
PROGRAM DEVELOPMENT GUIDE

APRIL 1985

COPYRIGHT (Ci 1984, 1985 GRiD Systems Corporation
2535 Garcia Avenue
Mountain View 1 CA 94043
(415i 961-4800

Manual Name: Program Development Guide
Order Number: 29300
Issue d;;.te: Apr i 1 1985

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopy,
recording, or other"ise, without the prior written permission of GRiD Systems
Corporation.

The information in this document is subject to change without notice.

NEITHER GRiD SYSTEMS CORPORATION NOR THIS DOCUMENT MAKES ANY EXPRESSED OR IMPLIED
WARRANTY, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY, QUALITY, OR FITNESS FOR A PARTICULAR PURPOSE. GRiD Systems
Corporation makes no representation as to the accuracy or adequacy of this
document. GRiD Systems Corporation has no obligation to update or keep current
the information contained in this document.

GRiD System Corporation's software products are copyrighted by and shall remain
the property of GRiD Systems Corporation.

The following are trademarks of GRiD Systems Corporation: GRiD, GRiD Compass,
Compass Computer, GRiD Server.

The following is trademarks of Intel Corporation: Intel.

TABLE OF CONTENTS

CHAPTER 1: THE PROGRAM DEVELOPMENT CYCLE

The Development
The Development
Cvnventic,ns for

Sequence r; e i.: I! i: ~ lJ, = ~, :i /j ~ tl: =

Environment - GRiDDevelop
Organizing and Naming Files

File Naming Conventions
File Titles
File l<ind5

CHAPTER 2: THE GRiDDEVELOP PROGRAM

The GRiDDevelop Main Menu
GRiDDevelop

Creating
GRiDDevelop

Data Files
GRiDDevelop
Token,;.

Data Files

The GRiDDevelop Pre-Defined Tokens
:Bad Tune:,,,,,,,,,.,
:Control controlName:
:Debuq:
:Enter:
: EX it:
:Good Tune:
:Groups-:
: Link:
:Listings:
:Log File:
: Name:
:Objects:
:Prefi1;:
,Print To:

User-Defined Tokens
Command Modifier Characters
The GRiDDevelop Commands Menu

Command Line Interpreter (CODE-Cl
The Hex and Decimal Calculator (CODE-=)
Change Source Groups !CODE-GI
The Options Command CODE-Ol

The Transfer Menu ... ,,
Changing the Development Data File
Reading the Development Data File
E~amining the Log File ,,
Printing List and Source Files

1-1
1-3
1-3
1-4
1-4
1-5

2-1
r; _-;
-'- J..

2-3
2-4
2-4
2-5
2-5
2-6
2-7
2-7
2-7
2-8
2-8
2-9
2-10
2-ii
2-11
2-i2
2-12
2-12
2-15
2-15
2-16
2-i6
2-17
2-17
2-17
2-18
2-18
2-19
2-19
2-19
2-19

i i i

CHAPTER 3. COMPILERS, LIBRARIES, AND INCLUDE FILES

Compiling Programs Ill !II It ii fl/I II fJ Ill Ill • a • ■ Ii a • !II l'J ri 11 11 C 1!1 It a

Compiler Size Controls
libraries

Pascal Libraries and Nodules
FORTRAN libraries and Modules

libraries and Modules
libraries and Modules

PL/1'1
8087

Invoking the Compilers
The System

Examples

CHAPTER 4.

and Language Include
of Include Control

THE LINK PROGRAM

Invoking
Link

the link Program
Invocation Examples

Link Control Summary
Assumeroot
Bind
Fastload
Map
Name
Overlay
Print,
F'rintcontrol
Purge
SegSi;.:e

The Linker's Print File

CHAPTER 5. THE DEBUSGER

link Considerations

Fil es
Statements

Compile and
Invoking the
Debugger

Debugger II g "., •• IJ s

Syntax and Terminology
CODE-Key Commands

The Help (CODE-?) Command
The Set Breakpoint (CODE-B) Command ... ,
The Clear Breakpoint Command
The
The
The
The

Timing Breakpoint Commands (CODE-1
Duplicate line <CODE-D) Command
Executive <CODE-E) Command
Fill Memory (CODE-Fl Command

The Info <CODE-I) Command
Location Display <CODE-l)
Message
Options

Display (CODE-M)
(CODE-0} Command

Proceed (CODE-P) Command
Quit (CODE-El)

Command
Command

CODE-5)

The
The
The
The
The
The
The
The

Command
Register Display (CODE-R)
Stack Trace ICODE-S)
Tasks/Semaphore

Command
Command

Display (CODE-T) Command

iv.

3-1
3-1
3-2
3-2
3-2

3-3
3-3
3-4
3-5

4-1
4-2
4-3
4-4
4-4
4-5
4-5
4-6
4-6
4-7
4-7
4-8
4-8
4-9

5-2
5-2
5-3
5-4
5-4
5-4
5-5
5-5
5-7
5-7
5-7
5-8
5-8
5-8
5-8
5-8
5-9
5-9
5-10
5-10

The
The

Unassemble (CODE-IJ) Command
(CODE-Wl Command ~h ndow Toggle

Command Line Commands
The Display Address Command

Display Contents Command
Assign Value Command

The
The
The
The

Memory Dump Command
Examine/Change Memory Command

APPENDIX A, ALTERNATE DEVELOPMENT APPROACHES

Development Executive Program
Command Files

Using the
Using the
Executing

DO Program with
Command Files from the User Interface

APPEND IX B. PROGRAM OVERLAYS

The OsOverlay Procedure
Pascal Overlay Example
Linking Overlays
Additional Overlay Considerations
FORTRAN Overlay Example ,

APPENDIX C, SYSTEM FILES AND UTILITIES

Synta:< Notation
Entering Commands
~Jildcards
The
The
The

stem Error: File
Activate Program
Catalog Program

Creating a Catalog File
(Exclamation Point)

? (Question Nark)
The
The
The
The
The
The
The

Compare Program
Deactivate Program
Development Executive Program.
DO Program
Dump Program
Elapsed Time Program
Executive File"""
LADT (List Active Device Table) The

The Load Program
The Prefix Program
The Softkeys Files

Programming the Softkeys
Multiple Softkey Files

The Status Program
The
The
The
The

Summarize Program
Time Program
Unload Program
Work Program

Program

Ii 8 ill ii J; 8 ■ II 8 i, Iii Ii e Iii 4i' ii' Ir ■ 11 1,1 !!I Ill • !!

ii' 1!I !B • fj <'I B ti • II II •• Iii a lil II I !;I s , a II ii s fl

5-11
5-11
5-11
5-12
5-12
5-13
5-13
5-14

A-2
A-3
A-4

B-1
B-2
B-4
B-5
B-5

C-1
C-2
C-2
C-2
C-3
C-4
C-5
C-5
C-5
C-6
C-6
C-7
C-7
C-7
C-8
C-8
C-8
C-10
C-10
C-11
C-11
C-12
C-12
C-13
C-14
C-14
C-14

V

APPENDIX D, LINK ERROR MESSAGES

APPENDIX E, SOUND

ABOUT THIS BOOK

This book describes how to use the GRiD Compass as a program development tool.
To assist you in program development, a powerful and easy-to-use development
tool -- GRiDDevelop -- is available. GRiDDevelop provides a flexible
development environment where you can quickly edit your source files 1 compile
and link your programs, and then proceed to the debugging, re-editing cycle.

Five programming languages are currently provided: Pascal-86, PL/M-86 1

FORTRAN-86, C and Assembler-86.

You create program source files using the text editor program, GRiDWrite. The
source files (along with any required INCLUDE files) are then compiled using
the appropriate compiler (Pascal, Fortran, PLM 1 C1 ASMI. Guidelines for using
the languages and their compilers are provided in Chapter 3 of this manual.
The INCLUDE files are also listed and briefly described in Chapter 3.

The compilers produce list files and relocatable object modules. These
modules, along with other modules you may have compiled and library modules,
are then linked together using the Link program described in Chapter 4.
Programs can be debugged on the GRiD Compass with the GRiD Debug program
described in Chapter 5.

A number of useful system utility programs are also available to ease system
maintenance tasks accompanying the program development sequence. These
programs are described in Appendix C.

CHAPTER i, THE PROGRAM DEVELOPMENT CYCLE

The GRiD Compass gives you great flexibility in defining how you use
the computer and its software when developing programs. The
GRiDDevelop program is a powerful and easy-to-use tool that helps
you organize your files and greatly speed up the development
process. GRiDDevelop is described in detail in Chapter 2. Before
discussing GRiDDevelop, however, let's take an overvie~ of typical
development sequences and the available tools to assist program
development.

The Development S•qu~nce

Figure 1-1 illust~ates the general sequence followed when developing
programs and also shows some of the software tools that are
provided.

Program Development Guide 1-1

,- +-,
I I
•crwate/Edit->I---Campila--->1----Link---->IDabug-'

Edit Soun:"' FilO's

Include Files

Figure 1-L

Compile

F'ascal
PLN

Li11t Filn

Relocatabl1>

Other Relocatable
□b·ect Modules

Libraries

N&p Files

linked
Nodules

The Program Development Sequence

Debug

The development process consists of four iterative phases:

o Editing <writing) program source files with GRiDWrite

o Compiling source files with one of the language (Pascal, PLM,
Fortran, Assembler) compilers

o linking compiled object modules with the link program to produce
modules which can be executed !run)

o Testing and debugging the executable modules.

This four-step sequence is repeated while you refine and debug your
program.

When you are creating the text source file for a progra~, GRiDWrite
speeds the process with such features as automatic indentation and
fast substitution and duplication of phrases and whole sections of
code. For a complete description of GRiDWrite, refer to the
GRiDWrite section in the GRiD Management Tools Reference manual.

After you have finished writing or correcting a source program, you
must invoke the compiler to translate your text file into an object
file.

Invoking the linker program requires a more complicated sequence
since it usually involves naming a number of files that are to be
linked together. For example, here is a typical linker invocation:

1-2 The Program Development Cylce

N'Libs'DataForms.Pas~Obj~, 'w'Libs'largeException.Asm~Obj~,
POl'w'libs' atemCalls~Pub~l TO Shell~Run~ BIND PURGE FASTLOAD
sslstack(+iOOO)I

Typically, you might edit several modules, then compile them one
after the otherj and finally link the modules together along with
various libraries. You would then test and debug the linked,
executable module. If errors are discovered, you would repeat the
edit/compile/link aequenca. The goal of the program development
environment is to make this repetitive sequence as easy and fast as
possible.

THE DEVELOPMENT ENVIRONMENT -- GRiDD~velop

The GRiDDevelop program (described in Chapter 2) provides a
development environment based on the assumption that most software
development consists of edit/compile/link/test cycles. You can
define many of the characteristics of the environment by filling out
a data file with information about source file names, link comaand
lines, subjects for sources 1 listings, and objects, and other
miscellaneous command&. The BRiDDevelop program reads this file for
the data to drive the program development cycle.

Yau use GRiDDevalop data files to specify the files that the
GRiDDevelop program will operate on to initiate various development
activities such as editing, compiling, linking, and so on.

When you use GRiDDavelop to provide the development environ~ent,
GRiDWrite is automatically invoked so you can create 1 edit and
correct your source programs. GRiDDevelop also automatically
invokes the appropriate compiler required for your source programs
and lets you set any controls that you ~ant to use during the
compilation.

Link statement files are set up in the BRiDDevlop data file sa that
you can issue a complicated link statement with a single keystroke,
You can also easily edit the link statement(s) during the
development cycle directly from GRiDDevelop,

You have several other alternatives when deciding on the environment
you want to use when developing programs using the GRiD Compass.
Although we suggest that you use the 6RiDDevelop program, since it
provides the fastest and most flexible environment, ~• describe some
alternate approaches in Appendix A.

CONVENTIONS FOR ORGANIZING AND NAMING FILES

Although there are rew hard and fast rules far organizing your
dir~ctories and naming files, there are some conventions that have
bP~n adopted internally at BRiD and which are assumed by the
GRiDDevelop program, Even if you do not use GRiDDevelop, observing

Program Development Guide 1-3

these conventions will be of value to anyone doing program
development work using the GRiD Compass.

Figure 1-2 illustrates part of a typical directory on a hard disk
device.

01:!•.I ice
L12!1.1 el

:.1Jb.jt:!Ct
Leuel

Title
Level

j
Ir;;;7

Include
file:;

Libr-~n1
files

H.;wd Disk

Ut. i lit, ies
Conpilers

Object
file:;

list,
file:;

11!:!
Pr·ogr.~ns

Source
file:::

Figure 1-2. Organization of Typical Directory

The purpose of this organizational style is to keep all files that
are logically related in the same directory. This keeps the number
of titles within each directory from getting too large. This
organization also simplifies such maintenance activites as backing
up files and obtaining new copies of files, and standardizes
references your programs make to include files and libraries. The
directory organization shown in Figure 1-2 puts all the include
files under one subject (Ines) 7 all library files under one subject
(Libs), all object files under the Objs subject, all source files
related to a particular programs under MyPrograms, and so on.

FILE NAMING CONVENTIONS

There are two file naming considerations: the file title and the
f i 1 e kind (or type l .

File TitlH

GRiD-OS imposes two small limitations on file names. First,
characters used in the title can be any of the printable ASCII
characters between 'space' <ASCII code 20 hex) and DEL (ASCII code
7E Hex) except for the single backquote (') and tilde("')
characters. Second, the file name cannot exceed 253 characters
total including device, subject, title, kind, and the delimiter
characters.

1-4 The Program Development Cylce

File Kinds

The Intel compilers, however, place greater restrictions on file
names. They require that file names (including device, subject,
title, kind, and the delimiter characters) be no longer than 45
characters. You should therefore ensure that your program names do
not exceed this limit.

GRiDDevelop makes same assumptions about file names. (Note: Even if
you do not use GRiDDevelop, it is recommended that you observe these
conventions.) The first assumption GRiDDevelop makes is that you
append some language identification information to all source file
titles, For example a Pascal source file should have the name
NyProgram,Pas~Taxt~, a PL/M version of this program would be named
MyProgram,Plm~Text~, an assembly language version would ba
MyProgra ■ .Asm~Taxt~, and a FORTRAN version would be
HyProgram.Ftn~Text~. This convention lets GRiDDevelap automatically
invoke the appropriate compiler for your source programs. It also
~akes it easier to organize your files and identify the file you
want even if you do not us ■ GRiDDevelop.

The other convention is to identify the include files (for any
language) by appending .Inc to the name: for example,
MyProgram.Inc~Text~.

GRiD-DS and so■ e BRiD applications require that files be of a
certain "kind" in order to perform some activities. Far example, if
a file is an executable program, the system requires that its kind
be ~Run~; otherwise, the file cannot be executed. The file kind
suffix also provides additional information about the contents of
the file so that you can tell quite a bit about a file just by
looking at its kind.

When you are running application programs under GRiD-OS with the
Executive program, you can select a data file, and the system
automatically invokas the executable program ta work or operate on
that data file. The program that will be implicitly invoked to do
the Nork must ba of kind ~Run fileKind~, where "filekind~ matches
the Kind of the file being selected. For example, the program
6RiDWRITE~Run Text~ works with a file that has a Kind of ~Text~.
The file that is ta be operated on must have a kind that matches the
fileKind of the program being implicitly invoked. For example, a
file named Memo that you want to edit using 8RiDWrite would be of
kind ~rext~. Thus, its complete name would be Memo~Text~.

To implicitly invoke and initiate execution of the application
program (the program that s to do the work) 1 just select the
subject and title of the file you Nant from the File form and press
CODE:RETURN.

During the program development cycle, some file kinds are appended

Program Development Guide 1-5

automatically by various utilities; others must be appended by the
user. Some of the file kinds you will encounter and use are listed
below in alphabetical order.

(NOTE: Some kinds will always appear in all caps while others are
shown with just the first letter capitalized. Those in all caps are
appended by Intel software such as the compilers, GRiD-OS, however,
does not differentiate between upper and lower case: you can use
any mix of upper and lower case in file names,i

A Com <Command) file contains a list of executable
files. You must add the ~com~ kind when naming
the file.

This kind is usually appended by the lib utility
program to identify modules that are part of the
library, although you can specify any kind you want
with the Lib program.

The compilers create LST (LiST} files. LST files
are program listings with statement and line
numbers, error messages, and other programming
information. The compiler automatically adds the
~LsT~ kind.

An MP1 file is the linker's Map file. The link
program automatically appends the ~MPl~ kind.

The compilers generate unlinked OBJ (Object) files
and append the ~oBJ~ kind.

Run files are executable files that are created by
the Link program. Note, however, that you must
specify the ~Run~ kind yourself to the output file
title in the link statement.

Any file created with GRiDWrite will have the kind
~Text~ appended to it unless you explicity specify
that it be of -a different kind (such as ~com~).
Thus, the source text for a program that you create
using the text editor ~ill usually have ~rext~
appended to its title.

1-6 The Program Development Cylce

THE GRiDDEVElOP PROGRAM

The GRiDDevelop program provides a development environment based on the
assumption that most software development consists of reiterative
Edit/Compile/Link/Test/Debug cycles, You can define many of the
characteristics of the environment by filling out a data file with information
about source file names, link command lines, subjects for sources, listings,
and objects, and other miscellaneous commands. The GRiDDevelop program reads
this file for the data to drive the program development cycle.

The GRiDDevelap program resides in memory at all times. In order to use it,
you must have the compilers (that you use), and the programs GRiDNrite and
Print in the programs subject.

