calculator are essentially the same as
those defined as functione in GRiDPlan. FRefer to the GRID
Management Tools reference manual for details. Any number that has
a trailing "h" or "H" {(for example, leh or 2FFh} is interpreted as a
hevaderimal number.

[

-

=

You can redisplay the immediately preceding calculater entry by
pressing CODE-D. To leave the calculator field and return to the
GRiDDevelop HMain menu, press ESC.

THE CHANGE SOURCE GROUPS COMMAND (CODE-G)

Thiz command can be invoked either from the Commands menu or by
pressing COBE-G and lets you specify which group or groups of source
file names are fto be displayed for selection. FRefer to the
:Sources: token description earlier in this chapter for details.

THE OPTIONS COMMAND
¢
The Opticns command currently lets you specify only one option:
whether to halt on errors. If yvou issue thiz command by selecting
it from the Commands menu or by pressing CODE-T, the form show below
ie displavyed:

GRiDDevelap 2-17

1 you specify "Yes" on this form, an error encountered while
campiling will veturn you to the GRiDDevelop main menu after the

been campiled. This prevents
you may have specified v

module that produced the error has

=4

compilation

THE TRANSFER MENU

of subsequent modules that

i
i‘ump l

the Compile form. Only compile errord will cause a halt; er
warnings do not prevent continuation.
If vou specify "MHo® on this form, errors encountered during
compilations are ignored and compiiation of any oither selecied
modules will proceed. MNote that i€ you have selected filecs to be
both compiled and then linmked, the linkage will not ne performed 14
any compile ervrors are encountered regardliess of the setting of the
fptions form.
Figure Z-8 shows the items on the GRilDevelep Transfer menu,; which
appears when vou select the Transfer item from the Commands menu or
when you press CODE-T.
...... - I . §
(CRirze triz develoe File i |
PO ancener F1le
Fesd thisz develop File
Examime loo Fils
a file
g oF @ File

I’"r

operate jus

bring up a
acted on.

Program Development

ll’1" ll

The GRi

l"“l
=i
I'[l

ievelaop Transfer Fenu

items on this menu
ang "Show

tifth, znd =ixth

", "Erase a file”,

t as they do in cther GRiID applications.
File form that vou fill out

The "Edit any +file" and "Frint any file"

Guide

specifying the filef{s)

{"Exchange for

characteristics of a file")
They simply
to be

iteme also bring

up the standard File fore to let you celect fi1les for editing with
GRiDWrite or printing.

The first item {"Change this development file®), the third and
fourth items {("Read this develop file"” and "Examine leog file"), the
seventh item {Retrieve any file" and the last two items ("Print list
fileis)” and "Print source fileis}") operate somewhat differently
than in standard GRiD applications and are described in the
paragraghs that fellow.

Changing the Develop Data File

The #irst item on the Transfer menu, "Change this develop file",
lets vou edit the contents of the develop data file currently being
uzed to drive the activities of GRiDDevelop. MWhen you select this
item, GRibDWrite is au%ﬁmatlcallv invoked and the current development
dats is brought into memory. You can then edit the data to meet the

changing characteristics of the development process., When you quit
from this editing activity, vou are returned to GRiDDevelop with the
new contents of the data file now driving GRiDDevelop.

Reading the Develop Data File

Examining

1f you select the third item on the Transfer menu, "Read this
develop file”, the contents of the current develop file are re-read
by GRiDDevelop te ensure that the activities of GRiDhevelop are
being directed by the most current version of the develop data file,
This item 13 handy 1f yvou have been using GRibWrite to edit a text
file and have exchanged a standared GRiDWrite text file for a

a file. You would then select "Read this develop file”
iblevelop to update all of 1ts internal parameters to
new contents of the develop file,

1
a
Develop dat
to cause GRI

&

reflect th

the Log File

This item on the Transfer menu invokes either GRiDFile or GRiDWrite
to-let you inspect the contents of the file decignated as the "lLog
fite". HRefer to the discussion of the Log File token earlier in
thics chapter for additional details,

Retrieving any file

This item on the Transfer menu lets vou select another file for
evecution and allows a subsequent return to SRiDDevelop when the
selected file has been exited. Thus, for example, if you select a
worksheet file when the "Fetrieve any file" message and File form
are presented, GBHiDPFlan will be loaded into memory along with the
specified worksheet file. When you subsequently quit or escape from

-

GRibGDevelop =19

GRiDPlan, vou are returnped to GRiDDevelop's main menu.

Printing List and Source Files

The la=

t two items on the Transfer menu, "Print list fileis?" and
"Print sourc

& f119'=)", iet you select one or more of your
select "Frint

1

list/csource +iles for printing. For example, if you

source filei{si" from the Transfer menu, the form shown in Figure Z-9
is displaved.
el Lomal Remobe
Filel i
Filas.
File®
Filaed
File5
Filas
Fila?
Fileg
Films

Figure Z-%9. The Print Scurce Filel(=s} Form

This form displave all of source files in the currently erabled
groupe (see the :Sources: token for a discussion of groups) and iets
you indicate which files or files are to be printed, When you
confirm this form, the indicated files will be printed. For
example, contfirming the form shown in Figure 2-10 will cause sourc
FileZ and File3 to be printed to yvour locally attached printer, and
File7 and FileB to be printed to the remote printer specified by the
iPrint to: token. If po :1Print to: token has been specified, then
the “Remote" choice will not be displaved.

1'[!

Rtz

R Dw)
L Local
= Local
Femote
R D

i

Figure Z-19. Printing Selected Source Files

The "Frint list filef(s}" form works in exactly the same way as
itlustrated for "Frint scurce fileis)",

2210 Program Development Guide

CHAPTER 3., COMPILERS, LIBRARIES, AMD INCLUDE FILES

This chapter describes the compilation procedures to follow to obtain an
obiect file from a program’'s source file, and discusses the include files that
you may need for your programs and library files that are available during
linking.

COMPILING PROGRANMS

The compilers for Pascal-8&4, PL/M-86, FORTRAN-86 and Assembler-86
are described in the following Intel language reference manuals:

PASCAL-86 User’'s Guide
FORTRAN-86 User ‘s Guide
FL/WM-846 User’'s Buide
fssembler-84 User = Guide

The descriptions of the compilers in these manuals are comprehensive
but there are several considerations to observe when using them on
the GRiD Compass system. These special considerations are discussed
in the paragraphs that follow.

Compiler Size Controls

Host of the compilers provide size controls - LARGE, COMPACT,
MEDIUM, SMALL. VYou must use either the compiler's COMPACT or LARGE
control. 1If either a prooram or a block of data used with the
program are larger than 64K, vou must use the LARGE control;
otherwise use the COMPACT control since this will result in smaller

Compilers, Libraries and Include Files 3-1

LIBARIES

FPascal -86

programs.

Since LARGE is the default for the Fascal-B8B4& compiler, vou must
specifically specify COMPACT if that is what vou desire. The
defzult for the PL/WN-86 compiler is SHALL: therefore you must
explicity specify either the COWPACT or LARGE control when compiling
FL/W programs. With FORTRAN-B864, the only choice is the LARGE case:
therefore, FORTRAN programs must be compiled with this control.

When vou purchase a language, each of the compilers is provided aon a
diskette under the subject "Programs". Other files associated with

each language are provided on the same diskette as the compiler and

are listed in the paragraphs that follow.

HOTE: the language diskettes also contain language-specific include
filee under the subjiect Incs. These files will be discussed at the
end of thisz chapter.

Libraries and Modules

The file named Fascal™Run™ 18 under the Frograms subiect and
contains the Pascal-8646 compiler. The remaining files are under the
Libs subject and contain the run-time support libraries and modules.

pascal™Kun™ -- the compiler

p8&rniO™Lib™

p8érni™Lib™ Libraries that must be linked with
pBb6rn2™Lib™ the Pascal obiect module 1 vou
p8érnd3~Lib™ use any of the Pascal 1/0 calls.
rtnull™Lib™

Dglarge™Lnk™

I+ vou use the input/output routines provided by GRiD-05 and the
Common Code, then vou should not wse the Pascal I/0 procedures READ,
READLM, WRITE, and WRITELM, and vou need not link in the Fascal run
time libraries listed above. Instead, vou need only link in the
GRiD-supplied library file "LargebvstemCalls™Libs™" or
"CompactSystemCalls™Libs™ (depending on whether you are using the
LARGE or COMPACT size control when compiling).

NOTE: 1f vou do not link in the Pascal runtime libraries then vou
must not make any calls to Pascal I/0 statements. Also, in the
FROGRAM declaration at the beginning of a Pascal program, do not
specify the module as "Input, Output” nor any other file names or
vou will get link errors.

3-2 Program Development Guide

FORTRAN-86 Libraries and Modules

The file named Fortran“Run™ is under the "Programs” subject and
contains the FORTRAN-86 compiler. The remaining files are under the
Libs subiect and contain the run-time support libraries and modules.
Unlike Pascal, when using Fortran you must always link in all of the
Fortran run-time libraries listed below.

S

fortran™Run®™ -- Fortran compiler

{B6rnO™Lib™

f86rni™~Lib™

f86rnZ™Lib™ Run-time Libraries
fB8b6rn3~Lib™

f8&rnd~Lib™

DgqlLarge™Lnk™

PL/M-86 Libraries and Modules

The file named plm™Run™ is under the Frograms subject and contains
the PL/W-B6 compiler. The other file contains the run-time support
libraries and is under the subiect Libs.

plm~Run®™
plm¥Lib™
DgLarge™Lnk™

8087 Libraries and Modules

These files contain the run-time support libraries and modules
required by the 8087 Numeric Data Processor and must be included if
the prooram being compiled uses the 8087 and if vou do not link in
the GRiD-supplied library CompactSystemCalls or LargeSystemCalls. To
determine if vour program uses the 8087, refer to the appropriate
Intel language manual. If yow are not certain, try linking without
these libraries. 1If you get unresolved svymbols, then then go ahead
and link in the B0B87 libraries one at a time.

g087~Lib™
87null™Lib™
cel87%Lib™
dconB87™Lib
ehB7"vLib™

INVOKING THE COMPILERS

The compilers can be invoked automatically from GRiDDevelop if you
append the appropriate language identification suffix to the source
file name (.Pas., .Plm, .Ftn. .Asm). (S5ee Chapter 2 for details.)
GRiDDevelop alsoc lets you specify any compiler controls you require

(%}

Compilers, Libraries and Include Files 3-

via the GRiDDevelop data file described in Chapter Z.

If you do not use GRiDDevelop, vou can invoke the compilers fraom a

command line {(see fAppendix A) by simply entering the compiler s

name, for example plm or pascal, followed by the source program name

and any compiler controls. {(Refer to the appropriate Intel language

manual for a description of compiler controls usage.) For example:
plm MyProgram.Plm™~Text™ LARGE DERUG

pascal HMyProgram.Fas™Text™ NOLIST

fortran Hyprogram.Fitn™Text™ YREF

THE SYSTEM AND LAMNBUAGE INCLUDE FILES

3-4

The language compilers provide an INCLUDE control that let vyou
include other source modules for compilation with vour program.
{Refer to the appropriate Intel language manual ¢for & description of
INCLUDE). The include files provided by GRiD are simply a text
insertion mechanism: they let vou use the declarations of
GRiD-developed procedures and functieons within yvour programs without

having to laboriously type all of them into vour source file.

There are several files that must be included during compilation of

your source programs if the program makes any direct, explicit calls
to the GRiD-0S8. As you develop your own programs you will probably

develop vour own groups of include files.

Two sets of include files are currently provided on the language
diskettes under the subject Incs: one for Pascal programs and one
tor PL/H programs.

Pascal Include Files FL/M Include Files
Common. Inc*Text™ PLMLits.inc™Text™
OsPasTypes.inc™Text™ OsPimTvpes.inc™Text™
OsFPasFrocs.inc™Text™ OsFlmProcs.inc™Text™
ConPas.inc™Text™ ConPlm.inc™text™

The Common.Inc™Text™ and PFLMLits.inc“text™ files contain some
standard declarations uvsed in the Pascal-Bé6 and FL/M-B6 languages
and should alwaves be included. The OsPasTypecs.inc™Text™ and
OsPlmTvpes.inc™Text™ files contain declarations of data tvpes needed
if explicit GRiD-05 calls are made. The OsPasProcs.inc™Text™ and
sPimProcs.inc™Text™ files contain the definitions of functions and
procedures comprising the GRiD-08 calls. The include files above
should be included in the order in which we have listed them to
avoid undefined symbol ervors.

Frogram Development Guide

Hany more include files are used to define the functions and
procedures available in Common Code. Refer to the Common Code
Reference manual for information on other available include files.

Examples of Include Control Statements
The folleowing examples illustrate the format of typical INCLUDE
controls for the compilers as they would be stated within your

*Text™ source file.

NOTE: The dollar sign {($) must be in column 1 of your source file to
be recognized by the compilers.

Fascal-86 Example:

$INCLUDE ('w’incs Common.Inc™Text™)
FINCLUDE {'w'incs ' ConPas.Inc™Text™)
$INCLUDE ("w'incs'OsPasTypes.Inc™Text™)
$INCLUDE ('w'incs'0OsPasProcs.Inc*Text™)

PL/M-86 Example:
F$INCLUDE ("w'incs ' PlmbLits.Inc™Text™)
FINCLUDE ("w'incs'ConFlm.Inc™Text™)
$INCLUDE (‘w'inces'OsFlmTypes.Inc™Text™)
$INCLUDE {'w'incs'0OsFlmProcs. Inc*Text™)

Compilers, Libraries and Include Files 3-5

CHAPTER 4. THE LINK PROGRAM

The Link program combines relocatable object modules produced by the language

compilers and resolves references between independently compiled modules. The
input to the Link program 15 a list of files and optional controlsy the output
is a single object file and (optionally) a print file.

The Link program is thoroughly described in the Intel manual "iAFPX B6,88
Family Utilities User's Guide" which is supplied with development systems.
Refer to this manual for a complete description of Link including descriptions
of some potentially useful controls that are not covered in this chapter.

This manual also describes the Librarian {(Lib) and CREF {(cross-reference
listing generator) programs that are supplied with development svstems.

INVOKING THE LINK PROGRAHN
The general syntax of a link invocation is

LINK inputlist 70O outputFile“Run™ BIND SS{STACK(+nnnn)}
{controls’

Where:
inputlist contains the filenames of object modules
and libraries.
outputFile . the filename that is to receive the linked

putput module that the Link progranm
produces.

The Link Program 4-1

BIND is a control that must always be specified
ip the final link of & program to obtain a
lpad time locatable module.

SE{STACK (+nnnni) is & control that must be specified to
obtain a sufficiently large stack Segment
Size (55) for program execution.

contraols are the optional controls (summarized in
Table 4-1) that modifvy the standard
operation of the Link progranm.

Each pathname in the inputlist is separated from the preceding file
name by a comma and the last pathname in the list is separated from
TO by a space. For example:

LINK ‘w MySvstem HyFilel™0bi™, "w MySystem MyFileZ™0bi,
“'w'Llibs ' CompactSystemCalls™Lib™ TO "w MvSvstem NewFile™Run™
BIND S5S{STACK(+1500))

The pathname of the output file is separated from TO bv & space, and
any controls you specify are separated from each other by a space.

LINK INVOKATION EXAMPLES

4-32

The following example takes the Fascal objiect module named
MyFile.Pas™0bj™, linke it together with several of the Pascal and
BGB7 librarv modules located under the subiect "w'libs and produces
a linked and bound output module named MyFile“Run™.