THE 6RiDDEVELOP MAIN MENU

The GRiDDeveJop program is invoked by filling out the File form
specifying a file with a kind of Develop, The program then displays
the main GRiDDevelop menu shown in Figure 2-1. To initiate one of
the activites listed on the menu, just select and confirm, The
GRiDDevelop Main menu is the default menu; once you have invoked the
GRiDDevelop pragram 1 this menu will be displayed whenever you press
ESC,

GRiDDevelop 2-1

Edit list file
l~dit source ¥1le

OMPl le
Link
Cor,1p i le an,j l i nh
Test.
Deb1..19
Add entry to log file

Figure 2-1, The Main GRiDDevelop Menu

The files that are to be acted on by of each of these menu items are
specified in the GRiDDevelop data file, For example, selecting
"Edit source file" brings up a menu displaying the filenames you
have specified in the data file, Figure 2-2 shows an example of a
list of source files, Confirming one of these files invokes
GRiDWrite and brings in the file you have selected so that you can
edit the source program,

•pf e! -~asl
1 e2. 'as

File.3.Pas
File4.Ft.n
File5.Ft.n
File6.Ftn
File7.PLM
File8.PLM
File9.ASM

Figure 2-2, The Edit Source File Menu

All of the items listed on the Main menu in Figure 2-1 will be
described as we proceed through this chapter. Since a description
of the GRiDDevelop data file provides an understanding of how the
Main menu works, we will discuss items on the Main menu in
conjunction with the data file.

GRiDDEVELOP DATA FILES

You use GRiDDevelop data files to specify the files that will be
operated on during the various development activities such as

2-2 Program Development Guide

editing, compiling, linking, debugging, and so on. The data file
consists of text comprising tokens, filenames, and command lines.
The data files have a Kind af "Develop".

You can have as many GRiDDevelop data files as you want -- use a
separate one for each development task you have in progress. Each
data file requires no more space than a small text file -- typically
one to three thousand bytes,

Once a GRiDDevelap data file has been created using GRiDWrite, it
can be easily edited to meet changing demands of the development
cycle. You can add source files designations, change Link command
statements, and so on, by selecting "Change this development file"
from GRiDDevelop's Transfer menu which is described later in this
chapter.

Creating 6RiDD1v1!op Data Fil11

There are two ways that you can create a new GRiDDevelop data file:
the method you use depends on whether you already have a Develop
file in your system.

If there are no existing Develop files in your system, follow these
steps:

1. Fill in a File form specifying a file with a Kind of
"Develop" and confirm the form. The system will prompt you
with the message "Confirm to create new file". Confirm the
form again to create the new develop file.

2. GRiDDevelop will be loaded into memory and will display its
Transfer menu with the selection outline surounding the item
"Change this develop file", Confirm this selection.

3. The GRiDWrite program will be invoked by SRiDDevelop along
with the file (currently empty) that you specified in step
1.

4. Type the tokens you need (described beginning immediately
after this section) into the text file. When you have
finished specifying the desired tokens, press CODE-Q and
confirm to quit BRiDWrite. Control is returned to
6RiDDevelop which displays its Main menu, The development
process is now being guided by the new Develop file you have
just defined.

If you already have a Develop data file in your system, it is
usually easier to simply make a copy of the existing file (using
GRiDManager or the "Write to a file" item from GRiDWrite) making
sure that the new file also has a Kind of Develop. You can then
select the new file from the File form to invoke GRiDDevelop. Now
you can edit the new file (using the "Change this develop file" item

6RiDDeve1op 2-3

from GRiDDevelop's Transfer menu) to fit the requirements of the new
development project.

A sample Develop data file is provided on diskette to simplify
getting started with GRiDDevelop. Use it as a model that can be
edited to fit your specific needs. A complete listing of this
sample Develop file is provided at the end of this chapter.

BRiDDDEVELOP TOKENS

GRiDDevelop recognizes all text in a data file that is enclosed
within a pair of colons l:xxx:J as "tokens". A token is interpreted
by GRiDDevlop as a command specifying how it should handle the text
that immediately follows the token. GRiDDevelop recognizes a set of
pre-defined tokens and can also accept user-defined tokens.
Pre-defined tokens are operated on by GRiDDevelop in a predetermined
manner. For example, the GRiDDevelop token ":Sources:" tells
GRiDDevelop to treat the files listed after the token as source
files that can be edited and compiled. User-defined tokens are
simply any tokens not pre-defined by GRiDDevelop -- you specify the
activity that should be initiated by GRiDDevelop as a result of the
user-defined token. The paragraphs that follow describe all of the
pre-defined tokens. Examples of user-defined tokens will be
described later in this chapter.

Pr1d1fin1d 8RiDD1v1!op Tokin1

The following tokens are pre-defined and cause GRiDDevelop to
initiate specific activities:

:Bad Tune:
:Control:
:Debug:
:Enter:
:Exit:
:Good Tune:
:Groups:
:Link:
:Listings:
:Log File:
:Name:
:Objects:
:Prefix:
:Print To:
:Sources:
:Test:

2-4 Program Development Guide

Each of these tokens is described in detail in the pages that
follow,

■ Bad Tunam

Each development data file can specify one of these tokens. The Bad
Tune token lets you define a sequence of notes that will be output
to the speaker in the Compass computer. This token assumes that you
are using a Compass that is equipped with a built-in modem and that
you have the file named Sound~Device• in the Programs subject of
your system. This device must be activated either via the Command
Line Interpreter, a System.Init file, or by using an :Enter: token.
See the :Enter: token later in this chapter for an example.

The :Bad Tune: token lets you enter a text string following the
token. The characters in this text string are interpreted as sound,
or a "tune", according to the rules described in Appendix E. The
tune defined by the character string after the :Bad Tune: token will
be "played" whenever an error occurs during a compilation or link
operation,

:::Control c:cntrolNama111

Each development data file can specify as many of these tokens as
needed to set up controls that will be presented as choices on the
"Compile form". The token is followed by a list of the controls
that are to be used when the compiler is invoked. For example, the
following token

:Control Yes with Debug: DEBUS NOPRINT

would display the form shown below when you select Compile from the
Main menu:

Fi lei .Pas... l.,,..N,...o....,. ____ ,:: ________ _J
File2.Pas Flo
File3.Pas Ho
File4.Ftn No
Fil e5 . Ft.n No
Fila6.Ftn No
File7.PLM No
File8.PLM No
File9.ASM No

You can then specify which files are to be compiled and which are to
be compiled with the DEBUG NOPRINT controls applied,

GRiDDevelop 2-5

1Dabug1

Each development data file can specify one or more Debug tokens.
Following the each Debug token, you can specify any number of
command lines each of which must be ended by pressing RETURN.
Typically, one of these command lines would be an invocation of the
debugger along with your program. The following is an example of
the use of the Debug token:

:Debug:
Debug MyProgram~Run~ TestFile~rext~

Now, when you select the Debug item from the Main menu, the Debug
program is invoked to operate on the MyProgram~Run~ file which uses
TestFile~Text~. After this sequence has been completed, you would
automatically be returned to the Main menu.

If more than one debug command file is needed, then multiple debug
tokens can be defined in a GRiDDevelap data file. Any text that
fallows the keyword Debug and that is enclosed within the colons
will be displayed on the Debug menu. Yau can then select which of
the command sequences is to be performed as part of the debugging
sequence. You can specify as many of these tokens as required in
each development data file. The following example illustrates the
use of multiple Debug tokens:

:Debug Use test data file #1:
Debug MyProgram~Run~ TestFile#l~Text~

:Debug Use test data file #2:
Debug MyProgram~Run~ TestFile#2~Text~

Now, when you select Debug from the Main menu, the following Debug
menu would be displayed.

You can now select the debug command file you want from this menu
and the debugger will be invoked along with your program and the
desired test data file.

2-6 Program Development Guide

1Entar111

Each development data file can specify one Enter token. The token
is followed by a command or series of commands that are to be
executed the first time the development data file is brought into
memory. For example, the following token

:Enter:
Activate ''Hard disk''programs'Sound"'Device"'

causes the Sound device to be activated when this development data
file is first brought into memory. <The Sound device is used in
conjunction with the :Good Tune: and :Bad Tune: tokens described
elsewhere in this chapter,)

Each development data file can specify one Exit token. The token is
followed by a command or series of commands that are to be executed
when you exit the GRiDDevelop program. For example, the fallowing
token

: Exit:
Deactivate ''Hard disk''programs'Sound"device"'

causes the Sound device to be deactivated when you exit the
6RiDDevelop program.

1Bcod Tuna=

Each development data file can specify one of these tokens. The Good
Tune token lets you define a sequence of notes that will be output
to the speaker in the Compass computer. This token assumes that you
are using a Compass that is equipped with a built-in modem and that
you have the file named Sound~Device~ in the Programs subject of
your system. This device must be activated either via the Command
line Interpreter, a System.Init file, or by using an :Enter: token.
See the :Enter: token earlier in this chapter for an example.

The :Good Tune: token lets you enter a text string following the
token. The characters in this text string are interpreted as sound,
or a "tune", according to the rules described in Appendix E. The
tune defined by the character string after the :Good Tune: token
will be "played" whenever a pause is processed (see "Command
Modifier Characters" later in this chapter for a discussion of
"pauses") or when a compile, link, or compile and link operation is
successfully completed.

GRiDDevelop 2-7

I Grcu.ps;

Each development data file can specify one of these tokens to
indicate which group or groups of source files should be displayed
as choices for such activities as editing or compiling. (Refer to
the :Sources: description for a description of how to create groups
of files,) If the :Groups: token is not specified, then all groups
will be displayed when the Develop file is first entered. The
:Groups: token lets you specify which groups of files whould be
initially displayed. For example, if you have groups named Sample!,
Sample2, and Sample3 you can specify that the files in groups
Sample1 and Sample3 be initially displayed with the following token:

:Groups: Sample!l
Sample3

NOTE: the :Groups: token must appear after all :Sources: tokens in
the Develop file,

While you are in GRiDDevelop 1 you can change the groups that are
displayed using the CODE-G command. However 1 settings established
using CODE-Gare discarded when you leave GRiDDevelop and the
:Groups: token will be used upon reentry to GRiDDevelop.

Each development data file can specify one or more Link tokens.
Following the Link token, you can specify any number of command
lines, each terminated by pressing RETURN. Typically, this would
include a command line invoking the linker program (link~Run~I and
naming the files that are to be linked and'the resultant output
file. The entire link statement is one command line and must be
terminated with RETURN. The following is an example of the use of
the Link token:

:Link:
Link "Hard disk"Objs'epMain.Pas"'Obj"', "Hard
disk"Objs'epFolders.Pas"'Obj"' 1 ''Hard
disk' 'Objs'epUtility.Pas"Obj"', ''Hard
disk''Objs'epFormsinit.Plm"'Obj"', ExecPac"'Font~, • 'Hard
disk' 'Libs'CompactException.Asm"'Obj"', • 'Hard
disk' 'Libs'CompactSystemCalls"'Lib"' TO ExecPac"'Run"' BIND NOPURGE
NOFASTLOAD PC(PUR6E) ss(stack(2000)) PRINT("Hard
disk''Lsts'ExecPac"'MPl~)

If more than one link file is needed lfor example, when linking
overlays), then multiple links can be defined in a Development file.
Any text that follows the key word Link and that is enclosed within
the colons is displayed on the Link form and you can select which
link command statement is to be performed. You can specify as many
of these tokens as required in each development data file. The

2-8 Program Development Guide

following example illustrates the use of multiple Link tokens:

:Link Root:
.LINK SampleRoot.Pas"'Obj"' 1 ''Hard disk' 'Libs'p86rnO"'lib"', ''Hard
disk' 'libs'p86rn1"lib"', ''Hard disk' 'Libs'p86rn2"lib"', ''Hard
disk"Libs'p86rn3"'1ib"' 1 ''Hard disk"Libs'8087"'Lib"' 1 ''Hard
disk' 'Libs'LargeSystemCalls"'Lib~, ''Hard
disk' 'Libs'Dqlarge~Lnk~ TO SampleRoot~Lnk"' OVERLAYIROOTI
NOPRINT

:Link Overlay1:
LINK SampleOverlayl.Pas~Obj~, ''Hard disk''Libs'p86rnO-Jib-,
''Hard disk"Libs'p86rn1"'1ib"', ''Hard disk"Libs'p86rn2"'lib"',
"Hard disk"Libs'p86rn3"'lib"', "Hard disk"Libs'8087'"Ub"' TO
SampleOverlayl~Lnk"' OVERLAYISampleOverlayl) NOPRINT

:Link Over1ay2:
LINK Sample0verlay2.Pas~Obj", ''Hard disk' 'libs'p86rn0~lib~,
"Hard disk"Libs'p86rn1"lib"', "Hard disk"Libs'p86rn2"'lib"',
"Hard disk"Libs'p86rn3"'1ib"' 1 "Hard disk"libs'B087"'Lib"' TO
Sample0verlay2"'Lnk~ OVERLAY(Sample0verlay2l NOPRINT

:Link Run Sample:
LINK SampleRoot~Lnk~, SampleOverlayl~Lnk"', 5ample0verlay2~Lnk"'
TO SampleRoat~Run~ BIND SSISTACKl+1500)l PCIPURGEI

Now, when you select the Link item on the Main menu, the following
Link form will be displayed:

F:oot
0•._.1et-la•:11
o,,i,,n-1 ;;i•:::42
Run S.;;,mple

=

You can then select which link command file(s) you want to be
executed from this form.

You can specify one of these tokens in each development data file.
The device-subject string you specify (for example, • 'Hard

• Dis~''Lsts't is automatically prepended to the filenames that you
have ~pecified with the :Sources: token when those source files are
compiled. The ~Lsr~ extension is automatically appended ta the
re~ultant files by the compiler. Here is an example of using the
:listings: token:

GRiDDevelop 2-9

:Listings: "Hard disk"Lsts·

Then, if you compiled source files (fileName1 - fileName4J this
would produce list files having pathnames as follows:

• 'Hard disk''Lsts'fileNamel~LsT~
• 'Hard disk''Lsts'fileName2~Lsr~
• 'Hard disk''Lsts'fileName3~Lsr~
• 'Hard disk''Lsts'fileName4~LsT~

11Lcg Fila11

You can specify one of these tokens in each development data file.
The log file can be used to record or log your activities as you
write, debug and make changes to programs. The pathname that you
specify following the token can be of kind Database or Text. If you
specify a log file of kind Database, the GRiDFile program will be
invoked by GRiDDevelop to display the contents of the log file, If
you specify a kind of Text, GRiDWrite will be used to display the
file. If you do not specify a kind along with the log file token,
it is assumed that the file is a database and GRiDFile is used.
NOTE: this assumes, of course, that you have the 6RiDFile program in
your system.

To make entries into the specified log file, select the "Add entry
to log file" item from the main GRiDDevelop menu. The following
form is then displayed:

Nw,1ber
l.Jersion
Modlile
Comr,1ent

The form provides four different fields that you can fill out to
keep track of programming activities. The information you put into
each of the fields is entirely up to the you but the form was
designed with the following uses in mind,

The first field, "Number", can be used to record such things as
error-report or enhancement-request tracking numbers. The "Version"
field can be used to record the version number of the program
module(sl currently being worked on. The "Module" field can record
the name of the program module(sl being modified and the "Comment"
field can be filled out to describe the kinds of changes being made
to the module(sl,

2-10 Program Development Guide

When you have completed the form with the information you want
recorded, press CODE-RETURN to log the entry. As each entry is made
in the log file, GRiDDevelop automatically appends the current date
and time into the log file as a prefix to each entry.

The Log file entry form is cleared as you confirm each entry to
indicate ~hat the entry has been recorded. A blank form is then
displayed to allow additional entries. To return to the Main menu
after logging entries, press ESC.

To examine the contents of a log file, press CODE-T to display the
Transfer menu and then select the "Examine log file" item, If the
log file was specified with a kind of Database, GRiDFile will
automatically be invoked and you can use the Find command (CODE-Fl
of GRiDFile to display the contents of the file. If the log file is
of kind Text, GRiDWrite is invoked and the contents of the file will
be displayed automatically.

You can specify one of these tokens in each development data file.
The string you specify is automatically displayed as the leading
phrase in the message line of the main GRiDDevelop menu. For
example, if you specify the following with this token

:Name: Sample Development

the screen displayed by GRiDDevelop would be as shown in Figure 2-3,

Comp i le 0:m,j l ink:
Test.
Debug
Add entr~ to log File

Figure 2-3. Using the Name Token

You can specify one of these tokens in each development data file.
The device-subject string you specify (for example, • 'Hard
Disk''Objs'l is automatically prepended to the filenames that you
have specified with the :Sources: token when those source files are
compiled. The ~Obj~ extension is automatically appended to the

GRiDDevelop 2-11

resultant files by the compiler. Here is an example of using the
:Objects: token:

:Objects: ''Hard disk "Objs'

This would cause the object files produced by compilers to have
pathnames as follows:

''Hard disk"Objs'fileName1"'0bj"'
''Hard disk"Objs'fileName2~0bj~
''Hard disk''Objs'fileName3~0bj"'
''Hard disk''Objs'fileName4~0bj~

(and so on)

You can specify one of these tokens in each development data file,
The string you specify is the Device-Subject name or simply the
Subject name where source files reside. It is recommended that you
usually use only the subject name to specify the prefix -­
GRiDDevelop will automatically prepend the current system prefix
device. This token lets you define source file names in the data
file by just specifying the Title: the prefix you specify in the
data file will automatically be prepended to the Title. After each
command, the prefix is reset to the Subject specified with this
token. Here are two examples of using the :Prefix: token

• I/0 Driver'

:Prefix: MyPrograms

r=Print To1::

You can specify one of these tokens in each development data file.
The string you specify is prepended to the destination filename
before printing and is used to direct printing to a remote device
such as GRiDServer. Here is an example of the :Print To: token

:Print To: "Nexus.1:Printer Queue'EpsonFXSO"

If you do not specify a Print To token, then GRiDDevelop assumes
that all printing will be to your local (directly attached) printer.
See.the section titled "Printing List and Source Files" later in
this chapter for additional discussion of the effects of this token.

111Sourc•sm

You can specify one or more of these tokens in each development data
file. Following the token, you provide a list of source filenames.

2-12 Program Development Guide

Filenames must be one per ine and can include spaces. Leading and
trailing spaces are ignored unless enclosed in quotes. Each
filename title must end with a suffix indicating the compiler to be
invoked for that source file. The following title suffixes are
recognized by GRiDDevelop:

.Pas (Pascal)
,Plm (PL/M)
.Asm (Assembler)
.Ftn (FORTRAN)
. C {CJ

Here is an example of the :Sources: token

:Sources:
ModelPriv. Inc
Model TexL Inc
FormsiniLPlm
Unparse.Pas
'Test Model.Pas'

Note that if the file name title ends with a suffix other than one
of the five recognized by GRiDDevelop 1 no compiler will be invoked,
This lets you have "include" files !.Incl be listed with your source
files so that you can easily edit them using the "Edit source file"
command from the Main menu of GRiDDevelop.

If you have programs that have many source files, this token lets
you categorize a collection of source files as a "group". Then, by
selecting the "Change source groups" item on the GRiDDevelop
Commands menu or by pressing CODE-6, you can specify which group(s)
of files should be displayed for editing, compiling, and so on (see
also the :Groups: token). You can specify as many of the :Sources:
tokens as required in each Develop data file. The following example
illustrates the use of the multiple :Sources: tokens:

:Sources Samplel:
Fil.el.Pas
File2.Plm
File3.Asm

:Sources Samp1e2:
File4.Pas
File5,Plm
File6.Asm

:Sources Sample3:
File7.Pas
File8.Plm
File9.Asm

GRiDDevelop 2-13

2-14

Now, if you select "Change source groups" from the Main menu, the
form shown in Figure 2-4 is displayed:

Figure 2-4. The Change Source Groups Form

With all three groups set to "Yes" on this form, you would get a
display similar to the screen shown in Figure 2-5 if you select
"Compile" or "Edit source file" from the Main menu.

File 1 . Pas. . l!.;aN,;,;o""""" ____________ ~~......il

Fi l e2 . Pas o
File3.Pas No
File4.Ftn No
Fi le5. Ft.n. t-k,
Fi le6. Ftn. t·ki
File 7 . PLl'l . . . No
Fi l e8 . PLM No
File9.ASM No

Figure 2~5. The Compile Form with All Groups Enabled

If you enable only groups 1 and 3 via the Change Source Groups form,
the Compile form would be as shown in Figure 2-6,

Fi led. Pas
Fi l e2 . Pas rm
Fi le3. Pas
File?. PU1
Fi le8. PLM ..
Fi le9. ASM

Figure 2-6. The Compile Form with Groups 1 and 3 Enabled

Program Development Guide

Each GRiDDevelop data file can specify one or more Test tokens.
Following the Test token, you can specify any number of command
lines, each of which must be ended with RETURN. The following is an
example of the use of the Test token:

:Test:
GRiDPlan SampleData

Now, when you select Test from the Main menu, GRiDPlan would be
invoked along with the file SampleData.

If more than one test command is needed, then multiple test tokens
can be defined. The text that follows the keyword Test within the
colons is displayed on the Test form. You can then select which of
the test sequences is to be initiated. You can specify as many of
these tokens as required in each development data file, The
following example illustrates the use of multiple Test tokens:

:Test GRiDPlan:
GRiDPlan SampleData

:Test GRiDPlot:
GRiDPiot PlotTestData

Now, when you select Test from the Main menu, the Test menu shown
below will be displayed:

You can then initiatt the desired sequence by selecting it from the
Test menu.

USER-DEFINED TOKENS

You can define your own GRiDDevelop tokens which can have any number
of command lines associated with them. The tokens you define are
placed as items on the GRiDDevelop commands menu. For example, if
you have the following token in a development data file,

: GRi DM,rnager:
GRiDManager

the Commands menu displayed when you press CODE-? would be as shown

GRiDDevelop 2-15

in Figure 2-7,.

G1-01 .. 1ps
Options
Ouit.
Tt- -=in:sfet­
Us.:1ge
C.::ilculat.e
Cancel

C:OOE-G
CODE--0
CODE-0
CODE-T
CODE·-U
CODE--,=
CODE-ESC

Chan9,;, sout-ce gn::,ups
Set development characteristic
E>dt
Exchange, print files
She~ memory usage
Hex and decimal calculator
E::dt

Figure 2-7. The Commands Menu with User-Defined Tokens

NoN, you can invoke GRiDHanager by selecting it from the Commands
menu.

Command Modifier Characters

GRiDDevelop recognizes two characters that can modify the execution
of command sequences that follow such tokens as Debug, Link and
Enter,

If the first character in a command line is a question mark (?) 1

then after the command is executed the system will pause and not
proceed until you press a key on the keyboard.

If the first character in ci. command line is a semicolon(;), then
the command that follows the semicolon is simply ignored.

THE GRiDDEVELOP COMMANDS MENU

The Commands menu appears Nhen you press CODE-? and displays the
items shown in Figure 2-7. (Remember, the first item in this
figure, GRiDNanager 1 is the user-defined token we used as an
example. l Many of the items on the Commands menu are generally
self-expJanetory and should be familiar to you from other GRiD
applications. The Command Line Interpreter I CODE-Cl I Change source
groups 1CODE-Gi, Options (CODE-0) 1 Transfer (CODE-T) 1 and Calcuht.e
(CODE-=) commands, however, deserve some additional discussion.

THE GRiDDEVELOP COMMAND LINE INTERPRETER (CODE-C)

GRiDDevelop provides a command line interpreter (CLII that can be
invoked either from the Commands menu or by pressing CODE-C. When

the CL{ is invoked, it displays a field at the bottom of the screen
that Jets you enter text to be interpreted by the CLI. The text
entered into this field is interpreted as though it was a command to
the Development Executive, Refer to Appendix A for a disc~ssion of
the Development Executive program and to Appendix C for a
description of the programs tht can be invoked via the command line.

Results of the action initiated via the CLI are displayed above the
CLI field. You temporarily halt scrolling of large amounds of data
resulting from a command (for example, a CAT or DUMP) by pressing
CTRL-S, Press CTRL-S a second time to resume scrolling of the
display.

You can redisplay the immediately preceding command while in CLI
mode by pressing CODE-D. To leave the CLI field and return to the
GRiDDevelop Main menu, press ESC.

THE GRiDDEVELOP HEX AND DECIMAL CALCULATOR (CODE-•l

GRiDDevelop provides a hex and decimal calculator that can be
invoked either by selecting it from the Commands menu or by pfessing
CODE-=. When the calculator is invoked, it displays a field at the
bottom of the screen that lets you enter numberic data. The
operations handled by the calculator are essentially the same as
those defined as functions in GRiDPlan. Refer to the GRiD
Management Tools reference manual for details. Any number that has
a trailing "h" or "H" (for example, leh or 2FFhl is interpreted as a
hexadecimal number.

You can redisplay the iAmediately preceding calculator entry by
pressing CODE-D. To leave the calculator field and return to the
6RiDDevelop Hain menu, press ESC.

THE CHANGE SOURCE GROUPS COMMAND lCODE-Gl

This command can be invoked either from the Commands menu or by
pressing CODE-G and 1ets you specify which group or groups of source
file names are to be displayed for selection. Refer to the
:Sources: token description earlier in this chapter for delails.

THE OPTIONS COMMAND

The Options command currently lets you specify only one option:
whether to halt on errors. If you issue this command by selecting
it from the Commands menu or by pressing CODE-T, the form show below
is displayed:

GRiDDevelop 2-17

If you specify "Yes" on this form, an error encountered while
compiling will return you to the GRiDDevelop main menu after the
module that produced the error has been compiled. This prevents
compilation of subsequent modules that you may have specified via
the Compile form. Only compile errori will cause a halt; compiler
warnings do not prevent continuation,

If you specify "No" on thi:::- fot-m, errors ,encountet-ed during
compilations are ignored and compilation of any other selected
modules will proceed. Note that if you have selected files to be
both compiled and then linked, the linkage will not be performed if
any compile errors are encountered regardless of the setting of the
Options form,

THE TRANSFER MENU

2-18

Figure 2-8 shows the items on the GRiDDevelop Transfer menu, which
appears when you select the Transfer item from the Commands menu or
when you press CODE-T .

. ~ ,.,..·,-a =•' rn •

~~om,1,[! l _£ . .:::~ 1 0 E:., t.W,:-:: _q
-E::-(c""f,an,:::,e few anofhar·· fl re
Read this develop file
E:,-,:.=1mine lo,:::, f·i le
Er- .::1se -~J f i h,:
Show characteristics of a file
Retrieve any file
Edit. .:;,n1:::1 fi 1 e
F'r-in-1::- -:::1n•::;1 file
Print list file(s)
Print sc~rce file(s)

Figure 2-8. The GRiDDevelop Transfer Menu

The second, fifth, and sixth items on this menu ("Exchange far
another file", "Erase a file", and "Show characteristics of a file")
operate just as they do in other GRiD applications. They simply
bring up a File form that you fill out specifying the file(sl to be
acted on. The "Edit any file" and "Print any file" items also bring

Program Development Guide

up the standard File farm to let you select files for editing with
GRiDWrite or printing.

The first item ("Change this development file"), the third and
fourth items ("Read this develop file" and "Examine log file"), the
seventh item (Retrieve any file" and the last two items ("Print list
file!sl" and "Print source filelsl"l operate somewhat differently
than in standard GRiD applications and are described in the
paragraphs that follow,

Changing the Develop Data File

The first item on the Transfer menu, "Change this develop file"i
lets you edit the contents of the develop data file currently being
used to drive the activities of GRiDDevelop. When you select this
item, GRiDWrite is automatically invoked and the current development
data is brought into memory. You can then edit the data to meet the
changing characteristics of the development process. When you quit
from this editing activity, you are returned to GRiDDevelop with the
new contents of the data file now driving GRiDDevelop.

Reading the Develop Data File

If you select the third item on the Transfer menu, "Read this
develop file", the contents of the current develop file are re-read
by GRiDDevelap to ensure that the activities of GRiDDevelop are
being directed by the most current version of the develop data file.
This item is handy if you have been using GRiDWrite to edit a text
file and have exchanged a standared GRiDWrite text file for a
Develop data file, You would then select "Read this develop file"
to cause GRiDDevelop to update all of its internal parameters to
reflect the new contents of the develop file.

Examining the Log File

This item on the Transfer menu invokes either GRiDFile or GRiDWrite
to let you inspect the contents of the file designated as the "Log
file". Refer to the discussion of the Log File token earlier in
this chapter for additional details.

Retrieving any file

This item -0n the Transfer menu lets you select another file for
execution and allows a subsequent return to GRiDDevelop when the
selected file has been exited, Thus, for example, if you select a
Y!Orksheet file wh,en the "F:etrieve any file" message and File form
are presented, GRiDPlan will be loaded into memory along with the
specified worksheet file. When you subsequently quit or escape from

GRiDDevelop 2-19

GRiDPlan, you are returned to GRiDDevelop's main menu.

Printing list and Source Files

2-20

The last two items on the Transfer menu 1 "Print list filelsl" and
"Print source file(s)", let you select one or more of your
list/source file!:':. for pdnting, For e,iample 1 if you select "Print
source filelsl" from the Transfer menu, the form shown in ~igure 2-9
i::- di::.played,

Fi il:':1. F'as ..
File2 P-:1s
Fi 1 e3. F'.3:::- .. .
Fi l,;,;A. Ft.n.
Fi 1,25. Ft.n
Fi le6. Ftn ..
Fi 1 ,::_.'? . F'LM . .
Fi le:3. PLM
Fi le9. h:3M ..

Figure 2-9, The Print Source File(::.) Form

This form displays all of source files in the currently enabled
groups (see the :Sources: token for a discussion of groups} and lets
you indicate which files or files are to be printed, When you
confirm this form, the indicated files will be printed. For
example, confirming the form shown in Figure 2-10 will cause source
File2 and File3 to be printed to your locally attached printer, and
File? and File8 to be printed to the remote printer specified by the
:Print to: token. If no :Print to: token has been specified, then
the "Remote" choice will not be displayed.

Filel.F'-as ..
F:ile?.Pa:s ..
Fi le3. F'-::1s .. .
File7.FUi
Fi le!::! .F'LM
Fi le9. Af;M. i

l·k,
Local
Loc::il
F.:emote
F.:.~r,1ot.e

Figure 2-10. Printing Selected Source Files

The "Print list filelsl" form works in e~actly the same way as
illustr21.ted for "Print source file(s)",

Program Development Guide

CHAPTER 3. COMPILERS, LIBRARIES, AND INCLUDE FILES

This chapter describes the compilation procedures to follow to obtain an
object file from a program's source file, and discusses the include files that
you may need for your programs and library files that are available during
linking.

COMPILING PROGRAMS

The compilers for Pascal-86 1 PL/M-86, FORTRAN-86 and Assembler-86
are described in the following Intel language reference manuals:

PASCAL-86 User's Guide
FORTRAN-86 User's Guide
PL/M-86 User's Guide
Assembler-86 User's Guide

The descriptions of the compilers in these manuals are comprehensive
but there are several considerations to observe when using them on
the GRiD Compass system. These special considerations are discussed
in the paragraphs that follow.

Compiler Size Controls

Most of the compilers provide size controls - LARGE, COMPACT,
MEDIUM, SMALL. You must use either the compiler's COMPACT or LARGE
control. If either a program or a block of data used with the
program are larger than 64K, you must use the LARGE control;
otherwise use the COMPACT control since this will result in smaller

Compilers, libraries and Include Files 3-1

LIBARIES

programs.

Since LARGE is the default for the Pascal-86 compiler, you must
specifically specify COMPACT if that is what you desire. The
default for the Pl/M-86 compiler is SMALL; therefore you must
explicity specify either the COMPACT or LARGE control when compiling
PL/M programs. With FORTRAN-86i the only choice is the LARGE case:
therefore, FORTRAN programs must be compiled with this control.

When you purchase a language, each of the compilers is provided on a
diskette under the subject "Programs". Other files associated with
each language are provided on the same diskette as the compiler and
are listed in the paragraphs that follow.

NOTE: the language diskettes also contain language-specific include
files under the subject Ines. These files will be discussed at the
end of this chapter.

Pascal-86 libraries and Modules

The file named Pascal~Run~ is under the Programs subject and
contains the Pascal-86 compiler. The remaining files are under the
libs subject and contain the run-time support libraries and modules.

p86rn0~lib~
p86rn1¾lib~
p86rn2~Lib~
p86rn3~lib~
rtnull~lib~
Dqlarge~Lnk~

-- the compiler

Libraries that must be linked with
the Pascal object module if you
use any of the Pascal 1/0 calls.

If you use the input/output routines provided by GRiD-0S and the
Common Code, then you should not use the Pascal I/0 procedures READ,
READLN, WRITE, and WRITELN, and you need not link in the Pascal run
time libraries listed above. Instead 1 you need only link in the
6RiD-supplied library file "LargeSystemCalls~libs~" or
"CompactSystemCalls~Libs~ (depending on whether you are using the
LARGE or COMPACT size control when compiling).

NOTE: If you do not link in the Pascal runtime libraries then you
must not make any calls to Pascal 1/0 statements. Also 1 in the
PROGRAM declaration at the beginning of a Pascal program 1 do not
specify the module as "Input, Output" nor any other file names or
you will get link errors.

3-2 Program Development Guide

FORTRAN-86 Librari~s ~nd Module~

The file named Fortran~Run~ is under the "Programs" subject and
contains the FORTRAN-86 compiler. The remaining files are under the
Libs subject and contain the run-time support libraries and modules.
Unlike Pascal I Nhen using Fortran you must always link in all of the
Fortran run-time libraries listed below.

f86rnO~Lib~
f86rn1~Lib~
f86rn2~Lib~
f8brn3~Lib~
f86rn4~Lib~
Dqlarge~lnk~

-- Fortran compiler

Run-time Libraries

PL/M-86 Libraries and Modules

The file named plm~Run~ is under the Programs subject and contains
the Pl/M-86 compiler. The other file contains the run-time support
libraries and is under the subject Libs.

plm~Run~
plm~Lib
Dqlarge~Lnk~

8087 Libraries and Modules

These files contain the run-time support libraries and modules
required by the 8087 Numeric Data Processor and must be included if
the program being compiled uses the 8087 and if you do not link in
the GRiD-supplied library CompactSystemCalls or largeSystemCalls. To
determine if your program uses the 8087, refer to the appropriate
Intel language manual. If you are not certain, try linking without
these libraries. If you get unresolved symbols, then then go ahead
and link in the 8087 libraries one at a time.

8087~Lib~
87null~lib~
cel87~Lib~
dcon87~Lib
eh87~Lib~

INVOKING THE COMPILERS

The compilers can be invoked automatically from GRiDDevelop if you
append the appropriate language identification suffix to the source
file name 1 .. Pas, .Pl ■, .Ftn .. Asm). (See Chapter 2 for details.)
GRiDDevelop also lets you specify any compiler controls you require

Compilers, Libraries and Include Files 3-3

via the GRiDDevelop data file described in Chapter 2.