LINK MyFile.Fas™0bi™, "w'libs 'FB6RNOYLib™, 'w'libs'PB&RN1“Lib™,
‘w'libs FBORNZ¥Lib™, 'w'libs'PHB6RN3™Lib™, "w'libs'CEL87“Lib"™,
"w'libs EHB87%Lib™, "w'1libs'8087%Lib™, 'w'libs DCONB7™Lib"™,
‘w'libs DgLarge®Lnk™ TO MyFile™Run™ BIND S5{STACK{+13500))
PCC{RPURGE)

MOTE: You can put this link invocation sequence into a GRiDDevelop
data file and then initiate the link operation from the GRiDDevelap
menu. 5See Chapter 2 for examples. 1[4 vou do not use GRiDDevelop.
vou can create a command {(“Com™) file and then initiate the link
with the Do program. See Appendix A for examples of command files.

If you do not use any Pascal input/output procedures then you need
not link in Fascal run-time libraries (PB&RNUO-PBORN3) nor the
"w'libs " DglLarge™Lnk™ file: instead, simply link in the file

'w'lLibs ' CompactSystemCalls™Lib™ or 'w'Libs’'LargeSvstemCalls™Lib™ to
obtain the GRiD 1/0 procedures. In this case, the link invocation
seguence would be:

LIMK MyFile.Pas™0bi™, "w'libs 'CELB7™Lib™, ‘w'libs EHB7™Lib™,

Frogram Development Guide

"w'libs'8087%Lib™, "w'libs DCONB7™Lib™,

'w'libs'CompactSystemCalls™Lib™ TO MyFile™Run™ BIND

SS{STACK{+1500)) PC(PURGE)

The following example shows the link commands for a FORTRAN program:

LINK MyFile.Ftn“Obi®,

'w'libs 'FB&6RNZYLib™Y,
‘w'libs CELB7™Lib"™,
‘w'libs ' DCON87™Lib™,

LINK PROGRAM CONTROLS SUMMARY

‘w'libs F86RNOYLib™,
‘w'libs 'FB6RN3™Lib™,
‘w'libs EHB7™Lib™,

‘w'libs'FB&6RNI™Lib™,
‘w'libs ' F86RN4~Lib™,
‘w'libs 8087%Lib"™,
‘w'libs'DqlLarge™Lnk™ TO MyFile“Run™ BIND
SS(STACK(+1300)) PC(PURGE)

Table 4-1 summarizes the controls available with the Link program
that are described in this chapter and shows the default setting for

each control.

Table 4-1. Summary of Link Controls

Control

ASSUMEROOT (pathName)
BIND ! NOEIND

FASTLOAD | NOFASTLOAD
MAP | NOMAF

NAME

OVERLAY | NDOVERLAY
PRINT(pathName) ! NOPRINT
PRINTCONTROLS (PURGE)
PURGE ! NDFURGE

SEGSIZIE (STACK{+nnnn))

Abbrev.

AR
BI
FL
MA

ov
PR

PU

o

w

Default

NOBIND
NOFL

MAF

NOOVERLAY
FRINT

NOPURGE

The Link Program 4-3

ASSUMEROOT

Definition

BIND

Definition

Syntay Abbreviation Default

ASSUMERDOT (pathName) AR -

ABSUMEROOT i=s used only in conjunction with the OVERLAY control and
suppresses the inclusion of any library module{s) in an overlay if
those modules have already been included in the root file identified
by pathName. A5SUMEROOT causes the root file to be scanned, and all
external, undefined symbols in the overlay modules which have a
matching definition in the vroot file are marked "temporarily
resolved."” This markinog means that while a librarv search for the
symbols will not be made, their status remains externally undefined
until the overlavs are linked with the root. GSeée dAppendix R for
examples of the use of ASSUMEROOT.

H NOBIND .

Syntax Abbreviation Default
BIND BRI NOBIND
HOBIMD NOBI

BIND combines the input modules into a load-time-locatable module
that can then be lpaded and executed. Since the default for this
control is NOBIND, yvou must alwavs explicitly specify the EIND
control during the final link to obtain a module that camn be loaded
and executed under GRiD-05.

4-4 FProgram Development Guide

FASTLOAD | NOFASTLOAD

Definition

MAaPF

Definition

Syntax Abbreviation Default
FASTLOAD FL NOFASTLOAD
NOFASTLOAD NDFL

FASTLDAD reduces program loading time and also produces the most
compact obiect file. Loading time is reduced by concatenating data
records to a maximum length of 64K. The object file size is reduced
by removing such information as local symbols, public records,
comments, and type information {(unless the obiect file contains
unresolved external symbols). To obtain an executable object file
of the smallest size, use the both the FASTLOAD and PURGE link
controls.

The FASTLOAD control should not be used if vou are going to ke
debugging the program.

NOMAPFP
Syntax Abbreviation Default
MAF MA MAP
NOMAF NOMA

MAF produces & link map and inserts it in the PRINT file (“MFI™)
that is generated by the Link program. ({(The FRINT file is described
at the end of this chapter.) The link map contains information
about the attributes of logical segments in the output module. This
includes size, class, alignment attributes and overlay name (if the
csegment ic a member of an overlayl. If you specify NOMAP, the FRINT
file will not include a link map.

The Link Program 4-5

NAME

Definition

OVERL

Definition

d-4 Frogr

Svntax fibbreviation Default

MAME (moduleMame) MNA& Hodule keeps
: : current name

MAME assigns the specified moduleName to the output module’'s header

record. If vou do not use the MAME control, the cutput module will

have the name ot the first module in the input list. HNote that NaME
does not affect the output file’s name; onlv the module name in the

putput module’'s header record is changed.

The moduleName may be up to 40 characters long &and may be composed
of any of the +ollowing characters in any order: guestion mark {(7),
commercial at (@), coelon {(:), period (.}, underscore {_1,
ABCy...i, o 0,1,2,...9. Lower case letters may be used, but thev
are automatically converted to uppercase by the Link progranm.

AY | NOOVERLAY

Syntax Abbreviation Default
OVERLAY { (overlavNamel ov NOOYERLAY
MOOVERLAY NOOQV

OVERLAY specifies that all of the input modules shall be combined
into a single overlay module. I+ vou specify the optional
overlavName argument, all segments contained within the overlay
module have that name in addition to their segment names and class
names. If no overlayName is specified, the Link program uses the
module name of the first module in the input list as the
overlayMame.

You must link each overlay in & program separately before vyou link
all the overlays into a single object module. When linking root and
pverlay files, the Link program assumes that the first file in the
invocation line is the root. When you call the operating system to
load the overlay, vou must use the same overlay name that vou
specified (overlayMame) with this OVERLAY control. GSee Appendix EH
for & complete description of overlavs.

am Development Guide

PRINT ! MNMOPRINT

Syntax Abbreviation Default
PRIMT{(pathName)} PR PRINT (objectFile“MP1™v)
NOPRINT NOFR

Definition

FRINT lets you specify the pathname for the PRINT file created by
the Link program. (The PRINT file is described at the end of this
chapter.) 1f the FRINT control is not specified or if the control
is given without the pathName argument, the print file will have the
same pathname as the object file output by the Link program except
the Kind extension will be “MP1™ instead of “RUN™. MNOPRINT prevents
the Link program from creating any print file.

PRINTCONTROLS(PURGE?

Syntax Abbreviation Default

PRINTCOMTROLS (PURGE) FC{PW) --

Definition

FRINTCONTROLS {PURGE) removes all information about the debug or
public recorde from the print file (MP1) produced by the Link
praogram and thus significantly reduces the size of that file,

~4

The Link Frogran 4~

PURGE

Syntax Abbreviation Default
FURGE FU NOFURGE
NOPURGE MOPU

Definition

FURGE removes all of the debug or public records from the obiect
file and their information from the print file. If vou specify both
the FASTLOARD and PURGE controls, vou will obtain the most compact
output object file possible. The records that would be included by
NOPURGE and MOFASTLOAD are useful when debugging programs, but are
unnecessary for producing executable code.

SEGSIZE
Syntax Abbreviation Default
SEGSIZE{(STACK{+nnnn)) S55(STACK {(+nnnn)) --
Definition

SEGSIZE(STACK{+nnnn}) specifies the amount of additional memorvy
space needed for the stack segment. The compilers automatically
determine how much stack a program needs. If your program did not
call any common code or GRiD-0S routines directly and has no
re-entrant procedures, the compilers will generate the correct size
stack. However, if vou do call common code or GRiD-0S5 routines,
they also use vour stack and vou must increase the size of the stack
accordingly. There are no hard and fast rules for the amount of
stack you will need. A good first approximation is +1500. If vyou
have a program which crashes in unexpected ways, the first thing you
should try is to increase the stack size further.

NOTE: If vou omit the plus sign from the zize specification, it is

treated as the absolute size of the stack segment and could cause
failure from an insufficient stacki

4-8 Program Development Guide

THE LINKER'S PRINT FILE

The Link program always creates a print file unless vou specify
NOFRINT. The optional pathName argument to the PRINT control
designates the name of the print file., The default name is the name
of the output object file but with a Kind extension of “MP1™.

The print file may contain as many as five parts:

A header {always present)

A lirk map {(unless NOMAF specified)

A aroup map (always present)

A symbol table f{unless PURGE or PC(PURGE) specified)

An error message list (always included when errors occur)

O o o g

Most of the information contained in the print file is used far
diagnostic purposes when constructing such things as system loaders
and will be of little or no interecst to most programmers. The only
parts of the print file that may be of general interest and use are
the unresclved symboles list which is part of the link map and the
error message list at the end of the print file.

The unresolved symbol list itemizes each external symbol whose

public definition was not encountered. The module that references
the unresolved svmbol 13 aslso indicated. The printed message that
appears under the heading UNRESOLVED EXTERNAL NAMES is as follows:

symbolName IN pathName{(moduleName)

Warning messages are listed consecutively as warning situations are
encountered. They may appear before or after the link map.

Errore always terminate processing - an error message will aluways be

the last line in the print +ile. For a discussion of the
interpretation ot individual messages, refer to Appendix D,

The Link Program 4-9

CHAPTER 53y THE DEBUGGER

The debugger program (Debug) is a symbolig, interactive, multitasking debugger
for high-level languages. It lets you debug programs at the source level by
examining a program as it executes. Debug lets you:

o Set breakpeints in the program so you can check the progress of prograas
execution at any point. VYou can set breakpoints at a line number, at a
procedure beginning or end, upon return from a procedure, or at a memory
location. Timing breakpoints can also be set.

o Display/examine the contents of variables, memory locations, and registers.

g Change the contents of registers, memory locations, and variables.

o Dump the contents of memory in both hexadecimal and ASCII formats,

o Check the status of system multitasking operations by diaplayihg
information concerning processes, semaphores,; and messages.

o Set timing breakpoints,

o Alternate between two screens, one for the debuger and the one being used
by your progran.

Some of the debugger commands are invoked by pressing CODE and one other key,
while others are invoked via a command line. The commands are listed in Table
5-1 and will be described in alphabetical order in the pages that follow. The
CODE-key commands are described first and then the command line commands,

The Debugger 95-1

ES

L Cancels copmand entiryd.

Comfared syntan

L Narner Display addrass

<namer | <absMen: Dizplay valuye
ihaner = {eXpresgion: Azsign value

<absHep: = DuRp-Chanda mAemory
{nafer | {absen: <len: DuRp < 1len» bytes
CORDE KEY CODE KEY

E el Breakpoint 5 display Stack Framses
e Clear breakpoint T digsplag Tasks, sempaphores
O Duplicate preyious 2ntry 4] Unassenble

E get developRantEdecutive I display lersion nunber
F Fill memmrd W £0a9le Hindows

I display InFo, options 0 Shold procedure inFo
L dizplay Local variables i zet Liming range

H display tazks HMessages 2 Clear LiRing rangs

o sat-schandge Ophions 2 shod %iMing ranges

4 Proceed Wwith execution 4 print timing results
s} uit the debugaer = reget Lining resglts
R dizplay Rejdisters EZC cancel the debuager

®
Table 5-1. Debugger Command Summary

COMPILE AND LINK CONSIDERATIONS

In order to view symbol names and line numbers, the program to be
debugged must be compiled with the $DEBUG option specified, and the
PURGE and FASTLOAD controls in the Link program must not be
specified (MOPURGE and NOFASTLOAD are the defaults for these
controls).

INVOKING THE DEBUGBER

The Debug program can be invoked by issuing the following command
via the command line interpreter of the Development Executive
program {(described in Appendix A):

DEBUG programMame [parametersl

Note: You can also invoke the Debug program from GRiDDevelop.
See Chapter 2 for details.

The optional parameters are those that might be needed by the
program being debugged.

When it is invoked, the debugger creates a set of debugging files
(ZZIDEBUG.MOD, ZZIIDERBUG.PUR, ZIZIIDEBUG.SYM, IIIDEBUG.TYP, and
I77DEBUG.WIN). These are information files used by the debug
program and require approximately the same amount of disk space as
the program module occupies.

5-2 Program Development Guide

After creating these files, the debugger displays its prompt
character, an asterisk (#), VYou can now issue the debugger
commands.,

DEBUGBER BYNTAX AND TERMINOLOBY

The following syntax conventions and abbreviations are used
throughout this chapter,

decimalConstant -- a number composed of the digits O through 7.

hexConstant -- a decimal digit (0-9) followed by any combination of
hex digits (0-9,A,B,C,D,E,F) and ending with the character "H".
For example, OFFEBh.

absMem -- an absolute memory address with the segment value followed
by a colon and ending with the offset value. For example,
0001h:OFFEh or #AX:#IP (see register notation below).

register -- the number or pounds character (#) followed by the
standard Intel symbol for 80Bé registers. For example, #AX and
#5P.

number -- a decimal constant, hex constant,; register reference, or

an equation composed of these simple math operations (+,-,%,/)
and unary plus and minus. Note that eguation operators are

evaluated from left to right -- there iz no operator
precedence.
line# -- any number that has a corresponding statement number in the

sgurce code listing.

varName -- the name of a variable in the program being debugged.
procName -- the name of a procedure in the program being debugged.
module -- the name of any module in the program being debugged.

1f the varName, procName, or line# you want to refer to is in the
current module being debugged, you need not precede the nase with
the module pame. If you want to refer to a name or line# in another
module, explicit module references can be made by preceding a
varName, procName, or line# with the module name and a colon (2),
For example: ‘

NEWMOD: RESTPROC

References to a varName or procName that is in the public domain are
made by prefixing the name with a colon (:). For example:

The Debugger &-3

s PUBFROC

CODE-KEY COMMANDS

Many of the debugger commands can be initiated by simply pressing
one of the standard keyboard keys while holding down the CODE key.
The paragraphs that follow describe these commands in alphabetical
order.,

THE HELP (CODE-?) COMMAND

This command displays a brief summary of the debugger commands --
both the CODE-key and command line commands. When you press CODE-?
you will get the display shown in Table 5-1 appears.

THE SET BREAKPDINT (CODE-B) COMMAND

w

This command lets you set breakpoints in your program so you can monitor
program execution. You can specify the breakpoints by line number,
absolute memory address, or by procedure name. You can also specify that
a break occur after the breakpoint has been reached a certain number of
times.

When you press CODE-B, the debugger prompts you with the following
message:

Set Breakpoint At: [previousBreakpoint]

I you have previously set breakpeoints, the most recently established
breakpoint will be displayed after the prompt message. If this is the
tfirst breakpoint that you are setting, the field following the prompt
message will be blank. If you want to set a new breakpoint, backspace to
erase the displayed previous breakpoint. You can then enter an absolute
memory address, line number, or procedure name and press CODE-RETURN.

If vou enter a procedure name, you must specify whether the break should
be at the beginning or end of the procedure, or upon return from the
named procedure. Debug will will prompt you with:

Begin/End/Return: B
The supplied default choice is B (for break at Beginning of procedure).
I1f you want one of the other choices, backspace and then enter E (for
break at End of procedure), or R (for break on Return from procedure).
Then press CODE-RETURN.
You will then be prompted with:

Break After Count:!

Program Development Guide

lote that the debugger supplies a default value of 1, indicating that the
break should be made the first time this breakpoint is encountered. 14
you want some other value, simply backspace to erase the "1" and enter
the value you want, Then press CODE-RETURM., The debugger will sutput
the following message:

Entered as Break Table Entry #n

The debugger maintains a table that defines the characteristics of each
breakpoint you specify. It sequentially numbers each breakpoint

{beginning with 0) as you specify them. VYou can examine this table using
the CODE-I command.

NOTE: A randos breakpoint can be caused at any time by pressing
CODE-SHIFT-ESC,

THE CLEAR BREAKPDINT (CODE-C) COMMAND

This command clears a breakpoint that you have previously set (using the
CODE~B command). The number of the breakpoint is the number assigned to
it by the debugger when you set the breakpoint., (You can check this
number using CODE-I). If you enter an asterisk (%) instead of a number,
all breakpoints will be cleared.

TIMING BREAKPOINT COMMANDS (CODE-i1 -- CODE-3)

These five commands let you set, clear and examine timing breakpoints to
determine such timing factors as the time spent within specified
procedures or line number ranges. The five timing breakpoint commands
are as follows:

CODE-1 set timing range
CODE-2 clear timing range
CODE-3 show timing ranges
CODE-4 print timing results
CODE-3 reset timing results

When you press CODE-1, the debugger prompts you with the following
message:

Start timing At: [previousBreakpoint)

If you have previously set timing breakpoints, the most recently
established timing breakpoint will he displayed after the prompt message.
If this is the first timing breakpoint that you are setting, the field
following the prompt message will be blank. If you want to set a new
timing breakpoint, backspace to erase the displayed previous breakpoint.
You can then enter an absolulte mewmory address, line number, or procedure
name and press CODE-RETURMN.

The Debugger 35-3

9-6

If you enter a procedure name, you must specify whether the break should
be at the beginning or end of the procedure named procedure. Debug will
will prompt vou with:

Begin/End: B

The supplied default choice is B (for break at Beginning of procedure).
If{ you want to break at the end of & procedure, enter E (for break at End
of procedure) Then press CODE-RETURN.

You will then be prompted with:
Stop timing Ats [previousBreakpoint]

The syntax here is the same as for the "Start timing At:" dialog. Once
again, you can speciify that timing stop at either the beginning or end
of a procedure {the default choice is "End". Then press CODE-RETURN.
The debugper will output the following message:

Entered as entry #n

The debugger maintains a table that defines the characteristics of each
timing breakpoint you specify. It sequentially numbers each breakpoint
(beginning with 1) as you specify them. VYou can examine this table using
the CODE-3 command. Up to seven different timing breakpeints can be set.

The results obtained from the timing breakpoints can be displayed using
the CODE-4 command. The following example display shows the setting of
two timing breakpoints (using the CODE-! command) and the format of the
gisplay obtained using the CODE-4 command:

%

Start timing At: arssetablecells
EBagin-End: B

Stop Liming At erasetablecells
BeainsgEnd: E

Entered as entry £ 1

Start Tining At doplicatetablacells
Begin-End: B

Stop timing At: duplicatetablecells
Bagin-sEnd: &

Enterad ss entry ¢ 2

E3
Braak on MAIL interrupt

H
% v Hicroseconds Ticks Start-Stap
1] &9 10254432 25536206 3-3
i 2 403356 L D0A300 i1-1
2 ? 81 3378 2047198 er2

%

The leftmost column is the timing breakpoint number assigned by the
debugger when the breakpoints were specified. MNote that number 0, is

Program Development Buide

assigned by the system. The value for this timing range is calculated
beginning with the completion of the first user-specified timing range.
For example, the timer for "0® in the display shown above would be
started when the end of the EraseTableCells procedure was reached.
Thereafter, timer "0" runs whenever the system is operating outside of
ally user-specified timing range.

The timers for specified ranges run only when the program is operated
within the specified begin/end range. Each time the program re-enters a
specified timing range, the appropriate timer resumes., The right-hand
column of the CODE-4 display indicates the number of passes through the
start/stop point of each range and can be used to divide the time in
microseconds or ticks to obtain average duration of each timing range.

THE DUPLICATE LINE (CODE-D) COMMAND

This command causes the last line of text entered via the keyboard to be
displayed again.

THE EXECUTIVE (CODE-E) COMMAND

This command causes control to be passed to the DevelopmentExecutive
interface. The prompt character for this interface {(-») will immediately
be displayed and you can then use any of the system utilities that are
described in Appendix €. To return to Debug from the Development
interface, press CODE-8 and then CODE-RETURN: the Debug proapt character
{#) will be displayed. The state of your debugging session will remain
unchanged.

THE FILL MEMORY (CODE-F) COMMAND
This command lets you fill a specified memory range with a particular bit
pattern. After pressing CODE-F you will be prompted for the starting

memory address, the numsber of bytes to be filled, and the pattern byte to
be used.

The Debugger 5-7

THE INFO (CODE-I) COMMAND

This command displays all the breakpoints set in the break table and also
displays the current configurations of the options and system memory
utilization as shown in the following example:

4 Count Occur B/E Break Location

i 0 1 0000h; QFFFED

ya 2 3 iReadHex: 185

3 1 o B Main:Factorial:i090
4 0 i R :PutChar

Default Module Name: Curiod
Alternate Window: Y

Memory Available (Bytes): nnnnnn
Memory Allocated (Bytes): nnnnnn

THE LOCATION DISPLAY (CODE-L) COMMAND

This command displays the current location within the program being
debugged. The format of the information displayed depends on the type of
data available to the debugger: it may consist of just a memory address,
or it may be a statement number, procedure name, variable name or some
combination eof these.

THE MESSAGE DISPLAY (CODE-M) COMMAND

This command displays the current messages {(if any) of the current
{(running) process. The list includes the sending process ID, the message
class, the note {(if any) and the address for each message.

THE OPTIONS (CODE-0) COMMAND

This command lets you change the default module name, specify whether the
debug dialog should be echoed to the printer, and change the alternate
window choice te disk (if additional memory space is needed), RAM (the
default choice that provides best performance), or none (debug and the
module being debugged share the same window).

THE PROCEED (CODE-P) COMMAND

This command simply allows program execution to proceed or continue.
Execution will stop either when a breakpoint is reached, when
CODE-SHIFT-ESC is pressed, or when the program completes execution. VYou
can alsp programmatically provide breaks by breaking on zero overflow,
cut of range, and so on by using the appropriate compiler controls (such

9-8 Frogram Development Guide

as CHECK on the Pascal-B8B6 compiler). NOTE: you cannot use CODE-P to
restart a program that has completed execution -- you must reinvoke the
debugger and start from the beginrning since control normally returns to
the executive program at this point,

THE QUIT (CODE-&) COMMAND

This command is used to exit from the debugger. Before the exit actually
occurs, you will be asked to confirm that you want to quit.

THE REGISTER DISPLAY (CODE-R) COMMAND

This command displays the contents of all the BO8b registers in the
following format:

AX BX CX DY BP 51 DI
nnnnh nnanh nannnh nnAanh nnnnh nnnnh nnnnh

D5 ES 55:5F CS:IP FLAGS ODITSZ AP C
nnnnh nnnnh nnanh:nnnnh nnnnh:nnnnh nnnnh Xxxxxx % % ¥

Following the "FLAGS" section at the end of the second line of the
registers display is the setting of the individual flags within the Flags
register. The upper line (DDITSZ A P C) indicates the particular flag
{(described below) and the line below indicates the state of each
individual flag. Thus, you do not have to decode the hexadecimal
representation of the Flags register to determine the setting of each
flag.

- Dverflow

- Direction (Forward/Reverse)
- Interrupt (Enabled/Disabled)
- Trap (Set/Cleared)

Sign (Positive/Negative)

- lero (lero/Non-zero)

- Auxiliary carry

- Parity (Ddd/Even)

- Carry

)"0 D ors U1 = e 3
i

The Debugger 5-9

THE STACK TRACE (CODE-S5) COMMAND

This command displays the contents of the stack as it is being utilized
by the program being debugged. The format of the display is shown in the
following example: '

Stack Trace:

{3 [532913ACh] TABLEWRITE:WRITETAB line 456

2: [55291384h] TABLEWRITE:WRITETABLETOFILE line 446

A
we

[55290A46h] TABLEMENUFORM:WRITETHISFILE line 777

4: [35290734h] TABLEMENUFORM: TRANSFERMENU line 600

9: [55290205h] TABLEMAIN: TABLEMAIN line 626
The output shown above indicates nesting five levels deep with the
topmost level being the TABLEMAIN procedure in the TABLEMAIN module. The

current procedure is WRITETABR at line number 456 in the TABLEWRITE
module. The numbers in brackets are the value of the CS5:IP registers.

THE TAEKS/SEMAPHORE DISPLAY (CODE-T) COMMAND

9-10

This command displays a list of all processes on the process queue and
all semaphores on the semaphore gqueue. The format of the display is
shown in the following example:

ProclD Gtate Pri Fid/Sem TimelLmt #Msgs MemUsed

d 3561 semWait 1 3508 0 0 hboh

d 3632 msgwait | 65535 0 0 91z

d 36835 ready i 0 0 0 43B56

d 3799 msghait 1 3787 0 0 a12
3787 running 128 0 0 0 2896

d 3489 ready 200 3513 0 0 64

d 3349 loadPkg 255 0 0 0 20576

SemalD Count HNote Busy Creator

3527 0 0 0 3685
3503 1 0 3578 3489
3501 0 g 63535 3489

If a line is preceded by the letter "d", it means that the process on
that line is a process that is being debugged. The ProcID column, gives
the process identification number assigned by GRiD-05 when the process

Program Development Guide

was created. The State column gives the current state of each process,.
The possible states are the following: running, ready, message wait,
semaphore wait, timed wait, timed message wait, timed semaphore wait, or
a loaded package (such as common). The Pri column gives the current
priority of each process. The Pid/Sem column lists either the process
being waited on (i1f 1n a message wait) or the semaphore being waited on
1+ in a semaphore wait). The TimelLmt column indicates the time
remaining to wait on a timed semaphore or timed message wait. The #Msgs
column gives the number of messages on the message queue of each process.
The MemUsed column lists the bytes of memory used by each process.

The semaphore information is listed after the task information. The
SemalD is the identification number assigned to the semaphore by GBRiD-0S.
The Count column lists the number of processes waiting for each
semaphore. The Note column gives the note (if any) that was included
with each semaphore. The Busy columpn lists the most recent process
waiting on each semaphore. The Creator column gives the identification
number of the process that created each semaphore.

THE UNASSEMBLE (CODE-U) COMMAND

This command disassembles specified sections of your source code and
displays an assembly language listing on the screen. [If you press CODE-U
while the debuggers prempt character (%) is displayed but while there is
nothing entered on the command line, disassembly begins at the current
value of the CS5:IP registers. VYou can cause disassembly to begin at a
particular memory address or line number by typing that address or number
on the command line and then pressing CODE-U instead of CODE-RETURN.
Disassembly continues to the end of the module or until you press ESC.

To temporarily halt scrolling of data, press CTRL-5. To resume display,
press CTRL-5 a second time.

You can also disassembly a single procedure or function by typing the
procedure/function name on the command line and the pressing CODE-U. In
this case, disassembly stops when the end of the procedure is reached.

THE WINDOW TODGGLE (CODE-W) COMMAND

This command toggles or switches you back and forth between the debugger
window or screen and the application window.

COMMAND LINE COMMANDS

The commands described in the paragraphs that follow are initiated by
entering text via a command lipne ip response to the prompt (#) character.
These commands let you display the addresses and contents of various
program locations,; assign values to registers, memory locations and
program locations, and dump the contents of memory.

The Debugger S-11

THE DISPLAY ADDRESS COMMAND

To display the address of a variable, procedure, line number or memory
location, type "@" follcwed by the varName, procName, line#, or absMenm.
The debugger will display an equal sign (=) followed by the address in
the format "segment:offset”. For example:

@189 = 07AFh:02Ab6h 119467:678)

Note that the address is displayed in both hex and decimal formats.

THE DISPLAY CONTENTS COMMAND

5-12

To display the centents of a variable or memory location, type the
varMame or absMem location followed by CODE-RETURN. The debugger will
display an equal sign (=) followed by the value of the specified itenm.

Variables are displayed according to the format they were declared in.
For example, assume that you have declared a variable named "a’ as
follows:

a : ARRAY [1..101 OF Char;

You could display all characters in the array by typing the variable name
{a) and prescsing CODE-RETURN or you could display the fifth element in
the array by typing:

ala]

NOTE: You can terminate the display of long variable structures by
pressing ESC.

)

Local variables can only be displayed if you have broken within the
procedure where the local variables are defined.

The contents of specified memory locations (absMem) are displayed as bvte
values,

You can also display the contents of a2 variable at one memory loccation as
though it were of the type of ancther variabkle. The syntax for this is:

varNamel AS varName?

This would cause the contents of varNamel to be displayed using the type
asspciated with varNameZ.

Frogram Development Guide

THE

ASSIGN VALUE COMMAND

To assign a value to a variable or memory location, type varName or
absMem followed by an egual sign and the value to be assigned. The value
assigned will be echoed back and displayed. For example:

#1935:678=7Bh
Value Assigned = 123 (7Bk, “{", true)

Note that the value echoed back from a memory location is displayed in
decimal, hex, ASCII interpretation {if printable), and boolean value,.

You can assign values to any simple type variable except Reals. I+ the
value vpou assign is larger than the value type for varName, the value is
truncated to the appropriate size, Values assigned to memory locations
are assumed to be of type Byte.

THE LOAD REGISTER COMMAND

To lpad a value into one of the BOBL regisers, type "#" followed by the
register name (&%, BX, IP, etc.), an egual sign and the value to be
assigned. The value assigned will be echned bhack and displaved. For
example: ‘

#AX=270Fh
Value fissigned = 9999 (270Fh)

Mote that the value echoed back from a register ig displayed in decimal
and hex,

THE MEMORY DUMP COMWAND

To display the contents of a2 section of memory, type the variable name,
procedure name, line number or memory address indicating the starting
location where the dump is to begin. Then type one space and a number
(byteCount) indicating the number of bytes to be dumped. The memory
contents will be displayed in tabular form with B values per line
beginning on the line following the reguest. 1§ the last line is short,
it is fi1lled out to a length of 8. The format of each line is starting
memory address {(for that line), B hex values, 8 ASCII values. For
examples

#078Fh:02abh 20
Address = 07BFh: 02A6h (1935:4678)
02A6h BBh QEh EZh OCh 4%h CEh BEBh 16h #....1...%

0ZAER E4h OCh 42h CER 8%9h 56h FAh 3IBh #,.B..V,;#
G2B7h 4Eh FAh 7Fh 3Bh B%h 4Eh FBh BEh *N.#;.M..#

The Debugger S—iS

Note that if a memory location contains a value that is not a valid,
displayable ASCII character, a period (.) is displayed in the ASCII field
of the dump display. :

You can terminate the display of a large memory dump by pressing ESC.

THE EXAMINE/CHANGE MEMORY COMMAND

5-14

This command lets you sequentially examine bytes of memory and then
either change the contents of each location or leave the contents
unaltered, To initiate the display of memory contents, type the variable
name, procedure name, line number, or memory address indicating the
starting location where the examination is to begin followed by an equal
sign (=). After you've typed the starting location, the egual sign, and
pressed CODE-RETURN, the memory address and current contents of that
address will be displaved in hex. You can then type in a new value to
replace the existing value or press CODE-RETURN to leave the existing
value unchanged. The debugger then displays the next sequential address
and its contents. This seguence continues until vou enter a period (.)
or ESC to terminate the command. For example:

141=CODE-RETURN
07AFh: 0Z2A6D 8Bh 7Bh CODE-RETURN
07AFh: 02A7h OEh CODE-RETURN

]

07AFh:02A8Bh = EZh CODE-RETURN
07AFh: 02A%h = OCh FFh CODE-RETURN
07AFh:02AAh = 7Bh . CODE-RETURN

This sequence begins examining memory contents at line numker 141 which
is at memory address 07AFh:02Abh. This starting location contains BBEh
and the contents are then changed to 7Bh. The contents of the next two
locations are displayed and left unchanged., The contents of memory
location 97AFh:02A%h are changed from OCh to FFh and the command is then
terminated after the contents of the next location are displayed.