If you do not use GRiDDevelop 1 you can invoke the compilers from a
command line lsee Appendix A) by simply entering the compiler's
name, for example plm or pascal, followed by the source program name
and any compiler controls. (Refer to the appropriate Intel language
manual for a description of compiler controls usage.) For example:

plm MyProgram.Plm~Text~ LARGE DEBUG

pascal MyProgram.Pas~Text~ NOLIST

fortran Myprogram.Ftn~Text~ XREF

THE SYSTEM AND LANGUAGE INCLUDE FILES

The language compilers provide an INCLUDE control that let you
include other source modules for compilation with your program.
(Refer to the appropriate Intel language manual for a description of
INCLUDE). The include files provided by GRiD are simply a text
insertion mechanism: they let you use the declaratinns of
GRiD-developed procedures and functions within your programs without
having to laboriously type all of them into your source file.

There are several files that must be included during compilation of
your source programs if the program makes any direct, explicit calls
to the GRiD-0S. As you develop your own programs you will probably
develop your own groups of include files.

Two sets of include files are currently provided on the language
diskettes under the subject Ines: one for Pascal programs and one
for PL/M programs.

Pascal Include Files

Common.Inc~Text~
OsPasTypes.inc~Text~
OsPasProcs.inc~Text~

PL/M Include Files

PLMLits.inc~Text~
OsPlmTypes.inc~Text~
OsPlmProcs.inc~Text~

ConPlm.inc~text~

The Common. Inc~Text~ and PLNlits.inc~text~ files contain some
standard declarations used in the Pascal-86 and PL/M-86 languages
and should always be included. The OsPasTypes.inc~Text~ and
OsPlmTypes.inc~Text~ files contain declarations of data types needed
if explicit GRiD-0S calls are made. The OsPasProcs.inc~Text~ and
OsPlmProcs.inc~Text~ files contain the definitions of functions and
procedures comprising the GRiD-OS calls. The include files above
should be included in the order in which we have listed them to
avoid undefined symbol errors.

3-4 Program Development Guide

Many more include files are used to define the functions and
procedures available in Common Code. Refer to the Common Code
Reference manual for information on oth~r available include files.

Examples of Include Control Statements

The following examples illustrate the format of typical INCLUDE
controls for the compilers as they would be stated within your
~rext~ source file.

NOTE: The dollar sign (SI must be in column 1 of your source file ta
be recognized by the compilers.

Pascal-86 Example:

$INCLUDE l'w'incs'Cammon.Inc~Text~I
$INCLUDE ('w'incs'ConPas.lnc~Text~)
SINCLUDE l'w'incs'OsPasTypes.Inc~Text~I
SINCLUDE ('w'incs'OsPasProcs.Inc~Text~l

PL/H-86 Example:

$INCLUDE ('w'incs'Plmlits.Inc~Text~l
SINCLUDE l'w'incs'ConPlm.lnc~Text~l
SINCLUDE l'w'incs'OsPlmTypes.Inc~Text~I
$INCLUDE i'w'incs'OsPlmProcs.Inc~Text~l

Compilers, Libraries and Include Files

CHAPTER 4. THE LINK PROGRAM

The Link program combines relocatable object modules produced by the language
compilers and resolves references between independently compiled modules. The
input to the Link program is a list of files and optional controls; the output
is a single object file and (optionally) a print file.

The Link program is thoroughly described in the Intel manual "iAPX 86,BB
Family Utilities User's Guide" which is supplied with development systems.
Refer to this manual for a complete description of link including descriptions
of some potentially useful controls that are not covered in this chapter.
This manual also describes the Librarian llibl and CREF (cross-reference
listing generator) programs that are supplied with development systems.

INVOKING THE LINK PROGRAM

The general syntax of a link invocation is

LINK inputlist TO outputFile~Run~ BIND SSISTACK(+nnnnll
{controls}

Where:

inputlist

outputFile

contains the filenames of object modules
and libraries.

the filename that is to receive the linked
output module that the Link program
produces.

The Link Program 4-1

BIND

SS(STACKl+nnnnll

controls

is a control that must always be specified
in the final ,link of a program to obtain a
load time locatable module.

is a control that must be specified to
obtain a sufiiciently large stack Segment
Size 15S) for program execution.

are the optional controls (summarized in
Table 4-1} that modify the standard
operation of the Link program.

Each pathname in the inputlist is separated from the preceding file
name by a comma and the last pathname in the list is separated from
TO by a space. For example:

LINK 'w'MySystem'MyFilel~Obj~, 'w'MySystem'MyFile2~0bj 1

~·w'Libs'CompactSystemCalls~Lib~ TO 'w'MvSystem'NewFile~Run~
BIND SS(STACKl+1500>l

The pathname of the output file is separated from TO by a space, and
any controls you specify are separated from each other by a space.

LINK INVOKATION EXAMPLES

The following example takes the Pascal object module named
MyFile.Pas~Obj~, links it together with several of the Pascal and
8087 library modules located under the subject 'w'libs and produces
a linked and bound output module named MyFile~Run~.

LINK MyFile.Pas~Obj~, 'w'libs'P86RNO~Lib~, 'w'libs'P86RNl~Lib~,
'w'libs'P86RN2~Lib~, 'w'libs'P86RN3~Lib~, 'w'libs'CEL87~Lib~,
'w'libs'EH87¾Lib~, 'w'libs'8087~Lib~, 'w'libs'DCON87~Lib~,
'w'libs'Dqlarge~Lnk~ TO MyFile~Run~ BIND SSISTACK(+1500)1
PC I PURGE>

NOTE: You can put this link invocation sequence into a GRiDDevelop
data file and then initiate the link operation from the GRiDDevelop
menu. See Chapter 2 for examples. If you do not use GRiDDevelop,
you can create a command (~Com~) file and then initiate the link
with the Do program. See Appendix A for examples of command files.

If you do not use any Pascal input/output procedure5 then you need
not link in Pascal run-time libraries CP86RNO-P86RN3l nor the
'w'libs'Dqlarge~Lnk~ file: instead, simply link in the file
'w'Libs'CompactSystemCalls~Lib~ or 'w'Libs'LargeSystemCalls~Lib~ to
obtain the GRiD 1/0 procedures. In this case, the link invocation
sequence would be:

4-2 Program Development Guide

'w'libs'8087~Lib~, 'w'libs'DCONB7~Lib~,
'w'libs'CompactSystemCalls~Lib~ TO MyFile~Run~ BIND
SSISTACKl+150011 PC(PURGEI

The following example shows the link commands for a FORTRAN program:

LINK MyFile.Ftn~Obj~, 'w'libs'F86RNO~Lib~, 'w'libs'F86RNl~lib~,
'w'Jibs'F86RN2~Lib~, 'w'libs'FB6RN3~lib~, 'w'libs'F86RN4~Lib~,
'w'libs'CELB7~Lib~, 'w'libs'EH87~Lib~, 'w'libs'8087~Lib~,
'w'libs'DCONB7~Lib~, 'w'libs'Dqlarge~Lnk~ TO MyFile~Run~ BIND
SS!STACKl+l500ll PCIPURGEl

LINK PROGRAM CONTROLS SUMMARY

Table 4-1 summarizes the controls available with the Link program
that are described in this chapter and shows the default setting for
each·control.

Table 4-1. Summary of Link Controls

Control

ASSUHEROOTlpathNamel
BIND : NOBIND
FASTLOAD : NOFASTLOAD
MAP : NOMAP
NAME
OVERLAY : NOOVERLAY
PRINTlpathNamel l NOPRHH
PRINTCONTROLS1PURG£)
PURGE l NOPURGE
SEGSIZE ISTACK!+nnnnll

Abbrev,

AR
BI
Fl
MA

NA

NOBI
NOFL
NOMA

DV l NOOV
PR : NOPR

PC
PU I NOPU

ss

Dehult

NOBIND
NOFL

MAP

NOOVERLAV
PRINT

NOPURGE

The Link Program 4-3

ASSUMEROOT

Definition

BIND

Definition

Syntax

ASSUMEROOT(pathNameJ

Abbreviation

AR

Default

ASSUMEROOT is used only in conjunction with the OVERLAY control and
suppresses the inclusion of any library module(s) in an overlay if
those modules have already been included in the root file identified
by pathName. ASSUMEROOT causes the root file to be scanned, and all
external I undefined symbols in the overlay modules which have a
matching definition in the root file are marked "temporarily
resolved." This marking means that while a library search for the
symbols will not be made 1 their status remains externally undefined
until the overlays are linked with the root. See Appendix B for
examples of the use of ASSUMEROOT.

NOBIND

Syntax

BIND
NOBIND

Abbreviation

BI
NOBI

Default

NOBIND

BIND combines the input modules into a load-time-locatable module
that can then be loaded and executed. Since the default for this
control is NOBIND, you must always explicitly specify the BIND
control during the final link to obtain a module that can be loaded
and executed under GRiD-OS.

4-4 Program Development Guide

FASTLOAD NOFASTLOAD

Definition

MAP

Definition

Syntu

FASTLOAD
NOFASTUJAO

Abbreviation

FL
NOFL

Default

NOFASTLOAD

FASTLOAD reduces program loading time and also produces the most
compact object file. Loading time is reduced by concatenating data
records to a maximum length of 64K. The object file size is reduced
by removing such information as local symbols, public records,
comments, and type information (unless the object file contains
unresolved external symbols). To obtain an executable object file
of the smallest size, use the bath the FASTLOAD and PURGE link
controls.

The FASTLOAD control should not be used if you are going to be
debugging the program.

NOMAP

Syntax

MAP
NOMAP

Abbreviation

MA
NOMA

Default

MAP

HAP produces a link map and inserts it in the PRINT file c~MPl~)
that is generated by the Link program. (The PRINT file is described
at the end of this chapter.i The link map contains information
about the attributes of logical segments in the output module. This
includes size, class, alignment attributes and overlay name lif the
segment is a member of an overlay). If you specify NOMAP, the PRINT
file will not include a link map.

The Link Program 4-5

NAME

Definition

Syntax

NAME(moduleName)

Abbreviation

NA Module keeps
current name

NAME assigns the specified moduleName to the output module's header
record. If you do not use the NAME control, the output module will
have the name of the first module in the input list. Note that NAME
does not affect the output file's name; only the module name in the
output module's header record is changed.

The moduleName may be up to 40 characters long and may be composed
of any of the following characters in any order: question mark (?J 1

commercial at (@l, colon (:l, period L), underscor-e (_i,
A 1 B 1 C 1 ••• z, or 0 1 1,2, ... 9. Lower- case letters may be used, but they
are automatically converted to uppercase by the Link program.

OVERLAY NOOVERLAY

Definition

Syntax

OVERLAYCloverlayNameJ}
NOOVERLAY

Abbreviation

01)

NOOV

Default

NOO'·./ERLAY

OVERLAY specifies that all of the input modules shall be combined
into a single overlay module. If you specify the optional
overlayName argument, all segments contained within the overlay
module have that name in addition to their segment names and class
names. If no overlayName is specified, the Link program uses the
module name of the first module in the input list as the
overlayName.

You must link each overlay in a program separately before you link
all the overlays into a single object module. When linking root and
overlay files, the Link program assumes that the first file in the
invocation line is the root. When you call the operating system to
load the overlay, you must use the same overlay name that you
specified (overlayNamel with this OVERLAY control, See Appendix B
for a complete description of overlays.

4-6 Program Development Guide

PRINT

Definition

NOPRINT

Syntax

PRINT{(pathName)}
NOPRINT

Abbreviation

PR
NOPR

Default

PRINT<objectFile~MP1~l

PRINT lets you specify the pathname for the PRINT file created by
the Link program. (The PRINT file is described at the end of this
chapter.I If the PRINT control is not specilied or if the control
is given without the pathName argument, the print file will have the
same pathname as the object file output by the Link program except
the Kind extension will be ~MPl~ instead of ~RuN~. NOPRINT prevents
the Link program from creating any print file.

PRINTCONTROLS<PURGE>

Definition

Syntax

PRINTCONTROLS(PURGEJ

Abbreviation

PC<PU>

Default

PRINTCONTROLS(PURGE) removes all information about the debug or
public records from the print file <MP1) produced by the Link,
program and thus significantly reduces the size of that file.

The Link Program 4-7

PURGE

Definition

Syntax

PURGE
NOPURGE

Abbreviation

PU
NOPU

Default

NOPURGE

PURGE removes all of the debug or public records from the object
file and their information from the print file. If you specify both
the FASTLOAD and PURGE controls, you will obtain the most compact
output object file possible. The records that would be included by
NOPURGE and NOFASTLOAD are useful when debugging programs, but are
unnecessary for producing executable code.

SEGSIZE

Definition

Syntax

SEGSIZEISTACKl+nnnnll

Abbreviation

SS(STACKl+nnnnll

Default

SEGSIZEISTACKl+nnnn}l specifies the amount of additional memory
space needed for the stack segment. The compilers automatically
determine how much stack a program needs. If your program did not
call any common code or GRiD-0S routines directly and has no
re-entrant procedures, the compilers will generate the correct size
stack. However 1 if you do call common code or GRiD-0S routines,
they also use your stack and you must increase the size of the stack
accordingly. There are no hard and fast rules for the amount of
stack you will need. A good first approximation is +1500. If you
have a program which crashes in unexpected ways, the first thing you
should try is to increase the stack size further.

NOTE: If you omit the plus sign from the size specification, it is
treated as the absolute size of the stack segment and could cause
failure from an insufficient stack.

4-8 Program Development Guide

THE LINKER'S PRINT FILE

The Link program always creates a print file unless you spec1ty
NOPRINT. The optional pathName argument to the PRINT control
designates the name of the print file. The default name is the name
of the output object file but with a Kind extension of ~MPl~.

The print file may contain as many as five parts:

o A header (always present)
a A link map (unless NOMAP specified)
o A group map (always present)
o A symbol table !unless PURGE or PCIPURGE) specified)
o An error message list (always included when errors occur)

Most of the information contained in the print file is used for
diagnostic purposes when constructing such things as system loaders
and will be of little or no interest to most programmers. The only
parts of the print file that may be of general interest and use are
the unresolved symbols list which is part of the link map and the
error message list at the end of the print file.

The unresolved symbol list itemizes each external symbol whose
public definition was not encountered. The module that references
the unresolved symbol is also indicated. The printed message that
appears under the heading UNRESOLVED EXTERNAL NAMES is as follows:

symbolName IN pathName(moduleName)

Warning messages are listed consecutively as warning situations are
encountered. They may appear before or after the link map.

Errors always terminate processing - an error message will always be
the last line in the print file. For a discussion of the
interpretation of individual messages, re.fer to Appendix D.

The Link Program 4-9

CHAPTER 31 THE DEBUGGER

The debugger program (Debug) is a symbolic, interactive, multitasking debugger
for high-level languages. It lets you debug programs at the source level by
examining a program as it executes. Debug let! you:

o Set breakpoints in the program so you can check the progress of program
execution at any point. Vou can set breakpoints at a line number, at a
procedure beginning or end, upon return from a procedure, or at a memory
location. Timing breakpoints can also be set.

o Display/examine the contents of variables 1 memory locations, and registers.

o Change the contents of registers, memory locations, and variables.

o Dump the contents of memory in both hexadecimal and ASCII formats.

o Check the status of system multitasking operations by displaying
information concerning processes, semaphores, and messages,

o Set timing breakpoints.

o Alternate between two screens, one for the debuger and the one being used
by your program,

Some of the debugger commands are invoked by pressing CODE and one other key,
while others are invoked via a command line. The commands are listed in Table
5-1 and will be described in alphabetical order in the pages that follow. The
CODE-key commands are described first and then the command line commands,

The Debugger 5-1

ESC cancels coMnana entry.
C:Ol'll"l;;,n,j :S:!;mt.a11 ,
t.:-·~ narie:~
<nane> I <absNen>
-mane> = < e:q:,ress icw,:i­
<: absl"len::- =
< n.;:rne:, I < at,sf'ii:n> < ler,:,

Display a,jdress
Oi:s:pla!,! 1J.:11ue
Assign ualue
[11Jnp..-·,:tian9!li Ml\i!n•:it·y
[1unp < len> bytes

CODE KEY coor KEY
B set Bre.akpoint S
C: (: lear brea~~po :int T
D Duplicate preuious entry u
r get deuelopnentE~ecutiue u
F Fill nenory M
I display Info, options O
L display Local uariables 1
M display tasks Messages 2
o set/change Options 3
P Proceed Yith eHecution 4
a Quit tne aebugger 5
R display Register·s 1::sc

Table 5-1. Debugger Command Summary

COHP!LE AND LINK CONSIDERATIONS

display stack rraMe:s:
display Tasks, senaphores
1Jnassenb le
displa~ llet•sic,n nur,ber
t,:,99 le M in•:lOI.IS
st,c,1.1 pt·oced1Jn,~ inf"c,
set t. in ing range
clear tining range
st·1.:.1.1 t il'I ing ,· ..ir,ge;;
print tining results
reset tining results
cance 1 t.he det,ugget·

In order to view symbol names and line numbers, the program to be
debugged must be compiled with the $DEBUG option specified, and the
PURGE and FASTLOAD controls in the Link program must not be
specified (NOPURGE and NOFASTLOAD are the defaults for these
controls}.

INVOKING THE DEBUGGER

The Debug program can be invoked by issuing the following command
via the command line interpreter o~ the Development Executive
program (described in Appendix A):

DEBUG programName [parameters]

Note: You can also invoke the Debug program from SRiDDevelop.
See Chapter 2 for details.

The optional parameters are those that might be needed by the
program being debugged.

When it is invoked, the debugger creates a set of debugging files
IZZZDEBUG.MOD, ZZZDEBUG,PUB 1 ZZZDEBUG.SYM 1 ZZZDEBUG.TYP, and
ZZZDEBUS.WIN). These are information files used by the debug
program and require approximately the same amount of disk space as
the program module occupies.

5-2 Program Development Guide

After creating these files, the debugger displays its prompt
character, an asterisk C•I. You can now issue the debugger
commands.