Program Development Guide

APPENDIX A. ALTERNATE DEVELOPMENT APPROACHES

"

Although the GRiDDevelop program described in Chapter 2 is powerful
and easy to use, there may be certain tasks or situations where you
prefer anather approach. Or, perhaps your personal preference due
to past experience on development systems mavy lead vou to seek a
different, more familiar approach. To meet these needs, several
other approaches are provided and have been used at GRiD prior to
the availability of GRiDDevelop.

Let’'s now look at alternatives to GRiDDevelop: the Development

Executive proaoram and command (“Com™) files used with the Do
program.

Alternate Development Approaches A-1

USING THE DEVELOPMENT EXECUTIVE PROGRAM

A-2

The DevelopmentExecutive program is a command line interpreter that
lets you enter text strings to initiate commands. The system utility
programs {described in Appendix C) compricse the commands that vou
enter via the command line, NOTE: In this context, the compilers
and the linker program can alcso be considered as "utilities” and can
be invoked from the command line.

You get intoc the DevelopmentExecutive program by selecting it from
the File form. The DevelopmentExecutive interface displavs an arrow
as its prompt symbol and the prompt svmbol ie accompanied by a
blinking triangle -- the system cursor. Figure fA-1 shows the screen
displayed by the DevelopmentExecutive proaram.

Uerzion 2.8 8 of CCOS
Chacoz lopment. Executicve For CO0S = 38 4 19
=k

e,

Figure 6-1. The DevelopmentExecutive Interface

Whenever the prompt svmbol and the cursor are displaved, vou can
enter text to specifv the utility pregram that is to be run and any
parameters that the program requires. The curser cshows veu where
the next character you tvpe will appear on the screen. You can edit
the command line by moving the cursor using the lefthArrow and
rightfArrow keve and erasing entries or portions of entries with the
BACKSFPACE key. You can retrieve the last command line entered by
pressing CODE-D.
4
47 The command line is terminated and the command presented to the
' system by pressing RETURN or CODE-RETURN. Thus, only & single
command at a time can be issued via the DevelopmentExecutive.
Theretore, in order to compile several modules, vou have to invoke
the compiler from the command line for each module after the
preceding module rompilation had been completed. Then, vou must

Frogram Development Guide

USING THE

tvpe in the lengthy linker invocation sequence from the command
iine. I any errors are encountered along the wav, vou must repeat
the entire sequence, performing each step one at a time.
Fortunately. there is a way of simplifying this procedure while
using the DevelopmentExecutive. You can create command (“Com™)
files and initiate them via the command line interpreter or by
selecting them from the File form.

DO PROGRAM WITH COMMAND FILES

The Do program lets vou execute a prearranged segquence of commands
contained in a special file -- a command file. The Do program reads
the commands from the file and presents them one at a time to the
command line interpreter of the DevelopmentExecutive as though vou
were typing them in via the kevboard. A command file can contain a
single command, & command with a long list of parameters, or
multiple secuences of commands. Thus, command files save vou time
and effort by letting you create 'canned’, reusable command
sequences.

Te create a command file, tollow these steps:

1. Using GRiDWrite, create a file that has each command f{and any
parameters) on its own line.

End each command line with & carriage return. Note: Be sure that
vou put a carriage return in at the end of the last line.

3. Save the file specifving a Kind of “Com™.

To execute a command file from the DevelopmentExecutive, type the
command Do and follow i1t with the file's pathname. VYou don’'t have
to include the kind -- “Com™. The execution syntay 1s:

Do pathname

Let's look at an example which illustrates the power of command
tfiles to simplifyvy the prooram development process. Earlier in this
chapter, we gave examples of compiler invocations and a linker
invocation initiated from the DevelopmentExecutive command line.

The two compiler invocation commands and the linker invocation could
all be placed in a single command file that would lock like this:

Fascal “wO MyFroograms' Shell.Fas™Text™

FLM "wO HWyProgram' FormsInit.FIm™Text™

LIME "w('MyProaorams™Shell.Fas™0bi",

‘Wl MyPrograms'FormsInit.PIa™*0bi~, 'wO'Libs ' DataForms.Fas™0Obj™,
‘wi'Libs'largeException.Asm™0bi™,
‘wd'libs'LarogeSystemCalls™Lib™ TO 'wO HWyPrograms'5hell™Run™
BIND FURGE FASTLOAD FLC{FURGE) MAP ss(stack{+1504))

I+ this command file were named 'wd'MyProgram ' CompileLink™Com™, you

Alternate Development Approaches A-3

EXECUTING

could cause the entire sequence to be executed by issuing the
following command to the DevelopmentExecutive:

Do "wiO MyFrograms Compilelink

First, the Fascal compiler would be invoked and the file
Shell.Fas™Text™ compiled. Next, the PLM compiler would be invoked
and the file FormsInit.Fle™~Text™ compiled. Finally, the linker
would be invoked and all the indicated modules would bhe linked
together.)

You can enter comments into a command file by placing each comment
on its own line and making the first character a semicolon (i)
character. The semicolon tells the Do program that the line is not
executable. This capability is handy for "commenting out" selected
parts of the command file. For instance, 1f the file
FormsInit.Flm™*Text™ had not been changed since the last time it was
compiled, vou could skip that command by inserting a semicolon in
tront of 1t. The command file would then look like this™

Fascal "w0 MvFrograms Shell.Pas™Text™

tFLH w0 HyFrogram Formsinit.Fla~Teut™

LIMNE ‘w0 MyFrograms*Shell.Pacs™0bi™,

‘wi'MyFrograms Formsinit.Fim™0bi™~, 'wi'Libs DataForms.Fas™0bi™~,
'wO'Libs largeException.Asm™0bi™,

‘wO 'Libs LargeSystemsCalls™Lib™ TO "wi HyFrograms Shell™Run™
BIND PURGE FASTLOAD PC{PURGE) MAF ss{stacki{+1500))

As the Do program reads each command f{(or comment) from the file, it
displavs the command on the screen. You can supprecss the displavy of
commands by entering the command #$NOLIST in the command file on its
own linpe. You can subsequently enable displav of commands and
comments by entering the command $LIST in the command file.

COMMAND FILES FROM THE USER INTERFACE

Command files can be executed directly from the File form of the
user interface. This approach is also faster since vou simply fi1ll

in the File form and confirm -- vou don’t have to type in a text
string to initiate the command file. For example, to execute the
command file described sarlier {"wi MyFrograms ' Compilelink™Com™)

fraom the user interface, just fill out the File form as shown in
Figure f#-2.

f-4 Frogram Development Guide

21 -Meon—E2

Daesice
Subiect
Title
Foaind
Fazsword

-

igure A-7

|
v |

Hard Disk
FuFroorams
(Compilelink i

Laom

. Executing a Command File from the File Form

You can also execute the command file from within an application

sych as GRi

DWrite using the Transfer form as shown in Figure #-3.

-

Figqure A-3.

Note that t

Hard Dizk
MuFroarams
iComp Lel ink i

Loom

Executing a Command File from the Transfer Form

he next-to-last item on the Transfer form is "Next

L

Alternate Development Approaches A-

action” and the initial choice 15 "Get new file and 1ts
application”. In this case, the file being retrieved is the
specified command file and “its application" is the program Do™Run
Command™.

When vou want to edit s command file using GRiDWrite., vou cannot
directly retrieve the file with the File form since this would
sutomatically retrieve the Do program with the file instead of
GRiDWrite. Instead, vou must already be in GRiDWrite and then must
choose "Get new file only" for the "Next action” item on the
Transter menu. Figure A-4 shows the screen when issuing the
Transfer command from GRiDWrite to retrieve a command tile.

Hard Dizk
Tagby jeiet fiaProorams
Compilaelink
Com

fhet mew tile oniy |

Figure A-4. Retrieving a Command File from the GRiDWrite Transfer
Form

p-6 FProgram Development Guide

APPENDIX B. PROGRAM OVERLAYS

Overlave let vou desion programs that use the minimum amount of RAM
{(Random Access Memory) and thus make the maximum amount of RAM space
available for data. This i1s accomplished by having only a part of a
proaram f{the "root" module) present in memory at all times. You
bring other parts of the the program {the overlavs) into memory only
when they are needed to perform a particular activity. When an
overlav is not being used, it is stored on a mass storage device
{bubble memory., hard disk, or floppy disk). When an overlay is no
longer needed in memory, it can be unloaded from memory and another
overlay brought into the same, or overlapping memory space.

The penalties paid for this more efficient use of memory are reduced
speed twhen an overlay module is needed, it must be read into memory
from the storage device) and slightly more complicated debugging and
linking procedures. If vour application demands a greater amount of
memory for data and can tolerate the performance reductions inherent
with overlsvs, vyou can utilize the overlay capabilities previded by
GRiD 05 and implemented using the Linker program. The purpose of
this appendix is to clarify the additional factors introduced into
program structure and linking operations by the use of overlays.

THE OSOVERLAY PROCEDURE
This GRiD-05 call loads a specified overlay program module into
memory. Unly one level of overlays is allowed (a program that has

been brought into memory as an overlay cannot then issue an
OsOverlayv calll., This routine can be calied only from the root

Overlavs B-1

{non-overlaid) module which must be present in memorvy at all times.
The format for the call is:

FROCEDURE OsOverlay (YAR name : ShortString:
pid : Word:
VAR errvor : Wordi;

Farameters

name —-- & Short5String record containinag the name of the
overlay. The overlay name is defined ucsing the linker
overliay control (5ee chapter 4 for details).

pid -- the process ID of the overlay. Usually, this wiil be
the same as the pid returned bv Oskbhofml; that is. the
overlay is part of the same process that is issuing the
OsOverbay call.

error —-- the number of anv error encountered while calling the
overlav.

Thie procedure call is straightforward and does not add much to the
complexity of a program. The only consideration vou must remember
is that vou can use this call only from the root module.

WARNING: When an overlayv module is loaded intoc memery, the previous
overlay’'s code and data csegments are overwritten. Therefore, vou
cannot have anvy static variables ip the data segment of an overlay:
they must be in the root module.

PASCAL OVERLAY EXAMPLE

Three Fascal program modules {SampleRoct, SampleOverlavi, and
SampleOverlav?) are shown below. During execution of SampleRoot,
gach of the overlavs ic loaded into memorv {using the OsOverlavy
call) ard then the procedurecs DoSamplelbverlayi and DoSamplelverlavZ
in the overlavs are executed.

MODULE SampleRoot:

FINCLUDE (" "Hard Disk Incs Common.Inc™Text™")
FINCLUDE (" Hard Disk Incs'OsPasTypes.Inc™Text™")
$IMCLUDE (' "Hard Dick Incs OsPasFrocs.Inc™Text™")
F¥INCLUDE (" 'Hard Disk’'Incs StringTypes.Inc™Text™’ i
FINCLUDE (‘Hard Disk'Incs StringProcs.Inc™Text™")

FUBLIC Samplelverlayis;
FROCEDURE DoSamplelverlavi;

FUBLIC SampleOverlayZ;
PROCEDURE DoSamplelverlayZ;

E-2 FProgram Development Guide

FROGRAM SampleRoot (IWNFUT, OUTFUT);

VAR error : WORD;
ovll, ovli2 : stringptr;

FUNCTION LoadMyOverlay (ovl: 5tringPtr) : BODLEAN:
BEGIN
ovl“.dummv = ovl“.len:
OsOverlay (ovli“.dummy, O5Whofml, error);
LoadHylOverlay := {error = okCode):
EMD;

BEGIN
WRITELN{'I am the root ');
opvil 1= MewStringlit ('SampleOverlaviB’'};
IF LoadHWyOverlay (ovll) THEM DoSampleOverlavi:
ovl2 = MewStringlit {("Samplelverlav2B’):
IF LoadMyOverlay {(ovl2) THEN DoSampleOverlayZ;
OsEwitlerroris

END.

##%% This 15 SamplefOverlayl -- A Separate Module ®¥sskss¥sss
MODULE Samplebverlavi:

FUBLIC Samplelverlavlsy
FROCEDURE DoSampleOverlayiy

FRIVATE Samplelverlaviy

PROCEDURE DoSamplelverlavls

BEGIM
WRITELM{'I am overlay 17)2
END3
¢¥%% This s Samplelverlavd -- A Separate Module ¥#R##esxess

HODULE SampleOverlayZ;

PURLIC Samplelverlayi;
FROCEDURE DoSamplebiverlavi;

FPRIVATE Semplelverlavi;
FROCEDURE DoSamplelverlaviy
BEGIH

WRTITELM{'T am overlay Z°');
END

Overlays R-3

LINKING OVERLAYS

B-4

When vou use overlavs, vou must individually link the root module
and each of the overlay modules and then link all of them together
to recolve the svmbols between the root and averlays.

For example, the following sequence from & GRiDDevelop data file
first links the wmodule SampleRoot.Fas™0bi™ with several libraries
nesded by the program, next links two overlav module files
iSamplelverlavi.Pas™0bi™ and Samplelverlavi.Pas™0bi™), and finally
links the root module with the two overlay modules.

:bink:s LINK SampleRoot.Pas™Bbi™, " "Hard Disk’® 'Libs'pBbrn0™1ib™,
“*Hard Disk’ 'Libs p8brni™lib™, "'Hard Disk' "Libs'pBérnZ™iib™, ''Hard
Disk™ 'Libs pBornd~lib™, ""Hard Disk’'Libs 808B7*Lib™, ''Hard

Disk® 'Libs'LargeSystemCalls™Lib™, "'Hard Disk® 'Libs'Dglarce®Lnk™ TO
SampleRoot*Lnk™ OGVERLAY(ROOT) NOPRINT

LINK SampleGverlayl.Fac*Obi®, ''Hard Disk’ ‘Libs'pBérnd*lib™, ''Hard
Disk’ ‘Libs pB6rnl™lib™, ""Hard Disk’‘'Libs'pB&rn2*lib™, "'"Hard

Disk’ ‘Libs'pHérn3*lib™, "'Hard Disk'’'Libs’80B7*Lib™ TG
Ssmpielveriayl™Lnk™ OVERLAY{(Samplelverlavl)

ASSURERDOT {SampleRoot “Lnk™) NOPRINT

LINK GamplelveriavZ.Fas*Bbi*., '"Herd Disk’ 'Libs'pBérn{™1ib*, "'Hard
Disk’ 'Libs pBérni*lib™, ““Hard Disk’ ‘Libs'p8érn2*1ib™, ' "Hard
Disk™ "Libs pBérn3~1ib™, "'Hard Disk’ 'Libs B087Lib™ TO
Sampleliverlav2™Lnk™ OVERLAY {5asplefverlav?)

ASSUMERDOT (Samplefoot*Lak™) NOPRINT

LINK SampleRoot®Lnk™, Samplelverlavi™Lnk™, SampleOverlay2*Lnk™ T0

SampleRoot™Hun™ BIND 55¢5TACK{+1500)) FC(FURGE)

The kev statements in the link commands in thics example are as
follous:

MWhen linking the root module, vou must specifyv that the resultant

output file be designated with the control OVERLAY{ROOT). ' This
telle the linker program that thizs module is & root module.

The output files for the two overlay modules must be specified
with the controls OVERLAY (overlavName) and RASSUHERGOT (rootHame’

to tell the linker program both the name of each overlay and name

of the root module to which each will be linked.