DEBUGGER SYNTAX AND TERMINOLOGY

The following syntax conventions and abbreviations are used
throughout this chapter.

decimalConstant -- a number composed of the digits O through 9,

hexConstant -- a decimal digit 10-9) followed by any combination of
hex digits I0-9,A,B 1 C1 D1 E,Fl and ending with the character ~H".
For example, OFFEBh,

absMem -- an absolute me~ory address with the segment value followed
by a colon and ending with the offset value. For example,
0001h:OFFEh or IAX:#IP (see register notation below).

register -- the number or pounds character (I) followed by the
standard Intel symbol for 8086 registers. For example, iAX and
ISP.

number -- a decimal constant, hex constant, register reference, or
an equation compo5ed of these simple math operations (+,- 1 1 1 /l
and unary plus and minus, Note that equation operators are
evaluated from left to right -- there is no operator
precedence,

linel -- any number that has a corresponding statement number in the
source code listing.

varName -- the name of a variable in the program being debugged.

procName -- the name of a procedure in the program being debugged.

module -- the name of any module in the program being debugged.

If the varName, procName or linel you want to refer to is in the
current module being debugged 1 you need not precede the na~e with
the module name. If you want to refer to a name or line# in another
module, explicit module references can be made by preceding a
varName, procName, or linei with the module name and a colon !:),
For example:

NEWMOD:BESTPROC

References to a varName or procName that is in the public dofflain are
made by prefixing the name with a colon (:). For example:

The Debugger 5-3

:PUBPROC

CODE-KEY COMMANDS

Many of the debugger commands can be initiated by simply pressing
one of the standard keyboard keys while holding down the CODE key.
The paragraphs that follow describe these commands in alphabetical
order.

THE HELP !CODE-?) COMMAND

This command displays a brief summary of the debugger commands -­
both the CODE-key and command line commands, When you press CODE-?
you will get the display shown in Table 5-1 appears.

THE SET BREAKPOINT (CODE-B) COMMAND

This command lets you set breakpoints in your program so you can monitor
program execution. You can specify the breakpoints by line number,
absolute memory address, or by procedure name. You can also specify that
a break occur after the breakpoint has been reached a certain number of
times.

N~en you press CODE-B, the debugger prompts you with the following
message:

Set Breakpoint At: [previousBreakpoint]

If you have previously set breakpoints, the most recently established
breakpoint will be displayed after the prompt message. If this is the
first breakpoint that you are setting, t~e field following the prompt
message will be blank. If you want to set a new breakpoint, backspace to
erase the displayed previous breakpoint. You can then enter an absolute
memory address, line number, or procedure name and press CODE-RETURN.

If you enter a procedure name, you must specify whether the break should
be at the beginning or end of the procedure, or upon return from the
named procedure. Debug will will prompt you with:

Begin/End/Return: B

The supplied default choice is B lfor break at Beginning of procedure).
If you want one of the other choices, backspace and then enter E (for
break at End of procedure), or R (for break on Return from procedure).
Then press CODE-RETURN,

You will then be prompted "ith:

Break After Count:!

5-4 Program Development Guide

Note that the debugger 1upplies a default value of 11 indicating that the
break should be made the first time this breakpoint is encountered, If
you want some other value, simply backspace to erase the "1" and enter
the valu@ you want, Then press CODE-RETURN, The debugger will output
the following message:

Entered as Break Table Entry In

1he debugger maintains a table that defines the characteristics of each
breakpoint you specify, It sequentially numbers each breakpoint
(beginning with Ol as you specify them, You can examine this table using
the CODE-I command.

NOTE: A random breakpoint can be caused at any ti~e by pressing
CODE-SHIFT-ESC,

THE CLEAR BREAKPOINT <CODE-C) COMMAND

This command clears a breakpoint that you have previously set iusing the
CODE-B command), The number of the breakpoint is the number assigned to
it by the debugger when you set the breakpoint. (You can check this
number using CODE-I), If you enter an asterisk (¾) instead of a number,
all breakpoints will be cleared.

TIMING BREAKPOINT COMMANDS (CODE-! -- CODE-5)

These five commands let you set, clear and examine timing breakpoint~ to
determine such timing factors as the time spent within specified
procedures or line number ranges, The five timing breakpoint commands
are as follows:

CODE-1
CODE-2
CODE-3
CODE-4
CODE-5

set timing range
clear ti•ing range
show timing ranges
print timing results
reset timing results

When you press CODE-I, the debugger prompts you with the following
message:

Start ti~ing At: [previousBreakpointl

If you have previously set timing breakpoints, the most recently
established timing breakpoint will be displayed after the prompt message,
If this is the first timing breakpoint that you are setting, the field
following the prompt message will be blank. If you want to set a new
timing breakpoint, backspace to erase the displayed previous breakpoint.
You can then enter an absolute memory address, line number, or procedure
name and press CODE-RETURN,

The Debugger 5-5

If you enter a procedure name 1 you must specify whether the break should
be at the beginning or end of the procedure named procedure, Debug will
will prompt you ~ith1

Begin/End: B

The supplied default choice is B (for break at Beginning of procedure>.
If you want to break at the end of a procedure 1 enter E (for break at End
of procedure) Then press CODE-RETURN.

You will then be prompted with:

Stop timing At: [previousBreakpoint]

The syntax here is the same as for the "Start timing At:" dialog. Once
again, you can speciify that timing stop at either the beginning or end
of a procedure lthe default choice is "End". Then press CODE-RETURN.
The debugger will output the following message:

Entered as entry #n

The debugger maintains a table that defines the characteristics of each
timing breakpoint you specify, It sequentially numbers each breakpoint
(beginning with 1) as you ~pecify them. You can examine this table using
the CODE-3 command, Up to seven different timing breakpoints can be set.

The results obtained from the timing breakpoints can be displayed using
the CODE-4 command. The following example display shows the setting of
two timing breakpoints (using the CODE-1 command) and the format of the
display obtained using the CODE-4 command:

ii.

Start tiMing At: Qra~atabl8C8ll5
Beg ir..,.tn,:l , B
Stop tining At, eras@t .. :1t,1ecells
Beg iiV'E:n,j : E
li:ntere<Ci <1:S: entry :e 1

St-art. t. in ing At , dup l icat.et.at, ll!!ce l ls
!!leg in.•'End : fl
stop tining At, auplicatet~Dlaca11s
B.;,9 :i.r,~·~r,d , i;:

Entered as entry• 2
;,;
Brea~~ c,n ruu interrupt ,.,

ti % 11 :icro:,:::econ,:1s Tick::-

0 89 10214482 25536206
i -. ::, 403356 i00i3390
2 7 618>:.17$ 2047196

lo'
A

S~ .. :1r~.,.-51;.c,p

3,..-3
1-·•i
2 2

The leftmost column is the timing b,eakpoint number assigned by the
debugger when the breakpoints were specified. Note that number O, is

5-6 Program Development Guide

assigned by the system. The value for this timing range is calculated
beginning with the completion of the first user-specified timing range.
For example, the timer for "0" in the display shown above would be
started when the end of the EraseTableCells procedure was reached.
Thereafter, timer "O" runs whenever the system is operating outside of
ally user-specified timing range.

The timers for specified ranges run only when the program is operated
within the specified begin/end range. Each time the program re-enters a
specified timing range, the appropriate timer resumes. The right-hand
column of the CODE-4 display indicates the number of passes through the
start/stop point of each range and can be used to divide the time in
microseconds or ticks to obtain average duration of each timing range,

THE DUPLICATE LINE (CODE-D> COHHAND

This co~mand causes the last line of text entered via the keyboard to be
displayed again.

THE EXECUTIVE (CODE-E> CDMNAND

This command causes control to be passed to the DevelopmentExecutive
interface. The prompt character for this interface <->l will immediately
be displayed and you can then use any of the system utilities that are
described in Appendix C, To return to Debug from the Development
interface, press CODE-Q and then CODE-RETURN: the Debug prompt character
(*) will be displayed. The state of your debugging session will remain
unchanged.

THE FILL MEMORY (CODE-F) COMMAND

This command lets you fill a specified memory range with a particular bit
pattern. After pressing CODE-F you will be prompted for the starting
memory address, the number of bytes to be filled, and the pattern byte to
be used,

The Debugger 5-7

THE INFO (CODE-I) COMMAND

This command displays all the breakpoints set in the break table and also
displays the current configurations of the options and system memory
utilization as shown in the following example:

i Count Occur B/E Break Location
1 0 1 OOOOh:OFFFEh
2 2 3 : ReadHex: 185
3 1 5 B Main:Factorial:100
4 0 R :PutChar

Default Module Name: CurMod
Alternate Window: Y
Memory Avai 1 able (Bytes): nnnnnn
Memory Allocated (Bytes): nnnnnn

THE LOCATION DISPLAY ICODE=L> COMMAND

This command displays the current location within the program being
debugged. The format of the information displayed depends on the type of
data available to the debugger: it may consist of just a memory address,
or it may be a statement number, procedure name, variable name or some
combination of these.

This command displays the current messages (if any) of the current
(running) process, The list includes the sending process ID, the message
class, the note (if any) and the address for each message,

THE OPTIONS (CODE-Ol COMNAND

This command lets you change the default module name, specify whether the
debug dialog should be echoed to the printer, and change the alternate
window choice to disk (if additional memory space is needed), RAM (the
default choice that provides best performance), or none (debug and the
module being debugged share the same window),

THE PROCEED CCODE-PJ COMMAND

This command simply allows program execution to proceed or continue.
Execution will stop either when a breakpoint is reached, when
CDDE-SHIFT-ESC is pressed, or when the program completes execution. You
can also programmatically provide breaks by breaking on zero overflow,
out of range, and so on by using the appropriate compiler controls (such

5-B Program Development Guide

as CHECK on the Pascal-Sb compiler). NOTE: you cannot use CODE-P to
restart a program that has completed execution -- you must reinvoke the
debugger and start from the beginning since control normally returns to
the executive program at this point.

THE QUIT (CODE-Q) COMMAND

This command is used to exit from the debugger. Before the exit actually
occurs, you will be asked to confirm that you want to quit.

THE REGISTER DISPLAY !CODE-R> COMHAND

This command displays the contents of all the 8006 registers in the
following format:

AX BX ex DX BP SI DI
nnnnh nnnnh nnnnh nnnnh nnnnh nnnnh nnnnh

DS ES SS:SP CS: IP FLAGS ODITSZ AP C
nnnnh nnnnh nnnnh:nnnnh nnnnh:nnnnh nnnnh xxxxxx xx x

Following the "FLAGS" section at the end of the second line of the
registers display is the setting of the individual flags within the Flags
register. The upper line CODITSZ AP C) indicates the particular flag
(described below) and the line below indicates the state of each
individual flag. Thus, you do not have to decode the hexadecimal
representation of the Flags register to determine the setting of each
flag.

0 - Overflow
D - Direction !Forward/Reverse)
I - Interrupt (Enabled/Disabled)
T - Trap (Set/Cleared)
S - Sign (Positive/Negative)
Z - Zero (Zero/Non-zero}
A - Auxiliary carry
P - Parity (Odd/Even)
C - Carry

The Debugger 5-9

THE STACK TRACE (CODE-S) COMMAND

This command displays the contents of the stack as it is being utilized
by the program being debugged, The format of the display is shown in the
following example:

Stack Trace:

1: [552913AChJ TABLEWRITE:NRITETAB line 456

2: [5529!384hJ TABLEWRITE:WRITETABLETOFILE line 446

3: [55290A46hl TABLEMENUFORM:WRITETHISFILE line 777

4: [55290736h] TABLEMENUFORM:TRANSFERMENU line 600

5: [55290205h] TABLEHAIN:TABLEHAIN line 626

The output shown above indicates nesting five levels deep with the
topmost level being the TABLEMAIN procedure in the TABLEMAIN module. The
current procedure is WRITETAB at line number 456 in the TABLEWRITE
module. The numbers in brackets are the value of the CS:IP registers.

THE TASKS/SEMAPHORE DISPLAY (CODE-T> COMMAND

This command displays a list of all processes on the process queue and
all semaphores on the semaphore queue. The format of the display is
shown in the following example:

Proc ID State Pri Pid/Sem Timelmt #Msgs MemUsed
d 3561 semWait 1 3508 0 0 66:,6
d 3632 msgwait 1 65535 0 0 512
d 3685 ready 1 0 0 0 43856
d 3799 msgWait 3787 0 0 512

3787 running 128 0 0 (l 2896
d 3489 ready 200 3513 0 0 64
d 3549 l oadPkg 255 0 0 0 20576

SemaID Count Note Busy Creator
3527 0 (l 0 3685
3503 1 0 3578 3489
3501 0 0 65535 3489

If a line is preceded by the letter "d", it means that the process on
that line is a process that is being debugged, The ProcID column, gives
the process identification number assigned by GRiD-OS when the process

5-10 Program Development Guide

was created. The State column gives the current state of each process.
The possible states are the following: running, ready, message wait,
semaphore waitv timed wait, timed message wait, timed semaphore wait, or
a loaded package (such as common!. The Pri column gives the current
priority of each process. The Pid/Sem column lists either the process
being waited on (if in a message wait) or the semaphore being waited on
(if in a semaphore wait). The Timelmt column indicates the time
remaining to wait on a timed semaphore or timed message wait. The ffMsgs
column gives the number of messages on the message queue of each process.
The MemUsed column lists the bytes of memory used by each process.

The semaphore information is listed after the task information. The
SemaID is the identification number assigned to the semaphore by GRiD-OS,
The Count column lists the number of processes waiting for each
semaphore. The Note column gives the note (if any) that was included
with each semaphore. The Busy column lists the most recent process
waiting on each semaphore, The Creator column gives the identification
number of the process that created each semaphore.

THE UNASSEMBLE !CODE-U) COMMAND

This command disassembles specified sections of your source code and
displays an assembly language listing on the screen. If you press CODE-U
while the debuggers prompt character I•> is displayed but while there is
nothing entered on the command line, disassembly begins at the current
value of the CS:IP registers. You can cause disassembly to begin at a
particular memory address Dr line number by typing that address or number
on the command line and then pressing CODE-U instead of CODE-RETURN.
Disassembly continues to the end of the module or until you press ESC.
To temporarily halt scrolling of data, press CTRL-S. To resume display,
press CTRL-S a second time,

You can also disassembly a single procedure or function by typing the
procedure/function name on the command line and the pressing CODE-U. In
this case, disassembly stops when the end of the procedure is reached.

THE WINDOW TOGGLE (CODE-W) COMMAND

This command toggles or switches you back and forth between the debugger
window or screen and the application window.

COMMAND LINE COMMANDS

The commands described in the paragraphs that follow are initiated by
entering text via a command line in response to the prompt l•I character.
These commands let you display the addresses and contents of various
program locations, assign values to registers, memory locations and
program locations, and dump the contents of memory.

The Debugger 5-11

THE DISPLAY ADDRESS COMMAND

To display the address of a variable, procedure, line number or memory
location, type "@" followed by the varName, procName, line#, or absMem.
The debugger will display an equal sign (=) followed by the address in
the format "segment:offset". For example:

@189 = 07AFh:02A6h 11967:678)

Note that the address is displayed in both hex and decimal formats.

THE DISPLAY CONTENTS COMMAND

To display the contents of a variable or memory location, type the
varName or absMem location followed by CODE-RETURN. The debugger will
display an equal sign (=) followed by the value of the specified item.

Variables are displayed according to the format they were declared in.
For example, assume that you have declared a variable named ·a· as
follows:

a : ARRAY [1 .. 101 OF Char;

You could display all characters in the array by typing the variable name
(a) and pressing CODE-RETURN or you could display the fifth element in
the array by typing:

a(5J

NOTE: You can terminate the display of long variable structures by
pressing ESC.

Local variables can only be displayed if you have broken within the
procedure where the local variables are defined,

The contents of specified memory locations (absMem) are displayed as byte
values,

You can also display the contents of a variable at one memory location as
though it were of the type of another variable. The syntax for this is:

varNamel AS varName2

This would cause the contents of varNamel to be displayed using the type
associated with varName2.

5-12 Program Development Guide

THE ASSIGN VALUE COMMAND

To assign a value ta a variable or memory location, type varName or
absMem followed by an equal sign and the value to be assigned. The value
assigned will be echoed back and displayed, For example:

,q 935: 6 78=7Bh
Value Assigned= 123 17Bh 1 "[" 1 true)

Note that the value echoed back from a memory location is displayed in
decimal I hex, ASCII interpretation (if printable), and boolean value.

You can assign values to any simple
value you assign is larger than the
truncated to the appropriate size.
are assumed to be of type Byte.

THE LOAD REGISTER COMMAND

type variable except Reals. lf the
value type far varName 1 the value is
Values assigned to memory locations

To load a value into one of the 8086 regisers 1 type "I" followed by the
register name (AX 1 BX, IP, etc,) an equal sign and the value to be
assigned. The value assigned Nill be echoed back and displayed. For
example:

*AX=270Fh
Value Assigned= 9999 1270Fh)

Note that the value echoed back from a register is displayed in decimal
and hex,

THE MEMORY DUMP COMMAND

To display the contents of a section of memory, type the variable name,
procedure name, line number or memory address indicating the starting
location Nhere the dump is to begin. Then type one space and a number
lbyteCountl indicating the number of bytes to be dumped. The mefflory
contents will be displayed in tabular form with 8 values per line
beginning on the line following the request, If the last line is short,
it is filled out to a length of 8. The format of each line is starting
memory address (for that line) 1 8 hex values, 8 ASCII values. For
example:

*078fhi02a6h 20

Address = 078Fh:02A6h (1935:678)
02A6h 8Bh OEh E2h, OCh 49h CEh 8Bh 16h *llliill!I~l!lJI*

02AEh E4h OCh 42h CEh 89h 56h FAh 3Bh *•. B,, V,; *
02B7h 4Eh FAh 7Fh 3Bh 89h 4Eh F8h BBh *N,l!;.N.,*

The Debugger 5-13

Note that if a memory location contains a value that is not a valid,
displayable ASCII character, a period (,) is displayed in the ASCII field
of the dump display.