The last link invocation in the command file, must first name the
root module, then the overlay modules, and finallvy the executable

putput file. The output file consists of the three modules

Frogram Development Guide

1Sampleloot, Overlavl and OverlavZ) bound and linked together.
Mote: the BIND, FURGE, FASTLOAD and StackSegment {(55) controls
cshould only be used in this last link cstatement.

ADDITIONAL OVERLAY CONSIDERATIONS

To obtain most efficient performance with overlaves, vour root
prooram should keep track of which overlay is currently in
memory. If vou do not do this, an overlay that is already in
memaorv mioht be called and needlessly reloaded.

The ASSUMEROOT control. can reduce the amount of time neesded to
link and can also produce smaller resultant cutput files,

When vou're debugging a program with overlavs, vou can set
breakoaints in the overlays but the breakpoints must be set only
atter the overlay is loaded and the breakpoints must be cleared
before the overlav is removed.

FORTRAN OVERLAY EXAMPLE

This section shows & FORTRAN prooram that uwees Oslverlay to call
two overlay subroutines.

#%%¢ Thic is the Root Hodule ##¥¥kE#EerEs
Program Hench

Integer#Z ivar , ner
Integer+2 OSWHOAMI
Integer+1 IHAME (&)

DATA IMAMEL /74,83
DATE IMAMEER /4,83

ivar - oswhoami {}

call osoverlayv(INAMEL, ZVAL{ivar),ner)
ifiner .eg. 0) call subi

call osoverlay{INAMEZ.WVAL(ivar),ner!
if{ner .eag. 0) call subZ

5TOPR

END

#¥%% This 1s the OverLavl Module -- A Separate Hodule *¥#¥¥sExs¥x

subroutine subl
charactersl bhig{l4000)
bigil) = "a’
big{1Q000) = "z’

o

Overlays B-

B-6

writei{o,1,I0STAT=105,ERR=100) bigf{i) , big{10000)
tformat{’ big start and stop subl’ ,al,2x,al)
return

WRITE{(&6,105) 105

FORMAT{ " I/0 STATUS = ' ,14)

RETURN

end

##%% Thiz 1s the Overlav Hodule -- A Separate Hodule ¥#s%¥sssxss

subroutine subz

.....

bigfiidgony = "z
writeld,1,105TAT=108,ERR=100) bigil} , bigi{l000d)
format{’ big =start and stop subZ ,al,Zx,ai)

return

WRITE{(A,105) 108
FORMAT{'1/0 BTATUS = ',14)
RETURMN

end

The following seguence from a GRiDDevelop data file first links
the module Bench.ftn™0bi™ with several libraries needed by the
proaram. next links two overlav module files (Subi.$tn™0bi™ and
SubZ.ftn™0bi™), and finally lipks the root module with the two
pverlay modules.

The link commands for these FORTRAN overlav modules would be as
follows:

Link Bench.ftrobi®, ""Hard Disk’ ‘Libs FB&RNO™LIB™, ''Hard

Disk™ 'Libs FBGRN{™LIB™, 'Hard Disk''Libs'FB6RANZ“LIB™, ''Hard
Disk’ "Libs FB&RNI*LIB™, ""Hard Disk''Libs'FHERNA*LIB*, "'Hard
Disk’'Libs CELB7*LIB™, “’Hard Disk' "Libs'EHE7LIB", ' 'Hard
Disk®‘Libs8087*LIB*, '‘Hard Disk''Libs DUONE7*LIB™, " "Hard
Disk' 'Libs'LargeSysteaCalls™Lib™, "'Hard Disk' 'Libs’Dolarge*Lnk™
10 Bench™Lnk™ OVERLAY (RODT} NOPRINT

Link Subl,ftn™obi™, '"Hard Disk’ "Libs'FBARWO“LIE®, ""Hard
Disk”'Libs'FBARMI“LIB™, "'Hard Disk''Libs'FB&RNZ"LIB™, 'Hard
Disk™'Libs FBARN3LIBY, ""Hard Disk' 'Libs'FB6RN4“LIEK™, '“Hard
Disk "Libs'CELB7"LIB™, '“Hard Disk’ 'Libs'EHB7*LIB", '“Hard
Disk" 'Libs"8087~LIB~, '‘Hard Disk™ 'Libs DCONB7*LIB, “Hard
Disk’ 'Libs'UgLarge™Lnk™ TO SubiLnk™ OVERLAY(Subl)

ASSUMERODT (Bench™Lnk™) NOPRINT

Link SubZ.ftn¥obi“, "'Hard Disk' 'Libs FB6RNOLIB*, ''Hard
Disk™ "Libs'FBGRNI™LIEY, "‘Hard Disk' 'Libs'FB6RNZ*LIB™, ''Hard

Program Development Guide

Disk® 'Libs FBARNSVLIBY, ""Hard Disk’ ‘Libs FB6RHA™LIE™, "'Hard -

Disk® 'Libs'CELB7*LIE™, ""Hard Disk’'Libs EHB7*LIB™, ''Hard
Disk’ 'Libs B0B7“LIBY, "'Hard Disk''Libs'DCONB7LIB™, ''Hard
Bisk™ 'Libs'Dolarge®Lnk™ TO Sub2*Lnk™ OVERLAY{Sub?)
ASSUMERDOT (Bench™Lnk™) HOPRINT

LINK Bench*Lnk™, Subl™Lnk™, Sub2“Lnk™ T0 Bench“Run™ BIND
SS(STACKI+1500)) PC{PURGE)

Overlavs

E-7

APPENDIX C. SYSTEM FILES AND UTILITIES

This appendix describes the system files that the GRiD Compass uses and the
utility programs available to assist you during program development and system
housekeeping. NOTE: Most of the tasks performed by the utility programs
described here can be handled more easily by GRiDManager. Unless you have a
real need to use the command line interpreter or a need for a specific
utility, you should use GRiDManager.

The system utility programs operate on devices and files and are invoked via

the command line interpreter. VYou can run any of them without regard to the
current subject since they are under the Programs subject.

SYNTAX NOTATION

Syntax netation in this appendix operates under the following
conventions.,

* Keywords {(command or function names) are in capital letters.
Examples: CAT, DUMP.

* Parameters are in lowercase letters.
Example: PREFIX pathname.

Snuare brackets enclose optional parameters.
Example: CAT [pathnamel.

¥ Braces or curly brackets surround a choice of parameters with

each parameter separated by a vertical slash.
Example: {reallinteger’.

System Files and Utilities c-1

If a parameter cheice is an option, the choice is enclosed in
square brackets.
Evample; [{realiintegeri].

f note on syntax statements: you must epter parameters in the order
given in the syntay statement,

ENTERING COMMANDS

WILDCARDS

Throughout this appendix we use uppercase letters in writing about
commands., As stated above,; in the case of syntax notation, command
names are in all uppercase. When discussing a command in a
sentence, the first letter will be capitalized. For esample, "Only
the Cat command recognizes the wildcard character.”

However, you can enter commands, program names, and file pathnames
in any form vyou want wib regard to capitalization. The system
understands "CAT,;" "cat," and even "cAt" a= the same command.

Some of the utilities recognize one wildcard character -- the
asterisk (#), You can substitute one wildcard for any character, for
any string of characters, or for no characteris). MWildcards work
anly with the Cat progranm.

For example, let’'s say you have five titles under 'Hard
Disk ' Morebees -- Brains, Brass, Rarrooms, Beanbag, and Edna. Typing
a command and following 1t with 'Hard Disk Morebees B*5 would cause
the command to act on all the file names that begin with B and end
with 5: Brains, Brass, and Barrooms. Beanbag fails because it
doesn’'t end with 8, and Edna neither begins with B, nor ends with 5.
B¥ would cause the command to execute on all files except Edna,

A pathname consisting of an asterisk only will act on all files that
exist under the current prefix.

THE @SYSTEMERRORS FILE

The file named &SystemErrors™text™ in the Programs subject contains
the text that is displayed when a2 system error is encountered. If
this file is not present, an error number will still be displayed
when errors are encountered, but there will be no explanatory
message with the number,

-2 Program Development Guide

THE ACTIVATE PROGRAM

This program activates a new device and adds it to the list of
currently active devices. ‘Activating’ a device consists of
associating a device name that you specify with the appropriate
device driver program and GPIB address. The operating system
automatically activates the following devices whenever the system is

booted:
device name GFIB addr (hex)
Floppy Disk 0005
Bubble Memory none
Hard Disk 0004

Portable Floppy 0004
Extra Hard Disk 000C
Extra Floppy Disk 000D

gpib none
bb (bit bucket) none
ci {console in) none

co {(console out) none

¥ a device is not physically present, it is not activated.
However, you can later activate a device using the "Add a device"
command from GRiDManager. The currently active devices will be
displayed on the File form,

The driver programs for local mass storage devices are incorporated
into the operating system and do not exist as separate files. There
are three different modem-related files -- each corresponding to the
actual physical modem type used with the computer: the three files
are named CompassGRiDInternal, BRiDCaseHayesInternal, and
HayesExternal. They are under the Frograms subject and their kind
is “Modem™. The modem can be activated by typing the command:

Activate CompassGRiDInternal AS Modem
If you need to activate a device whose driver program does not exist
as a separate program, the syntax you must use with Activate is the
more complicated form shown below:

ACTIVATE DEVICE devicel AE device2 [m] [gpib-addr)
This will look for devicel in the active device table and will use
that device driver to create another device called device2. For
example, if you were connecting a second hard disk to ypour system,
you could activate that device as follows:

ACTIVATE DEVICE 'Hard Disk’ AS 'Second Disk' m 4

This would activate the second hard disk and assign it the device

System Files and Utilities C-3

name Second Disk with a G6PIB address of &.

THE CAT (CATALOG) PROGRAM

C-4

The program lists all the titles in the subject directory, relative
to the file level you have specified. You can cause the program to
print the requested directory to some device other than the screen
{including a text file) by specifying a second pathname. Here is
the complete synptax:

CAT [pathnamell [pathname2) ['7 [7]
Typing the Cat program name without parameters will cause the
program to display all the titles under the current subject in a
tabular form somewhat like the one below (all numbers are in

decimall):

Files matching 'Hard Disk'mystuff #

File Name Length Last Modified
Bridstar.!“Worksheet™ 107 03/16/8BZ (09:45
Gtatusform™text™ 243 02/28/82 13:12
Forecast.1%Text™ 1468 03/03/82 11:47

storage utilization: 1661/10404 pages, 15.9%

The first lipe tells the device ('w), subject ('mystuff?, and title
description (# -- the wildcard) for the titles on the screen. The
first column displays these titles.

The second column displays the number of bytes that each file
pcecuplies.

The #irst number after "storage utilizatien” indicates the total
number of pages taken by all files on the bubble, diskette or disk.

The second number shows the total number of pages on the hubble,
diskette or disk., To find the number of free pages available,
subtract the first number from the second.

The third number is the percentage of cccupied pages te the total
number of pages available on the device.

When the file names are being displayed on the screen, you can stop
scrolling by typing CTRL-S. To restart scrolling, press CTRL-S
again. Pressing CODE-ESC cancels the Cat program and thus the
scrolling.

Note that when you enter Cat without a pathname, the Cat program
puts in an invisible wildcard character that defaults to the current
device/subject prefix and all the titles within that subject. For
evample, if your current prefix were ‘Hard Disk Breakfast, the first

Frogram Development Buide

line of your catalog display would read:
Files matching '"Hard Disk'Breakfast'#¥

However, if you wanted to look at a different prefix grouping, like
‘Floppy Disk'Lunch, you would have to enter this explicitly or
change your prefix first. To see all the titles under this prefix,
you would type:

Cat ""Floppy Disk’ 'Lunch'#

Creating a Catalog File

The Cat program lets you specify a second pathpame if vou want to
send your catalog information to a text file instead of to the
screen. We call this file a "catalog file." This file can be sent
to either disk or to an output device, such as a printer. The
program prepares the file during execution.

Note that the syntax for a cataleg file requires that you precede
the name of the catalog file with a pathname for the title(s) you
want catalogued. At a minimum, this pathname must be the asterisk
(*)l

For example, typing Cat % Catchall would create a file called
Catchall and write into 1t all titles under the default prefix.
Similarly Cat BB#*,COM BEBEFILE would create a file under the default
prefis called BEBEFILE and put in it all titles beginning with the
letters BB and ending with .COM.

By preceding the name of the catalog file with a device name, you
can direct where the system will send the catalog file. Without the
device name, the system will set up the file on the default device.

' (Exclamation Point)

Placing the exclamation point after Cat (or after Cat and any of its
parameters) will cause the Cat program to display file titles
without file lengths and dates and times. As a result, the
exclamation peoint causes the catalog to display much more rapidly.

? RQuestion Mark
Placing the guestion mark after Cat and a title will cause the Cat

program to search for that title under every subject on the
currently prefixed device.,

System Files and Utilities C-%

THE COMPARE PROGRAM

This program compares two files for

useful for checking if two files are duplicates.

simply:
COMPARE filel file2

If the two files are identical, the
"Same",
following example appears:

Files are different at location

Page#/Offset: 7 63

OEO7 s
0EQ7:

3A
3A

20 53 73 65 72
20 55 73 65 72 20

LR

A

equality or inequality and is
The syntay is

program displays the word

if they are not identical, a display similar to the

3591

20 2:.User.
Ji.User.

The "location" in the first line indicates the byte position in the

file where a difference between the
example, the bytes at position 3591
The Fage#/0ffset line indicates the
difference was detected. Each page

The last two line are a hexadecimal
the two files in the area where the

two files was detected. In this
were detected to be different.
media location where the
{sector) is 504 bytes long.

representation of the data in
difference was detected. The

first line is the data from the first file specified after the

COMPARE command and the second is the data from the second file.,
(QEQ7h)

this example, the byte at 3591

In
in the first file was 32h the

correspending byte in the second file was 33h, .

THE DEACTIVATE PROGRAM

This program will deactivate a device, removing it from the active

device table.
devices and device activation.
simply:

The

DEACTIVATE dev

where "dev"
{see the LADT program).

NOTE:

Refer to the Activate program for a discussion of

syntax for this program is

i5 the device name as listed in the active device table

You should not usually deactivate any of the devices that are

automatically activated by the system during power up (Floppy Disk,

Hard Disk, Bubble Memory, etc.).

The drivers for these devices are

incorporated into the operating system software and do not exist as

separate files.

They therefore can not be reactivated using the

Activate program described earlier in this chapter.

C-& Program Development Guide

THE DEVELOPMENT EXECUTIVE PROGRAM

The DevelopmentExecutive™Run™ file under the Programs subject is the
program that provides the command line interpreter. Refer to
Appendix A for a discussion of the DevelopmentExecutive interface,

THE DO PROGRAM

Do“Run Com™ is the program that lets you execute a command file.

The Do program reads the commands from the file and presents them to
the system as though you were typing them in at the command line of
the development interface. Thus, command files save you time and
effort by letting you create 'canned’', reusable command seguences.
For a discussion of command files and the Do program, refer to
fppendix A,

THE DUMP PROGRAHM

The Dump program sends the contents of a file in both HEX and ASCII
to a specified destination file. If no destination file is
specified, the contents are dumped to the screen. The syntax for
this program is:

DUNP sourceFile [destFilel

The information that follows is an example of a dump of the
System,Init“Com™ file:

FILE = system.init“Com™

0000 24 AE &6F AC 69 73 74 0D OA A1 &3 74 69 76 61 74
#¥$nplist.,activat#

0010 &3 20 6D &F 64 65 60 OD OA 21 20 60 77 30 A0 70 +#e
modem..! "wop#

0020 72 &F 67 72 &1 6D 73 b0 T3 b3 72 65 6T bHE 77 61
¥rograms’ screenwak

DO3I0 74 63 68 7E 72 75 6E 7E 0D OA 0D 0A

#tch™>run™..., *

END OF FILE

The four-digit number at the beginning of each row is the
heradecimal offset of the first byte in that row. Thus the first
character in the second row (hex 63) i3 byte number 0010
{hexadecimal) in the file. MNext, the hexadecimal representation of
each byte in the file i1s provided, with 16 bytes displayed in each
row. To the right, the ASCII representation of each byte is
displayed.

System Files and Utilities C-7

THE ELAPSED TIME PROGRAM

This program times the execution of any program you specify. The
syntax is:

ELAPSEDTIME pathMame

where pathName specifies some executable file., After the specified
program has completed execution,; control is returned to the
Development interface and the time that elapsed since you invoked
the program is displayed.

THE EXECUTIVE FILE

This file is loaded into memcry whenever the system is booted. It
displays the initial File form and is required in order to perform
such as activities as exchanging files.

THE LADT (LIST ACTIVE DEVICE TABLE) PROGRAM

C-8

The active device table contains a list of all devices that have
been activated {S5ee the Activate program earlier in this chapter).

A device needn’'t be on-line to be included in this list. Te see the
names of all active devices, type LADT and press RETURN. The list
can comprise any of the device names normally seen via the File form
{Hard Disk, Floppy Disk, Bubble Memory, etc.) plues the following:

¥ WORE WORK is a virtual device that provides space for
temporary work files used by the compilers, the
linker, and programmers.

* W W stands for Winchester -- the hard disk.
F F stands for Floppy. VYou must add a number to

this device name, Address the floppy drive as 0.
Note that f will default to 0.

5

PLOTTER FLOTTER is the device name for that portion of the
GFIB that connects to a plotter. Only valid when
a "Current plotter" has been designated via
GRiDManger.

FRINTER PRINTER is the device name for that portion of the
GPIE that connects to an Epson printer. Only
valid when a "Current printer" has been designated
via GRiDManger.

“

¥ GFIE & generic term, not an addrescsable device,

Frogram Development Guide

covering all device addresses that hook to the
GFIB port.

¥ BR The "Bit Bucket" (aka the "Byte Bucket") is a null
device, used mostly for testing.

¥ CI L1, the keyboard, stands for "Console In."

* CO C0, the computer screen, stands for "Console Out."

Two optional parameter words (separated by a space) can be issued
following the LADT command. The first word is a "mask" and the
second word is an l6-bit "value" that results from ANDing the mask
word with each device's "mode" parameter (as specified via the
DsAddDevice call)., The “"mode" parameter bits are defined as
follows:

Bit #

0 -- mass storage. If set to 0, indicates that the device is not a
mass storage device. If set to 1, indicates a mass storage
device such as hard disk.

1 -- visible/invisible, If set to O and the mass parameter is TRUE,
the device will appear on active device list and be displayed
on the File form. If set to | or if the mass parameter is
FALSE, the device will be invisible.

local/remote. If set to 0, the device is local. If set to 1,
the device is remote, that is, accessed through the serial
port or & modenm).

-- peripheral bus (GRiDServer devices only).

server. If set to 0, indicates that the device is not a
network server, If set to 1, indicates that device is a
network server accessed through GRiDLink or PhonelLink.

% -- alias, If set to 1, indicates that aliases such as "W" for
Hard disk, or "F" for Floppy disk will be recognized.
Otherwise, set to 0.

4 -- reprogrammable. If set to 1, indicates that the device
(usually a floppy disk) can be reprogrammed to accept
different data formats (for example, either 8 or 9 sectors).

7 -- search. [If set to O and if the mass storage bit (bit 3) is set
to !, indicates a searchable device. GRiD-05 may search this
device for an appropriate application program, such as
GRiDWrite™Run Text™ to use with a file of Kind “Text™. If set
to {, the device will never be searched.

B8 -- spoel (server devices only), If set to i, indicates that the
device is a spooler device {(such as the printer queue).
Otherwise set to 0,

9 -- admin (server devices only). If set to 1|, indicates that the
device can be accessed only be server administrators,
Otherwice set to 0.

[N]
I
1

=l
!
1

10 -~ removable. If set to 1, indicates that the device has
removable media {(for example, a Floppy disk). Otherwise set
to 0, '

System Files and Utilities C-9

t1 -- voplume. If set to 1, indicates that the device has ke given
a2 volume pame, Otherwise =zet to 0.
12 - 15 -- reserved (always set to 0},

The bits of the "mask" parameter specify which bits of each device's
mode word should be examined. The bits of the value parameter
specify whether the bits being examined in the mode word should be
cet to 1 or to O in order to qualify for listing.

For example, if the mask parameter issued with LADT is 0003h, hits O
{mase storage/not mass storage) and | ivisible/invisishle) af the
device mpde words will be examined. I+ the value parameter is 0001,
then only those devices having the mass storage bit set te 1 and the
visible bit set to O will be listed by LADT.

THE LOAD PROGRAM

The Load program cimply loads an executable module into memory.

LOAD pathName

THE PREFIX PRDGRAM

C-10

When you boot the system, the default subject is always Programs
and the device will be whichever device you directed the system to
-~ bubble, hard disk, or floppy. (If vou did not explictly specify
a device -- by holding down the 'H" or 'F’ key during the boot
sequence -- the system first tries the bubble, then the hard disk
and tinally the floppy, until it finds one of thpose devices ready.)

When speaking in terms of pathnames, we refer toc the 1nitial

"device subject pair as the "default prefix." By "default,” we mean
that any time the system must access a file, it will try to find the
file in guestion under the default prefix, unless told to look
elsewhere. By "prefix", we mean the device-subject pair,

You can override the default prefix by explicitly typing another
prefix before a title. To reset the prefix to a different device
pair altogether, use the Prefix program.

To execute the program, type Frefix, a space, and the name of the
new default prefisx {(both the physical device and a subject, i.e.,
“f'Lunch). Finally, press RETURN. BMNete that a tick should not
fpllow the subject name. The default will remain with the new pair,
until you give the system a different pair by reinvoking the Prefix
program. The syntax is simple:

PREFIX ['device lsubject

Faor example, Prefix "f'Programs will cause any further storage

Program Development Guide

acrcess to look to the floppy drive, under the subject "Programs.”
Typing Pretix ' ‘"Hard Disk® "Breakfast will change the default so that
subsequent searches for titles look under the "Breakfast" subject,

Note that the device is optional when specifying a new prefix., If
you do not include a device name, the new prefix will become the
specified subject combined with the previously prefixed device.
Thus, it the current prefix is 'Hard Disk'Breakfast, typing Prefix
Lunch will change the default prefix to "Hard Disk'Lunch.

THE SOFTKEYS FILES

The numeric keys on the keyboard have been programmed to generate
pften used words and symbols at the command line level, that is,
from the development interface. For example, typing CODE-SHIFT-4
will print the word "Pascal" on the screen. Likewise, pressing
CODE-3 will cause "Programe' " to appear.

Thus, these keys let you guickly generate frequently used command
messages. The following table shows all preprogrammed softkey
messages and the key combinations for generating them.

KEY LODE CODE-SHIFT
i ‘"Floppy Disk’™’

2 *‘Hard Disk’™"®

3 Frograms’

4 " ‘Bubble Memory'’ Pascal

o "'Partable Floppy'' PLHN

b6 GRiDWrite Fortran

7 “Text™

8 “Lst™ "Printer

g “Com™ “Worksheet™
Y “Run™ “Graph™

- Prefix

Table C-1. Preprogrammed Softkeys

Programming the Softkeys

You can substitute your own message(s) for any current softkey
messages, 1o do this, edit the file "Hard

Disk Programs' SoftkKeys™Text™., This file contains each message
{beginning with "'¢°" and ending with "Cat") separated by a carriage
return. Select a message for replacement and erase it. Then type
vour substitute message in its place. Save the revised file,

System Files and Utilities C-11

To activate your new message(s), yvou must lecad the revised file,
You have two ways of doing this: either type CODE-= or reboot the
system by pressing the reset button.

Your new message will appear whenever vou press the key combination
that draws its characters from the pesiticn in which yeu placed your
message., For example, if you replaced "Fartran" with a favorite
subject name, "MyStuff,” vyou would see "HyStuff" every time you
pressed CODE-SHIFT-6.

Multiple Softkey Files

You can place different "SoftKeye™Text™ files under different
subjects. Each file can have entirely different messages. In such
a case, the file's messages will be available only when vou're in
that file's subject. MWhenever a subject does not have its own
Softkeys file, it will draw messages from the Softkeys file in the
subject "Programs.”

To activate the Softkevs file in a subject other than "Programs,"
type CODE-=. If you don't issue this command, any use of the
spftkeys will default to Programs’'s Softkeys file.

THE STATUS PROGRAM

£-12

This program displays system status information including memory
utilization, the current prefix, and currently loaded packages. To
run the program, simply type STATUS and press RETURN. The
information displayed will be similar to that shown below:

Frogram Development Guide

Dewvelopment Executive for CCOS »= 38 .4 .19
=bztatus
current prefix: “Hard OizkPrograms

total free bubtesz: 93
number of frree block 13
laroest fres block: &5535
totsl allocsted butses: 18258

largest allocated block: &5535

“Fa

THE SUMMARIZE PROGRAN

This program analyzes a file's usage of memory and displays the
results of that analysis. The syntax is:

SUMMARIZE sourcePathName [destPathName) ['commentString’]

The sourcePathName specifies the file that is to be summarized. The
results of the summary will always be displayed on the screen. The
cptional destPathMame lets you specify that the results also be sent
to another destination -- typically the printer. The optional
commentString must be enclosed in single quotation marks and will be
displayed at the beginning of the summary information. For example:

SUMMARIZIE '‘Hard Disk’ ‘programs MyApp“run™ ‘printer "10-30-83
Summary’

This would cause the following information to be displayed on the
screen and also printed at the printer:

[
[#5]

System Files and Utilities -

10-30-83 Summary

File: "Hard Disk'programs MyApp“~run™
Initialization: 17 272

Code/Const: 94 9479 (B927)
Fixup: 4% 680

Haste:] 5]

Total: 154 10631

Dverhead: i6,0%

Data segment: 52

Stack segment: 1026

The left column of numbers shows how many records are devoted to
each category and the right column is the number of bytes in each
category.

THE TIME PROGRAHM

This program simply displays the current time and date maintained by
the clock chip, To displaey time, simply type TIME and press RETURN.

THE UNLOAD PROGRAWM

This program simply unloads a run module that was previously LOADed
{pither ewplicity with the LOARD program, or by the system at boot
time}). The syntax for the Unload program is:

UNLOAD pathName

THE WORK PROGRAM

This program simply specifies the device that will be the ‘work’
device. The language compilers and the Link program reguire
temporary work files for their operation. Additionally, system
programmers use work files for applications that require temporary
files. MWork files are discarded wupon completion of the operation
for which they were being used. These files assume the presence of
& virtual device named Work. The system automatically designates
the physical device that you boot from as the Work device. If you
want to change this default, run the Work program using the
following syntax:

WDRK ‘dev

C-14 Program Development Guide

I1f you boot your system from Bubble Memory, you might get a device
full message when compiling programs. You should change the work
device to Hard Disk if you bont from Bubble Memory.

System Files and Utilities £-1

APPENDIX D. LINK ERROR MESSAGES

This appendix describes error messages that may be produced by the
Link prooram. Only those errors deemed likely to occur in the
system are listed. GShould you encounter an error message pgenerated
by one of the Link program that is not listed here, contact the GRiD
Customer Support Center.

Femember, it is possible to receive an error mescaage generated by
the operating system {(GRiD-05) while vou are running the Link
program. FRefer to the GRiD-05 Reference manual for a complete
listing of system error messages.

The Link program generates both error messages and warnino messages.
They are listed in the pages that foliow in numerical order with
warning &nd error messages intermixed.

Error messages are always fatal: they terminate processing of the
input file{s) and halt ewecution of the Link program. All open
files are cleosed and the contents of the print file and the object
file are undefined.

Warning messages are not fatal. They are listed consecutively as
warning situations are encoutered. Read the discussion of the

warning carefully to determine whether the resultant code is valid.

ERROR {: I/0 ERROR

What happened The operating svstem detected an I1/0 error in the

Link Error Messages D-1

D

ol
L

input file.

What to do Check the pathnasmes specified for the input file and
check for possible media errors.

ERROR Z: 1/0 ERROR

What happened The operating svstem detected an I/0 error in the
print file.

What to do Check the pathnames specified for the print file and
check for possible media errors.

ERROR 3: I/0 ERROR

What happened The operating svstem detected an I[/0 errar in the
obiect file.

Bhat to do Check the pathnames specified for the obiect file and
check for possible media errors.

ERROR 4: I/0 ERROK

What happened The operating svstem detected an 1/0 error in the
console file.

Wwhat to do Check the pathnames specified {or the console +file
and check for possible media errors.

ERROR S: INPUT PHASE ERROR

What happened A record encountered during the second phase of
linkage did not agree with information gathered
during the first phase of linkaoe. This error is
caused by a data transmission error or an internal
error in the Link program itself.

What tp do Contact the GRiD Customer Support Center. Be
prepared to provide a copy of the obiect file, the
Link invocation line, and vour version of the Link
program.

Frogram Devleopment Guide

ERROR 6: CHECK SUM ERROR

What happened The check sum field at the end of one of the obiect
module records indicates a transcription error. This
can be caused by anv number of data encoding or media

BFrors.

What to do Retranslate the source that produced the specified
obiect module where the error was detected. Then
relink.

ERROR 7: COMMAND INPUT ERROR

What happened An error was detected while attempting to read the
complete invocation line.

What to do Check the invocation line for errors and try again.

WARNING 8: SEGMENT COMBINATION ERROR

What happened Two segments with the same name can not be combined
because they have different combination attributes or
incompatible alignment attributes. The linker will
continue processing pass | but pass 2 will not be
started. The resultant cutput object file is useless
and the print file contains limited information.

What to do Retrancslate the source that produced the specified
file and module. Then relink.

WARNING 9: TYPE MISMATCH

What happened There is & public/external svmbol pair for which the
type definitions do not agree. The linker continues
processing using the first definition only. The
obiect file and the print file should be valid,
except the second definition for the svmbol is
ignored. .

What to do Hodify the offending public or external declaration
and recompile and relink the source file.

Link Error Messages n-3

WARNING 10: DIFFERENT VALUES FOR SYMBOLS

What happened The same symbol was declared public in twc different
modules. The specified file and module contains the
second definition encountered. The linker continues
processing using the value of ths first public
definition:; the second definition is ignored. Both
the print file and the obiject file will be wvalid.

What to do This situation will often occur in the normal course
of events, tor example, when vou are linking library
files along with CompactSvstemCalls™Lib™. In such
cases, vou can usually ilgnore this warning. If it is
a problem, change the name of the =zymbol in either
the specified file or in the file containing the
earlier definitiorn of the symbol.

ERROR 11: INSUFFICIENT MEMORY

What haprened Recause of an extensive use of public svabols, there
is insufficient memory for the linker to build its
internal tables and data structures.

What to do If possible, unload unneeded packages, such acs
common. Otherwise. try incremental linkages. That
iz, link smaller sets of files tooether using the
MOPUBLICS control, thenm link the resulting composite
modules together.

WARWING 12: UNRESOLVED SYWMBOLS

What happened External symbols were declared that could not be
resolved during this linkage. (This is guite common
when performing an incremental linkage.) The print
tile is valid. The obiect file amust be linked to
resolve the external references.

What to do Link the wgbiect file to 2 +ile that will resolve the
external references.

WARNING 13: IMPROPER FIXUP

What happened 6An external reference makes assumptione about the
segment register that do not agree with the

b-4 Frogram Devlieopment Guide

assumption made for the public definition., The
linker continues processing. The nbject file will
not be uwgable, but the print file will he conplete
and accurale.

What to do Try recompiling with a different model of
segmentation. orF change the source and reassemble.