You can terminate the display of a large memory dump by pressing ESC.

THE EXAMINE/CHANGE MEMORY COMMAND

This command lets you sequentially examine bytes of memory and then
either change the contents of each location or leave the contents
unaltered. To initiate the display of memory contents, type the variable
name, procedure name, line number, or memory address indicating the
starting location Mhere the examination is to begin followed by an ~qual
sign I=), After you've typed the starting location, the equal sign, and
pressed CODE-RETURN, the memory address and current contents of that
address will be displayed in hex. You can then type in a new value to
replace the existing value or press CODE-RETURN to leave the existing
value unchanged. The debugger then displays the next sequential address
and its contents. This sequence continues until you enter a period I,)
or ESC to terminate the command, For example:

141=CODE-RETURN
07AFh:02A6h = 8Bh 7Bh CODE-RETURN
07AFh:02A7h = OEh CODE-RETURN
07AFh:02A8h = E2h CODE-RETURN
07AFh:02A9h = OCh FFh CODE-RETURN
07AFh:02AAh ; 7Bh CODE-RETURN

This sequence begins examining memory contents at line number 141 which
is at memory address 07AFh:02A6h. This starting location contains 8Bh
and the contents are then changed to 7Bh. The contents of the next two
locations are displayed and left unchanged. The contents of memory
location 07AFh:02A9h are changed from OCh to FFh and the command is then
terminated after the contents of the next location are displayed.

5-14 Program Development Guide

APPENDIX A, ALTERNATE DEVELOPMENT APPROACHES

Although the GRiDDevelop program described in Chapter 2 is powerful
and easy to use, there may be certain tasks or situations where you
prefer another approach. Or 1 perhaps your personal preference due
to past experience on development systems may lead you to seek a
different, more familiar approach. To meet these needs, several
other approaches are provided and have been used at GRiD prior to
the availability of GRiDDevelop.

Let's now look at alternatives to GRiDDevelop: the Development
Executive program and command ,~com~) files used with the Do
program.

Alternate Development Approaches A-1

USING THE DEVELOPMENT EXECUTIVE PROGRAM

The DevelopmentExecutive program is a command line interpreter that
lets you enter text strings to initiate commands. The system utility
programs (described in Appendix Cl comprise the commands that you
enter via the command line. NOTE: In this context, the compilers
and the linker program can also be considered as "utilities" and can
be invoked from the command line.

Yau get into the DevelopmentExecutive program by selecting it from
the File form. The DevelopmentExecutive interface displays an arrow
as its prompt symbol and the prompt symbol is accompanied by a
blinking triangle -- the system cursor. Figure A-1 shows the screen
displayed by the DevelopmentExecutive program.

Version 3_0.0 of CCOS
OeveloPMent Executive for CCOS
=► .

3fi. 4. 19
.....

i

Figure A-1. The DevelapmentExecutive Interface

Whenever the prompt symbol and the cursor are displayed, you can
enter text to specify the utility program that is to be run and any
parameters that the program requires. The cursor shows you where
the next character you type will appear an the screen. Yau can edit
the command line by moving the cursor using the leftArrow and
rightArrow keys and erasing entries or portions of entries with the
BACkSPACE key. You can retrieve the last command line entered by
pressing CODE-D.

i~' The command line is terminated and the command presented to the
system by pressing RETURN or CODE-RETURN. Thus, only a single
command at a time can be issued via the DevelapmentExecutive.
Therefore, in order to compile several modules, you have ta invoke
the compiler from the command line for each module after the
preceding module compilation had been completed. Then, you must

A-2 Program Development Guide

type in the lengthy linker invocation sequence from the command
line. If any errors are encountered along the way, you must repeat
the entire sequence, performing each step one at a time.
Fortunately, there is a way of simplifying this procedure while
using the DevelopmentExecutive. You can create command 1~com~1
files and initiate them via the command line interpreter or by
selecting them from the File form.

USING THE DO PROGRAM WITH COMMAND FILES

The Do program lets you execute a prearranged sequence of commands
contained in a special file -- a command file. The Do program reads
the commands from the file and presents them one at a time to the
command line interpreter of the DevelopmentExecutive as though you
were typing them in via the keyboard. A command file can contain a
single command, a command with a long list of parameters, or
multiple sequences of commands. Thus, command files save you time
and effort by letting you create 'canned', reusable command
sequences.

To create a command file, follow these steps:

1. Using GRiDWrite, create a file that has each command (and any
parameters) on its own line.

2. End each command line with a carriage return. Note: Be sure that
you put a carriage return in at the end of the last line.

~- Save the file specifying a Kind of ~com~.

To execute a command file from the DevelopmentExecutive, type the
command Do and follow it with the file's pathname. You don't have
to include the kind -- ~com~. The execution syntax is:

Do pathname

Let's look at an example which illustrates the power of command
files to simplify the program development process. Earlier in this
chapter 1 we gave examples of compiler invocations and a linker
invocation initiated from the DevelopmentExecutive command line.
The two compiler invocation commands and the linker invocation could
all be placed in a single command file that would look like this:

Pascal 'wO'MyPrograms'Shell.Pas~Text~
PLM wO'MyProgram'Formslnit.Plm~Text~
LINK 'wO'NyPrograms~Shell.Pas~Obj~,
'wO'MyPrograms'Formslnit.Plm~Obj~, 'wO'Libs'DataForms.Pas~Obj~,
·wO'Libs'largeException.Asm~Obj~,
'wO'libs'LargeSystemCalls~Lib~ TD 'wO'MyPrograms'Shell~Run~
BIND PURGE FASTLOAD PCIPURGEI MAP ss(stackl+l500ll

If this command file were named 'wO'MyProgram'CompileLink~Com~, you

Alternate Development Approaches A-3

could cause the entire sequence to be executed by issuing the
following command to the DevelopmentExecutjve:

Do 'wO'MyPrograms'Compilelink

First, the Pascal compiler would be invoked and the file
Shell.Pas~Text~ compiled. Next, the PLM compiler would be invoked
and the file Formslnit.Plm~Text~ compiled. Finally, the linker
would be invoked and all the indicated modules would be linked
together.

You can enter comments into a command file by placing each comment
on its own line and making the first character a semicolon (;l
character. The semicolon tells the Do program that the line is not
executable. This capability is handy for "commenting out" selected
parts of the command file. For instance, if the file
Formslnit.Plm~Text~ had not been changed since the last time it was
compiled, you could skip that command by inserting a semicolon in
front of it. The command file would then look like this~

Pascal 'wO'MyPrograms'Shell.Pas~Text~
;PLM 'wO'MyProgram'Formslnit.Plm~Text~
LINK 'wO'MyPrograms~Shell.Pas~Obj~,
'wO'MyPrograms'Formslnit.Plm~Obj~, 'wO'Libs'DataForms.Pas~Obj~.
'wO'Libs'largeException.Asm~Obj~,
'wO'Libs'LargeSystemsCalls~Lib~ TO 'wO'MvPrograms·shell~Run~
BIND PURGE FASTLOAD PC(PURGEl MAP ss(stack(+1500ll

As the Do program reads each command (or comment) from the file, it
displays the command on the screen. You can suppress the display of
commands by entering the command SNOLIST in the command file on its
own line. You can subsequently enable display of commands and
comments by entering the command SLIST in the command file.

EXECUTING COMMAND FILES FROM THE USER INTERFACE

Command files can be executed directly from the File form of the
user interface. This approach is also faster since you simply fill
in the File form and confirm -- you don't have to type in a text
string to initiate the command file. For example, to execute the
command file described earlier l'wo·MyPrograms'Compilelink~Com~l
from the user interface, just fill out the File form as shown in
Figure A-2.

A-4 Program Development Guide

[11;=;!.) i c,:::
::;1_-1b.ject.
Title
Vind
P.:1sc,:t,1.:,1-d

Har-d Disk
i'l'-IF't-o-::it-.3r,1s ,coMplleL1nk ____ _ -----.

Figure A-2. Executing a Command File from the File Form

You can also execute the command file from within an application
such as GRiDWrite using the Transfer form as shown in Figure A-3.

Dei...iici-:.:
::::;,Abject
Tit.le
Vind
P .,;sst,.101-d
t-1•:=::-,:t .3ct ion

H.::1n:f Disk
M1,.-1Pr-o-::ir·.3ms
~~ -rr:~c i nl-, - ,

1_:ortl -~~------

Get new file and its application

Figure A-3. Executing a Command File from the Transfer Form

Note that the next-to-last item on the Transfer form is "Next

Alternate Development Approaches A-5

action" and the initial choice is "Get new file and its
application". In this case, the file being retrieved is the
specified command file and "its application" is the program Do~Run
Command"'.

When you want to edit a command file using GRiDWrite, you cannot
directly retrieve the file with the File form since this would
automatically retrieve the Do program with the file instead of
GRiDWrite. Instead, you must already be in GRiDWrite and then must
choose "Get new file only" for the "Next action" item on the
Transfer menu. Figure A-4 shows the screen when issuing the
Transfer command from GRiDWrite to retrieve a command file.

Oe•._.1ice
s,_.bject
Tit.le
Kind
P.as:=:-t,mnj
1-ie;.,:t .3ct. ion

H.=1nj Disk
i'1•::1Pr-ogr-ams
c,:,r,1p i 1 eL ink
Cof'tl

Figure A-4. Retrieving a Command File from the GRiDWrite Transfer
Form

A-6 Program Development Guide

APPENDIX B. PROGRAM OVERLAYS

Overlavs let you design programs that use the minimum amount of RAM
(Random Access Memorvl and thus make the maximum amount of RAM space
available for data. This is accomplished by having only a part of a
program !the "root" module) present in memory at all times. You
bring other parts of the the program lthe overlays) into memory only
when they are needed to perform a particular activity. When an
overlay is not being used, it is stored on a mass storage device
!bubble memory 1 hard disk, or floppy disk). When an overlay is no
longer needed in memory, it can be unloaded from memory and another
overlav brought into the same, or overlapping memory space.

The penalties paid for this more efficient use of memory are reduced
speed (when an overlay module is needed, it must be read into memory
from the storage device) and slightly more complicated debugging and
linking procedures. If your application demands a greater amount of
memory for data and can tolerate the performance reductions inherent
with overlavs 1 you can utilize the overlay capabilities pro~ided by
GRiD OS and implemented using the Linker program. The purpose of
this appendix is to clarify the additional factors introduced into
program structure and linking operations by the use of overlays.

THE OSOVERLAY PROCEDURE

This GRiD-0S call loads a specified overlay program module into
memory. Only one level of overlays is allowed (a program that has
been brought into memory as an overlay cannot then issue an
OsOverlay call I. This routine can be called only from the root

Overlays B-1

(non-overlaid) module which must be present in memory at all times.
The format for the call is:

PROCEDURE OsOverlay !VAR name : ShortString:
pid : Word;

VAR error : Word);

Parameters

name -- a ShortString record containing the name of the
overlay. The overlay name is defined using the linker
overlay control (See chapter 4 for details).

pid -- the process ID of the overlay. Usually, this will be
the same as the pid returned by OsWhoAmI; that is, the
overlay is part of the same process that is issuing the
OsOverLay call.

error -- the number of anv error encountered while callin □ the
overlav.

This procedure call is straightforward and does not add much to the
complexity of a program. The only consideration vou must remember
is that you can use this call only from the root module.

WARNING: When an overlay module is loaded into memory, the previous
overlay·s code and data segments are overwritten. Therefore, you
cannot have any static variables in the data segment of an overlay:
they must be in the root module.

PASCAL OVERLAY EXAMPLE

Three Pascal program modules (SampleRoot, SampleOverlayi, and
Sample0verlay2l are shown below. During execution of SampleRoot,
each of the overlays is loaded into memory (using the OsOverlay
call) and then the procedures DoSampleOverlayl and DoSampleOverlay2
in the overlays are executed.

MODULE SampleRoot;

SINCLUDE I' 'Hard Disk'lncs'Common.Inc~Text~·
SINCLUDE (' 'Hard Disk' Incs'OsPasTypes.lnc~Text~·i
SINCLUDE I' 'Hard Disk'Incs'OsPasProcs.lnc~Text~'l
$INCLUDE I ''Hard Disk'Incs'StringTypes.Inc~Text¼'I
$INCLUDE (' 'Hard Disk'lncs'StringProcs.Inc~Text~·1

PUBLIC SampleOverlayl;
PROCEDURE DoSampleOverlayi;

PUBLIC Sample0verlay2;
PROCEDURE DoSampleOverlay2;

Program Development Guide

PROGRAM SampleRoot !INPUT 1 OUTPUT);

VAR error : WORD;
ovl1 1 ovl2 : stringptr;

FUNCTION LoadMyOverlay lovl: StringPtrl
BEGIN

BOOLEAN;

ovlA.dummy := ovlA.len;
0 s Over l a y (o v l •• •. dummy , 0 SW ho Am I I error) ;
LoadMyOverlay := (error = okCode);

HlD,

BEG 1 t✓
WRITELNI 'I am the root');
ovi1 := MewStringlit ('Sample0verlay111!1');
IF LoadMyOver 1 ay (ovl 1) THEN DoSampl eOver lay 1;
ovl2 := NewStringLit ('Samp1e0veday21'i;
IF LoadMyOverlay lovl21 THEN DoSample0verlay2;
OsEx it iet~ror I;

rnn.

**** This is SampleOverlayl -- A Separate Module***********

MODULE SampleOverlayl;

PUBLIC Sample0verlay1;
PROCEDURE DoSampleOverlayl;

PRIVATE Sample0verlay1;

PROCEDURE DoSampleOverlay1;
BEGIN

~JRITEUl('I am ovet-lay i'l;
END;

**** This is Sample0verlay2 -- A Separate Module***********

MODULE s~mple0verlay2;

PUBLIC Sample □ verlay2;

PROCEDURE DoSampleOverlay2;

PRIVATE Sample0verlay2;

PROCEDURE DoSample0verlay2;
BEGIN

WRITELNI 'I am overlay 2'l;
END:

Overlays B-3

U NK I NG OVERLAYS

When you use overlays, you must individually link the root module
and each of the overlay modules and then link all of them together
to resolve the symbols between the root and overlays.

For example: the following sequence from a GRiDDevelop data file
first links the module SampleRoot.Pas~Obj~ with several libraries
needed by the program, next links two overlav module files
(SampleOverlayl.Pas~Obj~ and Sample0verlay2.Pas~Obj~I, and finally
links the root module with the two overlay modules.

:Link: LINK SampleRoot.Pas"Obj"', "Hard Disk' 'libs'p86rn0''lib'·,
"Hard Disk"Libs'p86rrd'•lib\ "Hard Disk"libs'p86rn2"'lib"', "Hard
Disk··'Libs·p86rn3'"lib"', ···Hard Disk''Libs.8087"lib"', ''Hard
Disk' 'Libs' LargeSystemCall s"'Li b" 1 "Hard Disk. 'Libs' Dqlarge··lnk'• TO
Samp l eRoot"Lr,k"' OVERLAY IROOTi NOPRINT

LINK SampleOverlay!.Pas··obj'\ "Hard Disk' .Libs'p86rn(J''lib", "Hard
Disk' 'Libs p8brnl"'lib"', "Hard Disk· 'Libs'p86rn2'.lib'·, • ·Hard
Disk' 'Libs p86rn3"1ib"', ''Hard Disk' 'Libs'BOB7"'Lib"• TO
SarnpleOverlayl~Lnk"' OVERLAYISampleDverlayll
ASSUMEROOT (SampleRoot "'L;;k'') NOPRINT

LHW Sample0verlay2.Pas'•Obj'•, "Hard Disk' 'Libs'p86rn(r"lib'·, "Hard
Disk' 'Libs'p86rnl·"lib'•, "Hard Disk' 'Libs'p86rn2"lib'•, ''Hard
Disk· 'Libs'p86rn3~·1ib"', ''Hard Disk' 'Libs'BOBT"Lib'• TO
Sample0verlay2"'Lnk" OVERLAY(Sample0verlay2)
ASSUMEROOT (Sa1npl eRoot~Lnk"') NOPRIMT

LINK SampleRoot"'Lnk"', SampleDverlayl"Lnk"', Sample0verlay2~Lnk"' TO
SampleRoot"Run'" BIND SS \STACK !+1500)) PC iPURGEl

The key statements in the link commands in this example are as
f O 11 Diel S:

* When linking the root module, you must specifv that the resultant
output file be designated with the control OVERLAY(ROOTI. This
tells the linker program that this module is a root module.

* The output files for the two overlay modules must be specified
with the controls OVERLAVloverlayNamel and ASSUMEROOT(rootNamel
to tell the linker orooram both the name cf each overlay and name
of the root module to which each will be linked.

* The last link invocation in the command file, must first name the
root module, then the overlay modules, and finally the executable
output file. The output file consists of the three modules

B-4 Program Development Guide

(SampleRaot, Overlayl and Overlay2l bound and linked together.
Note: the BIND, PURGE, FASTLOAD and StackSegment (SSl controls
should onlv be used in this last link statement.

ADDITIONAL OVERLAY CONSIDERATIONS

To obtain most efficient performance with overlays, your root
program should keep track of which overlay is currently in
memory. If you do not do this, an overlay that is already in
memorv might be called and needlessly reloaded.

The ASSUMEROOT control, can reduce the amount of time needed to
link and can also produce smaller resultant output files.