WARNING 14: GROUP ENLARGED

What happened The specified group name has been defined twice in
two different modules apd the segments contained in
the two definitions are different. The two groups
are combined into one with all segments that were in
either group included in the resulting group.
Seaqments with the same segment name, class name, and
overlay name ae combined. The linker continues
processing and both the print file and object file
are valid.

What to do No action should be necessary.

ERROR 15: LINK8&6 ERROR

What happened A fatal, internal error has occurved within the Link
program itself,

What to do Contact the GRiD Customer Support Center. Ee
prepared to provide a copy of the object file, the

invocation line, and vour version of the Link
program.

ERROR 14: STACK OVERFLOW
What happened Link’'s run time stack used for tvpe matching has
overflowed. This can be caused by an overly complex

type definition of one of vour svmbols.

What to do Try incremental linkage isee error 11). If the error
persists, contact the GRiD Customer Support Center.

WARNING 17: GSEGMENT OVERFLOW

What happened The combination of two or more csegments has resulted

wn

Link Error Messages b-

b-6

What to do

in a segment that exceeds 64K. T
processing during the current pas
cbiect files are not useable.

he linker continues
g, but the print and

Feorganize your segments and reacscsemble.

WARNING 18: IMPROPER START ADDRESS

What happened

What to do

What happened

What to do

f start address was found in ane of the overlay
modules, and none was {found in the root module. This
error is often caused by mizordering the input
modules in the input list. The linker ignores the
start addrecs in the specified overlay module and
continues processing.

I+ vou want the module containing the start address
to be the root, relink with that medule first in the
input list.

. ERROR 19: TYPE DESCRIPTION TOO LONG

The type definition is too long to fit in the
linker ‘s svmbol table.

Contact the GRiD Customer Support Center. Be
prepared to provide a copy of the object file, the
invocation line, and vour version of the Link
program.

ERROR 22: INVALID SYNTAX. ERROR IN COMMAND TAIL NEAR #

What happened

What to do

ERROR 23: BAD

What happened

This error is usually the result of a tvrographical
error in the invocation line, The partial command
tail up to the point where the error was detected is
printed.

Check the= invocation line and reinvoke the Link
program more carefully,

OBJECT FILE

The link program has delected an inconsiatency in the
tielde of a record in the specrfred input file. This
error could be caused by the compiler or could be due

Frogram Devleopment Guide

to a media problem.

What to do Recompile and then try relinking. If the problem
persists, contact the GRiD Custoumer Support Center.

WARNING 24: CANNOT FIND MODULE

What happened The specified module cannot be found in the specified
library file. The linker continues processing as if
the specified module were not in the list.

Bhat to do I+ the module is important, you can link it into the
gutput object file later.

WARNING 25: EXTRA START ADDRESS IGNORED

What happened A start address has been encountered in more than one
module indicating that vou have specified more than
cne main module in the input list. The linker uses
the start address encountered earlier and ignores the
start adoress in the module specified here with the
warning mecssage. Frocessing continues with no other
side effects.

What to do Do nothing, if the start address in the specified
module wae intended to be lanored.

ERRDR 26: NOT AN OBJECT FILE

What happened The file specified with the error messapge is not an
obiect file. This error is usually caused by a
typographical error in the input list. However, some
media problems can also cause this error.

Bhat to do Check the invocation line and trv again. If vou
suspect media problems, try recompiling and
relinking.

WARNING 28: POSSIBLE OVERLAP

What happened This warning is issued when the linker combines two

absolute segments. Frocessing continues with no side
effects.
What to do I+ there is an actual conflict, the loader will

~d

Link Error HMessages b-

D-8

detect the overlap.

ERROR 30: LIBRARY IS NOT ALLOWED WITH PUBLICSONLY CONTROL

What happened

What to do

The +ile specified with the error message i:s &
library file and libraries are not allowed in a
FUBLICSONLY control.

Remove the library file from the PURLICSINLY argument
iist and reinvoke the linker.

WARNING 32: EXTRA REGISTER INITIALIZATION RECORD IGNORED

What happened

What to do

You have included two main modules in vour input
list. The linker uses the first register
initialization record and iagnores the second.
Frocessing continues with no side effects.

I+ the register initialization information in the
file specified with the warning message should he
used instead of the first such record encountered,
then modify vour input list. Otherwise, no action i
reguired.

ol

ERROR 33: ILLEGAL USE OF OVERLAY CONTROL

What happened

What to do

ERROR 34: TOO

What happened

What to do

Program Devleopment

While processing input modules for an overlav, the
linker found an overlay definition in the file and
module specified with the error message. A module
being used for an overlay cannot itcelf specity an
overlay.

Femove the specified file from the input list andg
relink,

HANY OVERLAYS IN INPUT FILE

The file and module specified with the error message
contains more than one overlay definition.

Remove the specified file from the input list or

correct the file so that 1t has only one overlay
definition, then relink.

Buide

ERROR 35: GSAME OVERLAY NAME IN TWO OVERLAYS

What happened The file specified with the error message contains an
overlay that has the same name as an overlay already
encountered in the input list.

What to do Remove one of the duplicate names from the input list

and relink. If both overlavs are needed, relink one
of them specifying a different overlav name.

ERROR 36: ILLEGAL OVERLAY CONSTRUCTION

What happened Some of the modules in the input list contain overlay
definitions while others do not. This is illegal:
&1l modules in the input list must be the same with

respect to overlays.

What to do Femove the non-overlav files and relink.

WARNING 37: DIFFERENT PUBLICS FOR EXTERNAL IN ROOT

What happened The linker has found two svmbol definitions in the
pverlavy modules that resclve the same external symbol
definition in the root. The definition in the file
and module specified with the warning message is
ignored and processing continues with no side

effects.

What te do Remove the unwanted svmbol definition and relink.

ERROR 41: SPECIFIED SEGMENT NOT FOUND IN INPUT MODULE

What happened This error is usually caused by a typoaraphical error
in the SEGS5IIE control.

What to do Check the input list for accuracv. If necessary. find
the module that contains the specified segment and
add 1t to the input list.

WARNING 42: DECREASING SIZE OF SEGMENT

What happened The size change specified in SEGSIZIE has caused the

Link Error Hessages b-9

linker to decrease the size of the specified seagment.
becreasing the size of a segment can cause sections
of code to be umaccounted for during the memory
allocation process. Processing continuss with noe
side effects.

What to do This is uwsuallv caused by leaving cut the plus siagn
in the SEGSIZE{STACK+nnnn)! control. Check the input
list and correct,

ERROR 43: GSEGHMENT SIZE OVERFLOW; OLD SIZE+CHANGE » 64K

What happened The size change specified in the
SEGSIIE(STACK (+nnnnl) control caused thne seagment to
become greater than 64K,

What to do Feinvoke the linker with the correct
BEGSIZIE(STACK (+nnnnl !}t control.

ERROR 44: SEGHENT SIZE UNDERFLOW; OLD SIZE+CHANGE ¢ 0

What happened The =i:ze chanoe specified in the
SEGSIIE(STACK {+nnnn)) control caused the segment te
become less than zerao,

What to do Reinveke the linker with the correct
SEGSIZE(STACE (+nnnn}} control.

WARNING 47: GROUP HAS NO CONSTITUENT SEGMENTS

What happened The aroup specified with the warning message has no
segments and is not placed in the output object filse,
This error is often the result of a tvypographical
error in the invocation line. The group i1s left out
of the object file and processing continues.

What to do niess there i1s & particular need for the specified
group, no action is neCessary.

WARWING 48: SIZIE OF GROUP EXCEEDE 64K
What happened All1 of the segments that belong to the group

specified with the warning message do not fit within
the phvsical seoment detined for that aroup. This

0-i1¢ FProagram Deviecpment Guide

What to do

WARNING S52:

What happened

What to do

error is usually caused by misuse of the SEGSIZE
control. The linker includes all segments in the
object file and continues processing the input
module. The output module will be executable,
although addressing errors may bccur.

Examine the invocation line and reinvoke the linker
using the SEGS5IZE control more carefullvy.

OFFSET FIXUP OVERFLOW

While computing an offset from a base, the linker
found that the offset was greater than 64K. This is
a result of one of the segments of the aroup being
outside the 64K frame of reference defined by its
group base. The linker continues processing and. the
print file will be valid. The output file, however,
with regard to the out-of-place segment, will not be
usable.

Modity the group definitions in vour source file,
retranslate and relink.

ERROR 55: ILLEGAL FIXUP

What happened

What to do

WARNING 5B:

What happened

What to do

While processing a fixup record, the linker {found
that the base for the reference and target are
different. This is usually & coding error.

Check vour source carefully, retranslate and relink.

NO START ADDRESS SPECIFIED IN INPUT MODULES

The BIND control was specified, and none of the input
modules has a start address. This indicates that the
input list contains no main module. The C85 and IF
regicters remzin uninitialized, and their values are
dependent on your svstem loader. The object module
will be valid.

Reinvoke the linker with a main module.

Link Error Mecscsages D-11

o-

(]
A

ERROR 60: OQUTPUT FILE IS SAME AS INPUT FILE

What happened The pathname of the input file specified with the
error message 15 identical to the output file
pathpname.

What to do Fix the duplicate-name situation and reinvoke the
linker.

WARNING 64: PUBLIC SYMBOLS NOT SORTED DUE TO INSUFFICIENT MEMORY

What happened The number of public symbols in the input-list
modules is too laroe {for the linker to sort with
available memory rescurces. The print file lists the
public svmbols in the order in which thev were
encountered in the input files. This condition has
no effect on the correctnesse or validity of the
output ohiect module.

hat to do Increase the amount of available RAN (for example, by
unloading unneeded packagecs) or decreacse the number
of public svmbols.

WARNING 65: ILLEGAL FIXUP: INCORRECT DECLARATION OF EXTERNAL
SYMBOL

What happened The declaration of the symbol specified with the
warning message was inconsistent with a corresponding
public symbol definition and the linker could not
resolve the reference. This condition is usually
caused by an attempt to access absolute entrv points
from pre-located code without using the PUBLICSONLY
control ewxplicitly, The linker internally converts
these illegal fixups to legal formats to identify all
occurrences in a single execution. Thus the output
object module may not be correct,; although it will be
& valid BOBS obiect module.

What to do I the warning occurred because of an attempted
access of absolute entrv points from pre-located
code, use the FUBLICSONLY control in conjunction with
the file that contains public definitions for those
entrv points.

Frogram Devlieopment bGuide

WARNING 69: OVERLAPFING DATA RECORDS

what hapoened The FASRTIOAD control was specified, and two data
records belonging to the came segment have offsets
which make them overlappina, Thieg is usuallv the
result of a translation error, unless vou have
intentionally overlapped data recaords. The linker

ignores the second record and does not include 1t oin
the output file. The code will be unusaole.
Woat to do I+ vou want an overlap cond:itsion to exist, reinvoke

the linker but do not use the FASTLOARD controil.
Utherwice, retranslate, then reinvoke the linker.

WARNING 71: TOO MANY MAIN MODULES IN INPUT

bihat happerned There are two or more main modules {modules with
start address) in thes input list. The linker uses
the start address of the first main modoule it reads

!

and ignar=e the others. The obiszct code will be

valid.
Wnat to oo Make sure that the linker s interoretation is

csuitable to vour cbiectives. I+f not, modify the
input list and relink.

WARNING 7Z2: REGISTER INITIALIZATION CODE EXISTS, NEW INITIALIZATION
IGNORED

#hat happened Because of & translation or linker problem, two or
: more initialization codes for 3086 registers were
encaountered in the input list. The linker uses the
firset initialization code and ignores the pthers.
The obiect code will be wvalid.

What o da It retranslating or relinking does not correct the
error, contact the GRiD Customer Support Center.

WARNING 74: FRINT FILE SAME AS INPUT FILE

Bhat hzppened The oathnames of the print file and one of the input
fiies are identicai.

What to do Fix the duplicate-name situation and reinvoke the

Link Error Messaoes O-12

iinker.

ERROR 78: PRINT FILE SAME AS OUTPUT FILE

What happened The pathnames of the print fale and the output fil
r

What to do Fiw the duplicate-name situation and reinvoke the

frooram Devieopment Buide

APPENDIX E. SOUND

The :Good Tune: and :sBad Tune: tokens in GRilDDevelor let vou define
& seguence of notes that wiil be output to the speaker in the
Compass computer. Thnese tokens ascsume that vou have the file named
Scund™®fevice™ in the Froograms subject or vour system and that this
device has heen activated.

The :Good Tune: and :Had Tune: tokens let wvou enter a tent string

fallowing the token. The characters in this text siring are

interpretsd according te the following rules:

Character Result

g to @ Flavs the indicated note in the current cctave. {See
"O" below for cchtave control.d

g, +. - Flaye the preceding note (& throuah B as a sharp note
{$ or +), or as a flat noie i-j. “Hi-1Z
0% tao 04 fletave. Sets the current occtave for all
notes that follow until another Octave command character
te encountersd. I+ no Octave 1= specified, the default
is flctave 4.

n go up te next hioher cctave and plav note n (A-G).
i Go down to next lowsr cctave and plav note n (6-5),

Ll to Lad tength. Specities lenoth of the noteis) that fcilow.
L1 = wheole noete. Lé&4 = 174634tk note. Default is 4
lguarter notscsi.

F1 ta Fb4 Fause for specified lencth. Fl1 = whole note, Pad =
1/7&44%H note.

sound e-1

o

Tempo.
minute.
. Dot or
nlaved as
multiplied
Yolume, O

Frogram Development Guide

M3 T3 MU,

& note

T
A B

beats (1/4 notssi o
;

g, rauszes the note
leroth of the note
few i mum. Detauit =

g

it

INDEX

8084 registeres, dis
B0B7, Libraries, 3-
87null™Lik™, 3-3

@SytemErrore file, C-Z

Dlé ing in debug program, S-7

A

sbeMem, debug program, 5-3
Activate program, C-3
Gotiveting,

devicee, (-3

moden, [-3

serzal, C-3
Godrezees, diepleving in debug program, -
flterrnate development approaches, A-1
4lternste window, ir debug program, o=
Aprending f1le kinde, 1-5
Asm titie sufdiy 1n GRIDDevelop, Z-13

reterence manual, 3-1
and, debuo prooram, i
rol, link prograe, 4-4, k-2

Gsterzsk lil,

detug prospt; 5-3

wilgroerd FhFT:Et:T -2
B
Bz error, link , -7
Rag velorn,
Bag
Ear 13 4-2, 4-4
Erexk 1 I debug prooram, -0
Ereabpoante in detug program,

clearing, 5-¢

setting, 5-%

proceeding N

use in cover

[

L title suffiy in GRiDDevelop, 2-13

Calcuiator, in GRiDDevelop CLI mode, 2-17
Czrnnot find modole warning, link program, D-7

c {Catslog) program, C-4

Cataleg file, creating, C-%

cel&7%Lik™, 3-3

(harge source groups command, 2-17

Change cource groups form, in GFibBLe-.elop, 2-14
Changing deta files in GRIDPevelop, 2-19

Charging memcry contents, debug program, S-11
Check =supm errcry linbk program, D-3

Clear hreatpoint command, debug program, -4
CLY, 2-17

Clock chip, C-1{

CODE-? command,

debug program, 5-4

in GRiDDevelop, 2-16
COME-F commanc, debug program, -5
CGDE-C command, detug program, S-6
COGE-C, commend, GRiDDevelcop, 2-17
CODE-D commend,

detbug nrogram, S-6

in GRipDeveleop CLI mode, Z-17

irn Development Evecutive, A-Z
COTE-E command, debug program,
COLE-G command, 1n oRiDDevelop,
CGRE-T command, debug program,
CODE-L command, debug program,
CODE-M comrend, debug program,
CODE-O command,

debug nrogram, 5-7

GRiDDevelon Opticns command, 2
CODE-F command, debugz program, -
COGE-C coammend, debug program, 5
CODE-R command, debuog program, S-
CODE-SHIFT-EST, caveing breakpoints witn, ©-4
CODE-T commangd

debhug proora

T*an=€=r oo

Cemmard
Commend
Command
Command

Command

Copneand
d tug

asteg p

iccuing

Insertif

loading

re cont

temCall

ogram,

neldera
Compile +4 i) ;2
Compile scurce 3 form, ir GR DDEvelQp, 2-14
Compiler referenc ruale, 3-1

Compiler,
Fortran, 3-1
Fascal, 3-1
FL/M, 3-1
Compilere,
invaling, 3-3
invoking from command files, 4-4
invoking with GRaDDevelop, (-3
size controle, 3-1, 3-2

Indey-1

ConFas.irc, 3-4
ConPlm.inc, 2-4
Contreol token,
Controle,
include, 3-4

GrRiDLevelop, Z-5

eize 1n compilers, 3-1
Conventions, file mnaming, 1-7
Count, breabirg at i1n cebug, -5

Creating catalog file, C-%

Creating GFiDDeveiop dats 4ilee, Z-3
CREF program, &£-1
Crose reference program, 4-1
CTRL-S, 1n CLI mode, Z-17
Zurrent lccatien, ciplaying in debug progrer, o-%
Curzor, for develcpment erecutive, A-2
D
op Z-3

1
dcor Li
Deactivate program, (-6
Wbtng command line commande, 5S-G

dxspley

dicplay memory =, 5-9
duplicate line (COLE-D), T-¢
eramine/change pemcry, S-11
evecutive ((ODE-EY, &-6
info (CONE-T0, G-6

drepley (CODE-L*, E©-64

Sl
ey M,
tay (COLE-M),
-0i, S-7
CODE-PY, S-7
@), 5-7
cplay (CODE-R}
hore display 5-8
window toggle (CODE-W)

Detug menu in GRiDDevelop,

Debug progream, 5-1
command Summary,
compile considerations, G-
filee, &-3

BN
o T e

Help command, S-4
invoking, &5-Z%
link conziderations, S-2
prempt symbol, 5-3
cet breaipoint cermand, 5-5
syntey, -3
lint program, 4-4@

Lebug toben 1n SRy DPevelcon, T-¢
ueing command lines with,

aultiple, Z-6

Detngger, invobirg from SRiDlevelop, T4
Debvogging overebay progeame, b-5
e pma Lo bt odebug progr em, 4

Index-2 Froaram

[ecreasing cize of cegment warning,
Default menu, GRilDevelcp, -1
Defavlt mocdule, in debug, G-
Delipeter characters in file nemee, 1-4
Development approaches, alternatives, &4-|
levelapment environment,

memory conciderations,

GRiDDevelop, 1-3
Develcnment evecutive
Develcpment erecutive
Development cequerce,
Fevice driver,
Device level,

linb p

7

b=t

intert

g O
program, A-2,
-1
mocem, (-8

ir directories, (-4

B C-é
Different publice for external Tink
[1f¢erent values for symbcole warning, l:nt
Pirectory, typical, 1-4
Dreplay address command, debug programg
Display memory contents cmmnard,
Dieglay of variables,
Display variabkle contente,
Dieplaying messages, in
Displaying tzske/cema
be program, C-4
using wi ommand files, A-3
figLarge,
Bumc program, C-7
Livmp v contente, d=
Dvp13Cete line commarnd, dehbugq

dezctrvating

error,

terminzting 1n debug
debvg program,
debug program, &-7
in debug, 5-8

rhores

bug nrogram,
I program, S-6

E

Edit source file menu, GRiDDevelop, 2-Z
Editor, text, See GR:DWrite
eh&7~Libk™, 3-3
Elapsed time program, (-7
Enter tolen, in GRiDDevelop, 2-7
Error mecscages,
link program,
evetem, D-|
Errcre,
hzlting on, 2-17
cycstem file, C-Z
Evemining log file entries, 7
Evxclamation point ('), useg iIn
Executakle files,
Execvting
Everutive

£-9, D-1

2-19

"om GR1LManzoer,
eCu Qoramy
yecutlve

from

o-7

vit

detug program,
»it toien,
stra register
stra

i FF)DLFVE.HF, =7
1ir
Tiny

WEF TG

mMmmmom

ctart addFEEE 15R07ED Warnng,

Development Guide

rogream,

nrogrzo

progran,

-9
d:bng progrem, S-9

5-9

5-9

S-10

N

program,

b-10

L-<

-4

F aain mens, -1
reccage Jine, I-11
TRErrONLIbY - fBermdnLib™, 3-3 overview of ;|-
Festiced, link cantrel, 4-5, 4-2 precefined tobens, I-4
Fiie +ormy, GFRilDevelap tolenc,
executing commznd fr1iee froa, A-9 Contrel, 2-5
invehing applicztions from; (-2 Debug, z-&
File grovps, Z-8 Enter, 2-7
F)]E ’LﬁdE, 1_5 E,f‘it, :'7
list cf, 1-4 Link, 2-8
File namee, Listings, 2-%
assumpticne in GRiDDevelop, 1-% Newe, 2-11
conventions, 1-3 Groups, -8
language identicaticn in, 1-5 Log File, 2-10
listing with Cat program, (-4 ijegts, 2-11
restriction in compilerse, {-G Prg‘:x‘ z-12
Files, Frint to, 2-1Z2
creating cetalog, C-5 Seurces, I-12
commanc, -4, A-3 Teet, 2-13
. Co GRyDbManager,
debug program, cnmgendé, F-é
dunping, C-7 édd]ﬁg»OEV!CES ifom? C-3
evecutable, - CRE:S§gf1ng.commana'fxles from, £-9
GFiLlevelop datsa, -2, -3 ;;i;mlf;e tHiles, 1-6
BRIDHrite, 1-¢ : Ve
include, 3- creating command files with, A-3
litrary, 1-4 creating scurce files with, -2
list, 1-& gxecutxng comeand filecs $rom, A-9
pap, 1-6 inveking from GRiDDevelop, 2-3
ohiect, 1-& Group enlergec warning, link program, D-G
croanizing, 1-3 group hase rno constituent sements warning, link program,
T) - roup names for source files, Z-13
i;;?tiig Tiste and sources in B%iDbevelep, 2-1° Grouvpe tokern, 1in GEIDDEVEIDP: Z-B
system, C-1
text, 1-é H
Form,
Change scurce groups, Z-14 5oy
Compile scurce files, in GRiDDevelop, 2-14 R LP* ,; ram. S-4
lirk in GRiDDevelop, 2-9 o ne RTRATEM, 2
Frint list files, 2-20 netent, cebug program, u-d
Frint csource files, 2-20
Fortran compiler, reference manual, 3-1 1
Fartran,
overlay evample, B-5 -
rur-time libraries, 3-3 prograt, bz
Ftr title suffiy 1n BRiBDevelcp, 2-13 pties User’s Guide, 4-4
reor, biok program, D-1)
Incorrect declaration warping, i1r
G v corstructs linh proorer, [-%
overlay iiny prooras, D-8
Gecod tune, E-I werning, : L-5
Goed Turne token, in GRiDDevelop, Z-7 zdoress warning, egram. boe
SRiDDevelar Statenent i
cxlculatar mode e
command line i - fiq source files, 2-13
S nticne, (-5
!'V-I-‘ -4
d charging, Z-1%
£e ‘i1le menu, -2 Eb“g_Fngrém’
“ cesumptione, 1-% or, link progrem, [-Z
Frogram Developmpent Guide Indey

L-1t

program,

n-

Irput/ovtput routines,
GRi[-0&, 3

Fezcsl,

Insvf+icrent memory error, lini prooram, D-4

Intel compiler neme restricticne, 1-95
Invalid syntax errcr, link program, D-6
Invocation exampies, link progrem, 4-2
Irnveking compilers, 3-3

from conmand filec, A-4

with GRiLklevelop, 1-3
invebing GR:DW-ite 4rom BRiDDevelop, |
Invoking thte debug program, 5-2

in GFilDeveicp, Z-6
Irnvoking tre Link progrem, 4-1

in GFiDlsvelop, 2-8

K

Kind, =ee File kinds

L

w

Language identification in file names, 1-
Large size contrel, compilers, 3-Z
LargeSyetemCalls, 3-2
Lit file kind, 1-6
Likrarian program, 4-1
Librarian, 1-6é
Libtreries, 3-2

gngT, 3-3

(ompactSyctemfalls, 3-1

Fertren, -3

LargeSyvetemfalle, T-Z

grganizing, 1-4

Fasczl run-time, 3-2
Liprary not zllcwed error, link program, -8
Lined ug pr -3
Link iderat -2
Link ols,

fEsu oty 4-4

Bind Z, 4-4

Fact . 4-%5, 4-58

Mep

Iz -n

0 4-4, 4-4

Fy -7

Fr trele, 4-7

Fu , -5, 4-5

Ceomert Si:ze, 4-%Z, 4-8

summ nf, 4-3
Link form in GRiLDevelop, Z-9

Link invoration examples, 4-Z
Lin) map, 4-5, 4-9
Lind prearam, 4-14
sesumercot contral evemple, B-4
g-ror mescages, 4-%
involing from command fi1les, A-4
invobing, 4-1

Irndes-4 Frogram Developme

overley contrel example, E-4
print file, 4-5, 4-7, 4-9¢
print file, 4-9
syntax, 4-1
Warning mes ., 4-9

Link staterente, terminating in GRilDevelcp, Z-

Link toien, in GRiDLevelop, Z-8

Link tobens, puitiple, 2-8

Lin eezages, D-1

Link&4 error, link program, D-5

Linker map files, 1-6

Linker progrem, invoking, §-2
from GRiDDevelop, 2-8

(>3]

bowarning m

Linking overlays, E-3
List files, 1-64
printing, 2-19
Listing titles with the Cat program, C-4
Listings token in GRiDDevelop, Z-9
Load program, (C-R
load-time-locatable module, 4-4
Loraticon display comm=nd, debug program, 5-4
tog fi1le toven, in GRilDevelop, 2-10
c files, evamining, 2-10, 2-19
Let e:-tercsion, appending by compilers, 2-9
Let file kind, 1-6

3

Waim menu, GRiLGLeveiop, Z-:
hanuals, compiler reference, 3-4
Wep f1les, 1-6

Hep, T:mb control, 4-5, 4-G
Mdoulee, erecutable, 1-2

Memory,

dreplz-ing
usa0e, by
Meaor, cdump commen
Hernw,
Febvg an 8§
Grilleveiop ¢ d
CrRablevelon defauln, Z-f
GR1DD= z-
CRiLTe
1Lle

"
"
"
u
uy
ail

0

errore, 4-
link warninge, 4-9
warnirg, D-1
Modem,
gctiveting, -3
device fil
Modulecs,
debug program, 5-3
fortran, I-3
Virbirng of chaectes, -7

Fazrai, -1

Mg dile bind, -4

, 4-%, 2-7, §-9

assumptions 1n GFiDDevelop, 1-%

linh control, 4-6

telen, erample of uwse, 2-11

token, in GRiDlevelop, 2-11
Nemes, afding language identification teo, 1-G
Naming conventiore,

for include f1les, 1-%

for source files; 1-5

in compilers, [-%
ecified werning, link program, [-1C
error, lin} program, D-7

Vo

in

yreboprogram, L-1d

i

Ce

O=F

[ef

r t file iz = input ¢ error, ol program,
Overiapp link pragram; D-13

<
b

Lo

P
Fae titie suéiiy in 2-13
FPasce

YRo

ovE

refi

run

PL/M compiler, reference manual, 3-1
Plm title cuffix in GRi1DDevelop, 2-13
PLMLits.inc, 3-4

Poscible overlap warning, linl progrer, D-6

Predefined tokers in GRiDDevelop, 2 4

Prefix

program, C-F

Frefix tcven, in GRiDDevelop, Z-12
Freprogramaed csofkeye, (-9

Frint fiie same as input file warning, lins
Print #ile same ac cutput file error, link

Frint file, link prograe, 4-5, 4-7, 4-G
Frint list filec form, 2-20

Frirt csovrce viles form, Z-Z0
Frint to taken, in BFiLbevelop, Z-1C
Frant, link controi, 4-7

Fronmtecontrole, link
Frinting files in GRiDDeveiop,

Froceed

praocNam

Fublac
Fuhiie

Firge

R

Fead, F #] procedures, 3-2

Fegieter dieplay d

Fegicter 1mitialize adz e

Fegicter, debug prog-am, 5-3

Reetrictione on $21le pamse 20 compilers, 1-
Reot f1le, 4-4

R

g, debug program, S-°

Szme cverlay name ecrar, linh

contreol, 4-7

command, debug procram, 5-7

gecleratyion, I-2
theys, L£L-9

link progran
not enrted

i

oot modules, B-1
Fun file

nd, 1-4

7

combinaticon warning, link program, [-3
overflow werning, link progras, D-6&

size overflow errcr, link prograns, D-10
cize underflow errcry link program, D-10

program,

program,

for gdevelopment evecvtive, A-7

D-14
[-14

Segment Size, link cont
Semaphores,

Semicolon (;),

rol,

4-2,
displaying in debug program,

4-6
5-8

GFiDDevelop command modifier, Z-16

ueling 1n command files
Sequence, development,
Serial, activating, C-3

y A-4
1-1

[

Sfet breakpoint commend, debug program, S5-%

Size controls,
Si1ze 0¥
Size,
Soft:

Qroup exceeds 4
terl segment, 4-

Saund‘
Source

Source

GF1DDev

conventions,

from

vizing, 1-4
rinting g-1c
roun nameEs,

______ aroupe;
Saurces tolen,

GRID

interection with

-1z

in Levelop,

-+ v e

C-10
level, 1n direc
uffl)es, tltles in
Suamarize program,
Summary of commands,
Sumpary of 1: cantro
Symbols, resclving dur

,_n oOQrar,

|n [EXIRp BR TSR 45 BN UY]

at

Svntay,
debug progras,
evetem vtilities,
System errore file,

5-3
C-
c-
T

Tachs
Tink staten
, in GRiDDevel
Test token, in GR1DDeve
TecstName token,
Text editor, cee GRiDWr

Terminatirg

Test mery

Text fi1le kind, 1-6
Time program, C-11
Time, elapced, C-7

Title level, in directo

Titie

Index-6

compilers

z
7

4k

a8

3-1,
WArning,

=, 4- 3
ng overl

ofy
lep,
in GRaDDevelop,

ite

ries, |
sufdrixes in GRiDIevelop,

-4

K}

grror

progrem, D-

‘semephore dicsplay ccmmaﬁd,

z-15

~
<

lind program, D-1i

ling program, D-10
C
y links, E-T
debug program, 5-8
FiDbevelop, Z-8
-15
2= 13

Titles,
lieting with Cat program, C-4
naming, 1-4

Tegglang windows in depug, S-8
Tohens an GRilDevelop, 2-4
Bad tune, 2-5, E-1
Contral
febug,
Ernter,
Evitg

Gorod

Lini,

l_j:fjr.

l'n.\e te, Z-11!
Frefi: -1z

bed,
Qoo
Tun mzny warning, link progrem, L-13
Type d::cr:rtxnu tao long error, link progree, D-4
Type mismatch warning, link program, D-
Typical directory, 1-4
U - z
Unload program, C-1Z
Urlcoedyng common, from command files, A-4
Urnresclved symbcls warning, link program, [-4
Veer-oefined toterns, 1n GRillevelop, 2-18
utilities, 1AFY BeBE, 4-1
dtilsty mrograms, C-1
wilacarde in, (C-2
Verrables,
gecioning valoee in debup progrem, S-10
drepiaying cortente of in detug, S-9
verNemg, debug program, 5-3
Warning messepes, link program, 4-
Wildcarde in utility programe, C-2
Yindow teoggle command, debug program, S-8

Window, alternate in debug program, 5-7

Werk program, C-1Z2
Write, Facscal procedures, 3-2
I7IDEERUG files, 5-3