When you're debugging a program with overlays, you can set
breakpoints in the overlays but the breakpoints must be set only
after the overlay is loaded and the breakpoints must be cleared
before the overlay is removed.

FORTRAN OVERLAY EXAMPLE

This section shows a FORTRAN program that uses OsOverlay to call
two overlav subroutines.

**** This is the Root Module***********
F'ro □ ram Bench

lnteger•2 ivar I ner
Inteoer*2 OSWHOAMI
Integer*l INAME (6)

DATA INAMEl /4 1 83 1 85 1 66,49!32/
DATA INAME2 /4,83 1 85 1 66 1 50 1 32/

1 var - oswhoami ()
call osoverlay(INAME1 1 i: 1JALiivar) ,ner)
if(ner .eq. 0) call sub1
call osoverlay(INAME2 1 %VAL.(ivari 1 neri
if(ner .eq. Oi call sub2
STOP
END

**** This is the Overlay! Module -- A Separate Module***********

subroutine sub1
character•1 bigl10000i
big(il = ·a,
big(10000) = z

Overlays B-5

writel6,1,IOSTAT=IOS,ERR=l00) big(11 1 bigllOOOOI
format(' big start and stop sub1',a1,2;: 1 ed)
,-eturn
WF:ITE/6,1051 IDS
FORMATl'I/0 STATUS= ' 1 161
RETURN
end

**** This is the Overlav2 Module -- A Separate Module***********

subroutine sub2
character*1 big(lOOOOI
biglll = 'a
big\10000) = ·z
write(6 1 1 1 IOSTAT=IOS,ERR=100l bigl1} 1 biglJOOOOl
fo,-mat(' big star-t and stop sub2',,31,2>: 1 Edi
return
li-JRITE(6 1 105i IDS
FORMAT('I/0 STATUS= ',161
RETURN
end

The following sequence from a GRiDDevelop data file first links
the module Bench.ftn~Obj~ with sever-al libraries needed by the
program, next links two overlay module files (Sub1.ftn~Obj~ and
Sub2.ftn~Obj~) 1 and finally links the root module with the two
overlay modules.

The link commands for these FORTRAN overlav modules would be as
follows:

Link Bench.ftn"'obj"' 1 ''Hard Disk' 'Libs'F86RNO~lIB", ''Hard
Disk' 'Libs·•FB6flN1"UB" 1 "Hard Disk' 'Libs'F86Rlff"LIB\ "Hard
Disk •• 'Libs' FB6RN3"'LlB"' j ' 'Hard Disk' 'Libs' F86RN4 'lIB\ ' 'Hard
Disk' 'Libs'CEUi7'"LIB"i "Hard Disk' ·Libs'EH87''lIB"', ''Hard
Disk·· 'Libs'8087"'L!B", ''Hard Disk' 'Libs'DCON87"'UB'•, '"Hard
Disk' 'Libs'LargeSystemCalls"'lib", ··Hard Disk' 'libs'Dqlarge''lnk"

TO Bench"'Lnk'" OVERLAYiROOTl tJOPRINT

Link Sub1.ftn"obj"' 1 ,·Hard Disk·· 'Libs'F86Rl'lO"'LIB'·, ,·Hard
Disk·- 'Libs'F86Rlff"LIB'•, • 'Hard Disk' 'Libs'FB6RN2"'LIB'", ''Hard
Disk' 'Libs'F86RN3"'LIB', ''Hard Disk' 'Libs'F86RN4"L!B~, ''Hard
Disk 'Libs'CEL87'·UB", "Hard Disk· 'Libs'EHBT"LIB"', ''Hard
Disk" Libs' 80B7"'UB"·, ' •• Hard Disk" Libs' DCON87"'l!B", "Hard
Disk' 'Libs' Ilqlarge''Lnk" TO Sub I "L11I(" OVERLAWiub1l
ASSUMEROOT(Bench"Lnk~) NOPRINT

Lin~ Sub2.ftn'•obj\ ''Hard Disk' 'Libs'F86RNO'liB" 1 "Hard
Disk' 'Libs'FB6RtW-UB'·, "Hard Disk' 'Libs'F8bRN2"Liff", "Hard

B-6 Prooram Development Guide

Disk· 'Libs'F81,RN3"LIB'", "Hard Disl:' 'Libs··rnbRN4'lIB'', "Hard
Disk 'Libs'CEUlT"LIB'•, ''Hard Disk. 'Libs'EHBT'lIB'', ''Hard
Disk 'libs'808T"LIB'\ "Hard Disk· 'Libs'DCONB7"'LIB", "Hard
Disk· 'Libs'Dqlarge~Lnk" TO Sub2"Lnk' OVERLAYISub21
ASSUMEROOT!Bench~Lnk"l NOPRINf

LINK]ench~Lnk~, Subl~Lnk~, Sub2~Lnk" TO Bench"Run• BIND
SSISTACKl+!SOOll PCIPURGEI

Over-I ays B-7

APPENDIX C, SYSTEM FILES AND UTILITIES

This appendix describes the system files that the 6RiD Compass uses and the
utility programs available to assist you during program development and system
housekeeping. NOTE: Most of the tasks performed by the utility programs
described here can be handled more easily by GRiDManager. Unless you have a
real need to use the command line interpreter or a need for a specific
utility, you should use GRiDManager.

The system utility programs operate on devices and files and are invoked via
the command line interpreter. You can run any of them without regard to the
current subject sin~e they are under the Programs subject.

SYNTAX NOTATION

Syntax notation in this appendix operates under the following
conventions.

* Keywords (command or function names) are in capital letters.
Examples: CAT, DUMP.

* Parameters are in lowercase letters,
Example: PREFIX pathname.

* Square brackets enclose optional parameters,
E>:ample: CAT [pathname].

* Braces or curly brackets surround a choice of parameters with
each parameter separated by a vertical slash,
Example: {real!integerL

System Files and Utilities C-1

If a parameter choice is an option, the choice is enclosed in
square brackets.
Example: [{real !integer}],

A note on syntax statements: you must enter parameters in the order
given in the syntax statement.

ENTERING COMMANDS

WILDCARDS

Throughout this appendix we use uppercase letters in writing about
commands, As stated above, in the case of syntax notation 1 command
names are in all uppercase, When discussing a command in a
sentence, the first letter will be capitalized. For example, "Only
the Cat command recognizes the wildcard character."

However, you can enter commands, program names, and file pathnames
in any form you want wih regard to capitalization. The system
understands "CAT," "cat,~ and even "cAt" as the same command,

Some of the utilities recognize one "ildcard character -- the
asterisk l•I. You can substitute one wildcard for any character, for
any string of characters, or for no character(s}. Wildcards work
only with the Cat program,

For example, let's say you have five titles under 'Hard
Disk'Morebees -- Brains, Brass, Barrooms, Beanbag, and Edna, Typing
a command and following it with 'Hard Disk'Morebees'B*S would cause
the command to act on all the file names that begin with Band end
with S: Brains, Brass, and Barrooms. Beanbag fails because it
doesn't end with S, and Edna neither begins with B, nor ends with S,
B* would cause the command to execute on all files except Edna.

A pathname consisting of an asterisk only will act on all files that
exist under the current prefix.

THE @SVSTEMERRORS FILE

The file named @SystemErrors~text~ in the Programs subject contains
the text that is displayed when a system error is encountered, If
this file is not present, an error number will still be displayed
when errors are encountered 1 but there will be no explanatory
message with the number.

C-2 Program Development Guide

THE ACTIVATE PROGRAM

This program activates a new device and adds it to the list of
currently active devices. 'Activating' a device consists of
associating a device name that you specify with the appropriate
device driver program and GPIB address. The operating system
automatically activates the following devices whenever the system is
booted:

device name

Floppy Disk
Bubble Memory
Hard Disk
Portable Floppy
Extra Hard Disk
Extra Floppy Disk
gpib
bb (bit bucket)
ci (console in)
co (console out)

GPIB addr (hexl

0005
none
0004
0006
oooc
000D
none
none
none
none

If a device is not physically present, it is not activated,
However, you can later activate a device using the "Add a device"
command from GRiDManager. The currently active devices will be
displayed on the File form.

The driver programs for local mass storage devices are incorporated
into the operating system and do not exist as separate files. There
are three different modem-related files -- each corresponding to the
actual physical modem type used with the computer: the three files
are named CompassGRiDinternal, 6RiDCaseHayesinternal, and
HayesExternal. They are under the Programs subject and their kind
is ~Modem~. The modem can be activated by typing the command:

Activate CompassGRiDlnternal AS Modem

If you need to activate a device whose driver program does not exist
as a separate program, the syntax you must use with Activate is the
more complicated form shown below:

ACTIVATE DEVICE devicel AS device2 [mJ [gpib-addrJ

This will look for device! in the active device table and will use
that device driver to create another device called device2. For
example 1 if you were connecting a second hard disk to your system,
you could activate that device as follows:

ACTIVATE DEVICE 'Hard Disk' AS 'Second Disk' m 6

This would activate the second hard disk and assign it the device

System Files and Utilities C-3

name Second Disk with a GPIB address of 6,

THE CAT (CATALOG> PROGRAM

The program lists all the titles in the subject directory, relative
to the file level you have specified. You can cause the program ta
print the requested directory to some device other than the screen
!including a text file) by specifying a second pathname, Here is
the complete syntax:

CAT [pathname1J [pathname2] [!J [?]

Typing the Cat program name without parameters will cause the
program to display all the titles under the current subject in a
tabular form somewhat like the one below Call numbers are in
decimal):

Files matching 'Hard Disk'mystuff'*
File Name Length

Gridstar,1~worksheet~ 107
243

Last Modified
03/16/82 09:45
02/28/82 15:12 Statusform~text~

Forecast.l~Text~ 1468 03/03/82 11:47

storage utilization: 1661/10404 pages, 15.9%

The first line tells the device ('wl I subject l'mystuff), and title
description (¼ -- the wildcard) for the titles on the screen. The
first column displays these titles.

The second column displays the number of bytes that each file
occupies.

The first number after "storage utilization" indicates the total
number of pages taken by all files on the bubble, diskette or disk.

The second number shows the total number of pages on the bubble,
diskette or disk. To find the number of free pages available,
subtract the first number from the second.

The third number is the percentage of occupied pages to the total
number of pages available on the device.

When the file names are being displayed on the screen, you can stop
scrolling by typing CTRL-S. To restart scrolling, press CTRL-S
again, Pressing CODE-ESC cancels the Cat program and thus the
scrolling,

Note that when you enter Cat without a pathname, the Cat program
puts in an invisible wildcard character that defaults to the current
device/subject prefix and all the titles within that subject. For
example, if your current prefix were 'Hard Disk'Breakfast, the first

C-4 Program Development Guide

line of your catalog display would read:

Files matching 'Hard Disk'Breakfast'1

However, if you •anted to look at a different prefix grouping, like
'Floppy Disk'lunch, you would have to enter this explicitly or
change your prefix first. To see all the titles under this prefix,
you would type:

Cat ''Floppy Disk' 'lunch'*

Creating a Catalog File

The Cat program lets you specify a second pathname if you want to
send your catalog information to a text file instead of to the
screen. We call this file a "catalog file." This file can be sent
to either disk or to an output device, such as a printer. The
program prepares the file during execution.

Note that the syntax for a catalog file requires that you precede
the name of the catalog file with a pathname for the title(s) you
want catalogued. At a minimum, this pathname must be the asterisk
HH.

For example, typing Cat* Catchall would create a file called
Catchall and write into it all titles under the default prefix.
Similarly Cat BB•.COM BEBEFILE would create a file under the default
prefix called BEBEFILE and put in it all titles beginning with the
letters BB and ending with ,COM,

By preceding the name of the catalog file with a device name, you
can direct where the system will send the catalog file. Without the
device name, the system will set up the file on the default device,

!Exclamation Point>

Placing the exclamation point after Cat (or after Cat and any of its
parameters) will cause the Cat program to display file titles
without file lengths and dates and times. As a result, the
exclamation point causes the catalog to display much more rapidly.

? lilue5tic.rn Mark

Placing the question mark after Cat and a title will cause the Cat
program to search for that title under every subject on the
currently prefixed device.

System Files and Utilities C-5

THE COMPARE PROGRAM

This program compares two files for equality or inequality and is
useful for checking if two files are duplicates. The syntax is
simply:

COMPARE file1 file2

If the two files are identical, the program displays the word
"Same", if they are not identical, a display similar to the
following example appears:

Files are different at location 3591
Pageff /Off set: 7 63

OE07: 32 3A 2 (l ,:-,:- 73 65 72 20 2:.User, ,J ,J

OE07: 33 3A 20 55 73 65 72 20 3:.User.

The "location" in the first line indicates the byte position in the
file where a difference between the two files was detected, In this
example, the bytes at position 3591 were detected to be different.
The Page#/Offset line indicates the media location where the
difference was detected. Each page !sector) is 504 bytes long.

The last tNo line are a hexadecimal representation of the data in
the two files in the area where the difference was detected. The
first line is the data from the first file specified after the
COMPARE command and the second is the data from the second file, In
this example, the byte at 3591 IOE07h) in the first file was 32h the
corresponding byte in the second file was 33h.

THE DEACTIVATE PROGRAM

This program will deactivate a device, removing it from the active
device table, Refer to the Activate program for a discussion of
devices and device activation, The syntax for this program is
simply:

DEACTIVATE dev

where "dev" is the device name as listed in the active device table
(see the LADT program),

NOTE: You should not usually deactivate any of the devices that are
automatically activated by the system during power up !Floppy Disk,
Hard Disk, Bubble Memory, etc.). The drivers for these devices are
incorporated into the operating system software and do not exist as
separate files. They therefore can not be reactivated using the
Activate program described earlier in this chapter.

C-6 Program Development Guide

THE DEVELOPMENT EXECUTIVE PROGRAM

The DevelopmentExecutive~Run~ file under the Programs subject is the
program that provides the co~mand line interpreter. Refer to
Appendix A for a discussion of the DevelopmentExecutive interface.

THE DO PROGRAM

Da~Run Com~ is the program that lets you execute a command file.
The Do program reads the commands from the file and presents them to
the system as though you were typing them in at the command line of
the development interface. Thus, command files save you time and
effort by letting you create 'canned', reusable command ~equences.
For a discussion of command files and the Do program, refer to
Appendix A.

THE DUMP PROGRAM

The Dump program sends the contents of a file in both HEX and ASCII
to a specified destination file. If no destination file is
specified, the contents are dumped to the screen. The syntax for
this program is:

DUMP sourceFile [destFile)

The information that follows is an example of a dump of the
System,Init~com~ file:

FILE= system.init~com~

0000 24 6E 6F 6C 69 73 74 OD OA 61 63 74 69 76 61 74
$nol i st., acti vat
0010 65 20 6D 6F 64 65 6D OD OA 21 20 60 77 30 60 70
modem .. ~ w -. p *
0020 72 6F 67 72 61 6D 73 60 73 63 72 65 65 6E 77 61
-1t-rograms screenwa*
0030 74 63 68 7E 72 75 6E 7E OD OA 0[) OA
*tch"'run'•, .. , *

END OF FILE

*e

The four-digit number at the beginning of each row is the
hexadecimal offset of the first byte in that row. Thus the first
character in the second row (hex 65} is byte number 0010
(hexadecimal) in the file. Next, the hexadecimal representation of
each byte in the file is provided, with 16 bytes displayed in each
row. To the right, the ASCII representation of each byte is
displayed,

System Files and Utilities C-7

THE ELAPSED TIME PROBRAM

This program times the execution of any program you specify, The
syntax is:

ELAPSEDTIME pathName

where pathName specifies some executable file. After the specified
program has completed execution, control is returned to the
Development interface and the time that elapsed since you invoked
the program is displayed.

THE EXECUTIVE FILE

This file is loaded into memory whenever the system is booted. It
displays the initial File form and is required in order to perform
such as activities as exchanging files.

THE LADT (LIST ACTIVE DEVICE TABLE! PROGRAM

The active device table contains a list of all devices that have
been activated (See the Activate program earlier in this chapter).
A device needn't be on-line to be included in this list. To see the
names of all active devices, type LADT and press RETURN. The list
can comprise any of the device names normally seen via the File form
!Hard Disk, Floppy Disk, Bubble Memory, etc.) plus the following:

* WORK

* w

* F

* PLOTTER

1 PRINTER

1 GPIB

WORK is a virtual device that provides space for
temporary work files used by the compilers, the
linker, and programmers.

W stands for Winchester -- the hard disk,

F stands for Floppy. You must add a number to
this device name, Address the floppy drive as fO.
Note that f will default to fO.

PLOTTER is the device name for that portion of the
GPIB that connects to a plotter. Only valid when
a "Current plotter" has been designated via
GRiDManger.

PRINTER is the device name for that portion of the
GPIB that connects to an Epson printer. Only
valid when a "Current printer" has been designated
via GRiDManger.

A generic term 1 not an addressable device,

C-8 Program Development Guide

* BB

* CI

* co

covering all device addresses that hook to the
GPIB port,

The "Bit Bucket" laka the "Byte Bucket") is a null
device, used mostly for testing,

CI, the keyboard, stands for "Console In."

CO, the computer screen, stands for "Console Out."

Two optional parameter words !separated by a space) can be issued
following the LADT command. The first word is a "mask" and the
second word is an 16-bit "value" that results from ANDing the mask
word with each device's "mode" parameter las specified via the
OsAddDevice call). The "mode" parameter bits are defined as
follows:

Bit#
0 -- mass storage, If set to 0 1 indicates that the device is not a

mass storage device. If set to 1, indicates a mass storage
device such as hard disk,

1 -- visible/invisible. If set to O and the mass parameter is TRUE,
the device will appear on active device list and be displayed
on the File form. If set to 1 or if the mass parameter is
FALSE, the device will be invisible,

2 local/remote, If set to O, the device is local. If set to 1,
the device is remote, that is, accessed through the serial
port or a modem),

3 peripheral bus (GRiDServer devices only),
4 server. If set to O, indicates that the device is not a

network server. If set to 1, indicates that device is a
network server accessed through GRiDLink or Phonelink.

5 alias. If set to 1 9 indicates that aliases such as "W" for
Hard disk, or "F" for Floppy disk will be recognized.
Otherwise, set ta 0.

6 -- reprogrammable, If set to 1 1 indicates that the device
!usually a floppy disk) can be reprogrammed to accept
different data formats (for example, either 8 or 9 sectors).

7 search. If set to O and if the mass storage bit 1bit 31 is set
to 1, indicates a searchable device. GRiD-OS may search this
device for an appropriate application program, such as
GRiDNrite~Run Text~ to use with a file of Kind ~Text~. If set
to 1, the device will never be searched .

. 8 -- spool (server devices only), If set to 1, indicates that the
device is a spooler device (such as the printer queue),
Otherwise set to 0.

9 admin (server devices only), If set to 1 1 indicates that the
device can be accessed only be server administrators.
Otherwise set to 0.

10 -- removable. If set to 1 1 indicates that the device has
removable media (for example, a Floppy disk). Otherwise set
to 0.

System Files and Utilities C-9

11 volume. If set to 1 1 indicates that the device has be given
a volume name. Otherwise set to 0.

12 - 15 -- reserved (always set to 01.

The bits of the "mask" parameter specify which bits of each device's
mode word should be examined. The bits of the value parameter
specify whether the bits being examined in the mode word should be
set to 1 or to O in order to qualify for listing.

For example, if the mask parameter issued with LADT is 0003h, bits 0
(mass storage/not mass storage) and 1 (visible/invisisblel of the
device mode words will be examined. If the value parameter is 0001 1

then only those devices having the mass storage bit set to 1 and the
visible bit set to O will be listed by LADT.

THE LOAD PROGRAM

The Load program simply loads an executable module into memory.

LOAD pathName

THE PREFIX PROGRAM

Nhen you boot the system, the default subject is always Programs
and the device will be whichever device you directed the system to
-- bubble, hard disk, or floppy. (If you did not explictly specify
a device -- by holding down the 'H' or 'F' key during the boot
sequence -- the system first tries the bubble, then the hard disk
and finally the floppy, until it finds one of those devices ready.)

When speaking in terms of pathnames, we refer to the initial
'device'subject pair as the "default prefix." By "default," we mean
that any time the system must access a file, it will try to find the
file in question under the default prefix, unless told to look
elsewhere. By "prefix", we mean the device-subject pair.

You can override the default prefix by explicitly typing another
prefix before a title. To reset the prefix to a different device
pair altogether, use the Prefix program,

To execute the program, type Prefix, a space, and the name of the
new default prefix (both the physical device and a subject, i.e. 1

'f'Lunch), Finally, press RETURN. Note that a tick should not
follow the subject name. The default will remain with the new pair,
until you give the system a different pair by reinvoking the Prefix
program. The syntax is simple:

PREFIX ['device']subject

For example, Prefix 'f'Programs will cause any further storage

C-10 Program Development Guide

access to look to the floppy drive, under the subject "Programs,"
Typing Prefix • 'Hard Disk' 'Breakfast will change the default so that
subsequent searches for titles look under the "Breakfast" subject.

Note that the device is optional when specifying a new prefix. If
you do not include a device name, the new prefix will become the
specified subject combined with the previously prefixed device.
Thus, if the current prefix is 'Hard Disk'Breakfast, typing Prefix
Lunch will change the default prefix to 'Hard Disk'Lunch.

THE SOFTKEYS FILES

The numeric keys on the keyboard have been programmed to generate
often used words and symbols at the command line level, that is,
from the development interface, For example, typing CODE-SHIFT-4
will print the word "Pascal" on the screen. Likewise, pressing
CODE-3 will cause "Programs'u to appear.

Thus, these keys let you quickly generate frequently used command
messages, The following table shows all preprogrammed softkey
messages and the key combinations for generating them.

KEY CODE CODE-SHIFT

''Floppy Disk"
2 ' 'Hard Disk''
.,, Programs . .J

4 ''Bubble Memory'' Pascal
r::
J ''Portable Floppy'' PLM
6 GRiDWrite Fortran
7 "'Tei< t"'
8 "'Lst"' 'Printer
9 "'Com"' "'Workshe~t"'
(l "'Run"' "'Graph"'

Prefix

Table C-1. Preprogrammed Softkeys

Programming the Softk~y5

You can substitute your oNn message(sl for any current softkey
messages. To do this, edit the file 'Hard
Disk'Programs'SoftKeys~Text~. This file contains each message
!beginning with "'f'" and ending with "Cat") separated by a carriage
return. Select a message for replacement and erase it, Then type
your substitute message in its place. Save the revised file.

System Files and Utilities C-11

To activate your new message Isl, you must load the revised file.
You have two ways of doing this: either type CODE-= or reboot the
system by pressing the reset button.

Your new message will appear whenever you press the key combination
that draws its characters from the position in which you placed your
message. For example, if you replaced "Fortran" with a favorite
subject name, "My5tuff 1 " you would see "MyStuff" every time you
pressed CODE-SHIFT-6.

Multiple Softkey Files

You can place different 'SoftKeys~Text~ files under different
subjects. Each file can have entirely different messages. In such
a case, the file's messages will be available only when you're in
that file's subject. Whenever a subject does not have its own
SoftKeys file, it will draw messages from the SoftKeys file in the
subject "Programs."

To activate the Softkeys file in a subject other than "Programs,"
type CODE-=. If you don't issue this command, any use of the
softkeys will default to Programs's Softkeys file,

THE STATUS PROGRAM

This program displays system status information including memory
utilization, the current prefix, and currently loaded packages. To
run the program, simply type STATUS and press RETURN. The
information displayed will be similar to that shown below:

C-12 Program Development Guide

Uersion 3.0.0 of CCOS
Development Executive for CCOS >= 30.4.19
=► status
current prefix• 'Hard Oisk'Prograrns

total free bytes= 93536
number of free blocks= 13
largest free block= 65535
total allocated b4tes= 102688
number of allocat~d blocks= 105
largest allocated block= 65535
== ►•

THE SUMMARIZE PROGRAM

This program analyzes a file's usage of memory and displays the
results of that analysis. The syntax is:

SUMMARIZE sourcePathName [destPathNamel ['commentString'l

The sourcePathName specifies the file that is to be summarized. The
results of the summary Nill always be displayed on the screen. The
optional destPathName lets you specify that the results also be sent
to another destination -- typically the printer. The optional
commentString must be enclosed in single quotation marks and will be
displayed at the beginning of the summary information. For example:

SUMMARIZE "Hard Disk''programs'MyApp"·run" 'printer '10-30-83
Summary'

This would cause the following information to be displayed on the
screen and also printed at the printer:

System Files and Utilities C-13

10-30-83 Summary

Fi 1 e: 'Hard Disk'programs'MyApp~run~

Initialization: 17 272
Code/Const: 94 9679 {8927)
Fixup: 43 680
1,1aste: (l !)

Total: 154 10631
Overhead: 16, Oo/.

Data segment: 52
Stack !:-egment: 1026

The left column of numbers shows how many records are devoted to
each category and the right column is the number of bytes in each
category.

THE TI ME PROGRAM

This program simply displays the current time and date maintained by
the clock chip. To display time, simply type TIME and press RETURN.

THE UNLOAD PROGRAM

This program simply unloads a run module that was previously LOADed
ieither explicity with the LOAD program, or by the system at boot
time). The syntax for the Unload program is:

UNLOAD pathName

THE WORK PROGRAM

This program simply specifies the device that will be the ·work'
device, The language compilers and the Link program require
temporary work files for their operation. Additionally, system
programmers use work files for applications that require temporary
files, Work files are discarded upon completion of the operation
for which they were being used. These files assume the presence of
a virtual device named Work, The system automatically designates
the physical device that you boat from as the Work device. If you
want to change this default, run the Work program using the
following syntax:

WORK 'dev

C-14 Program Development Guide

If you boot your system from Bubble Memory, you might get a device
full message when compiling programs. You should change the work
device to Hard Disk if you boot from Bubble Memory.

System Files and Utilities C-15

APPENDIX D, LINK ERROR MESSAGES

This appendix describes error messages that may be produced by the
Link program. Only those errors deemed likely to occur in the
system are listed. Should you encounter an error message generated
by one of the Link program that is not listed here, contact the GRiD
Customer Support Center.

Remember, it is possible to receive an error message generated by
the operating system (GRiD-0S1 while you are running the Link
program. Refer to the GRiD-0S Reference manual for a complete
listing of system error messages.

The Link program generates both error messages and warning messages.
They are listed in the pages that follow in numerical order with
warning and error messages intermixed.

Error messages are always fatal: they terminate processing of the
input file(s) and halt execution of the Link program. All open
files are closed and the contents of the print file and the object
file are undefined.

Warning messages are not fatal. They are listed consecutively as
warning situations are encoutered. Read the discussion of the
warning carefully to determine whether the resultant code is valid.

ERROR 1: I /0 ERROR

What happened The operating system detected an I/0 error in the

Link Error Messages D-1

What to do

input file.

Check the pathnames specified for the input file and
check for possible media errors.

ERROR 2i I /0 ERROR

What happened The operating system detected an I/0 error in the
p1"int file.

What to do Check the pathnames specified for the print file and
check for possible media errors.

ERROR 3: I /0 ERROR

What happened The operating system detected an 1/0 error in the
object file.

~Jhat to do Check the pathnames specified for the object file and
check for possible media errors.

ERROR 4: I /0 ERROR

What happened The operating system detected an I/0 error in the
console file.

What to do Check the pathnames specified for the console file
and check for possible media errors.

ERROR 5: INPUT PHASE ERROR

What happened A record encountered during the second phase of
linkage did not agree with information gathered
during the first phase of linkage. This error is
caused by a data transmission error or an internal
error in the Link program itself.

What to do Contact the GRiD Customer Support Center. Be
prepared to provide a copy of the object file, the
Link invocation line, and your version of the Link
program.

D-2 Program Devleopment Guide

ERROR 6: CHECK SUM ERROR

What happened The check sum field at the end of one of the object
module records indicates a transcription error. This
can be caused by any number of data encoding or media
errors.

What to do Retranslate the source that produced the specified
object module where the error was detected. Then
relink.

ERROR 7: COMMAND INPUT ERROR

What happened An error was detected while attempting to read the
complete invocation line.

What to do Check the invocation line for errors and try again.

WARNING B: SEGMENT COMBINATION ERROR

What happened Two segments with the same name can not be combined
because they have different combination attributes or
incompatible alignment attributes. The linker will
continue processing pass l but pass 2 will not be
started. The resultant output object file is useless
and the print file contains iimited information.

What to do Retranslate the source that produced the specified
file and module. Then relink.

WARNING 9: TYPE MISMATCH

What happened There is a public/external symbol pair for which the
type definitions do not agree. The linker continues
processing using the first definition only. The
object file and the print file should be valid,
except the second definition for the symbol is
ignored.

What to do Modify the offending public or external declaration
and recompile and relink the source file.

Link Error Messages D-3

WARNING 10: DIFFERENT VALUES FOR SYMBOLS

What happened The same symbol was declared public in two different
modules. The specified file and module contains the
second definition encountered. The linker continues
processing using the value of the first public
definition; the second definition is ignored. Both
the print file and the object file will be valid.

What to do This situation will often occur in the normal course
of events, for example, when you are linking library
files along with Compa~tSystemCalls~Lib~. In such
cases, you can usually ignore this warning. If it is
a problem, change the name of the symbol in either
the specified file or in the file containing the
earlier definition nf the symbol.

ERROR 11: INSUFFICIENT MEMORY

What happened Because of an e~tensive use of public symbols, there
is insufficient memory for the linker to build its
internal tables and data structures.

What to do If possible, unload unneeded packages, such as
common. Otherwise, try incremental linkages. That
is, link smaller sets of files together using the
NOPUBLICS control, then link the resulting composite
modules together.

WARNING 12: UNRESOLVED SYMBOLS

What happened External symbols were declared that could not be
resolved during this linkage. (This is quite common
when performing an incremental linkage. I The print
file is valid. The object file must be linked to
resolve the external references.

What to do Link the object file to a file that will resolve the
external references.

WARNING 13: IMPROPER FIXUP

What happened An external reference makes assumptions about the
segment register that do not agree with the

D-4 Program Devleopment Guide

What tr, do

assumption made for the public definition. The
linker continues processing. rhe obJect file will
not hP. 11~,.,hlP, b11i lhP pr1nl f1IP will lrn cnmplelt~
,Hid ic\CCllf,11..P.

Try recompiling with a different mr,del of
segmentation, or change the source and reassemble.

WARNING 14: GROUP ENLARGED

What happened The specified group name has been defined twice in
two different modules and the segments contained in
the two definitions are different. The two groups
are combined into one with all segments that were in
either group included in the resulting group.
Segments with the same segment name, class name, and
overlay name ae combined. The linker continues
processing and both the print file and object file
are valid.

What to do No action should be necessary.

ERROR 15: LINK86 ERROR

What happened A fatal, internal error has occurred within the Link
program itself.

~Jhat to do Contact the GRiD Customer Support Center. Be
prepared to provide a copy of the object file, the
invocation line, and your version of the Link
program.

ERROR 16: STACK OVERFLOW

What happened Link's run time stack used for type matching has
overflowed. This can be caused by an overly complex
type definition of one of your symbols.

~Jhat to do Tt-y incremental linkage (see error 11l. If the error
persists, contact the GRiD Customer Support Center.

WARNING 17: SEGMENT OVERFLOW

What happened The combination of two or more segments has resulted

Link Error Messages D-5

in a segment that exceeds 64K.
processing during the current
object files are not useable.

The linker continues
pass 1 but the print and

What to do Reorganize your segments and reassemble.

WARNING 19: IMPROPER START ADDRESS

What happened A start address was found in one of the overlay
modules, and none was found in the root module. This
error is often ~aused by misordering the input

1,Jhat to do

modules in the input list. The linker ignores the
start address in the specified overlay module and
continues processing.

If you want the module containing the start address
to be the root, relink with that module first in the
input list.

ERROR 19: TYPE DESCRIPTION TOO LONG

What happened The type definition is too long to fit in the
linker's symbol table.

What to do

ERROR 22:

Contact the GRiD Customer Support Center. Be
prepared to provide a copy of the object file, the
invocation line, and your version of the Link
program.

INVALID SYNTAX. ERROR IN COMMAND TAIL NEAR i

What happened This error is usually the result of a tv~~graphical
error in the invocation linP, The partial command
tail up to the pain~ where the error was detected is
printed.

What to do Check th~ invocation line and reinvoke the Link
program more carefully.

ERROR 23: BAD OBJECT FILE

W h a t h ,-i p p e n e d T h e Ii n k p r n q r a m h a •; d e l e c tr• rl c1 n I n c u 11 °' i s t"e n c y 1 n U, f.'

1i*1 ldt, of 11 rerord .in lhe (',p1nlf1erJ input f1lF!. lht'o
error could be caused by the compiler or could be due

D-6 Program Devleopment Guide

to a media problem.

What to do Recompile and then try relinking. If the problem
persists, contact the GRiD Customer Support Center.

WARNING 24: CANNOT FIND MODULE

What happened The specified module cannot be found in the specified
library file. The linker continues processing as if
the specified module were not in the list.

What to do If the module is important, you can link it into the
output object file later.

WARNING 25: EXTRA START ADDRESS IGNORED

What happened A start address has been encountered in more than one
module indicating that you have specified more than
one main module in the input list. The linker uses
the start address encountered earlier and ignores the
start address in the module specified here with the
warning message. Processing continues with no other
side effects.

What to do Do nothing, if the start address in the specified
module was intended to be ignored.

ERROR 26: NOT AN OBJECT FILE

What happened The file specified with the error message is not an
object file. This error is usually caused by a
typographical error in the input list. However, some
media problems can also cause this error.

What to do Check the invocation line and try again. If you
suspect media problems, try recompiling and
relinking.

WARNING 28: POSSIBLE OVERLAP

What happened This warning is issued when the linker combines two
absolute segments. Processing continues with no side
effects.

What to do If there is an actual conflict, the loader will

Link Error Messages D-7

detect the overlap.

ERROR 30: LIBRARY IS NOT ALLOWED WITH PUBLICSONLY CONTROL

What happened The file specified with the error message is a
library file and libraries are not allowed in a
PUBLICSONLY control.

What to do Remove the library file from the PUBLICSONLY argument
list and reinvoke the linker.

WARNING 32: EXTRA REGISTER INITIALIZATION RECORD IGNORED

What happened You have included two main modules in your input
list. The linker uses the first register
initialization record and ignores the second.
Processing continues with no side effects.

What to do

ERROR 33:

If the register initialization information in the
file specified with the warning message should be
used instead of the first such record encountered,
then modify your input list. Otherwise, no action is
required.

ILLEGAL USE OF OVERLAY CONTROL

What happened While processing input modules for an overlay, the
linker found an overlay definition in the file and
module specified with the error message. A module
being used for an overlay cannot itself specify an
overlay.

What to do Remove the specified file from the input list and
relink.

ERROR 34: TOO MANY OVERLAYS IN INPUT FILE

What happened The file and module specified with the error message
contains more than one overlay definition.

What to do Remove the specified file from the input list or
correct the file so that it has only one overlav
definition, then relink.

D-8 Program Devleopment Guide

ERROR 35: SAME OVERLAY NAME IN TWO OVERLAYS

What happened The file specified with the error message contains an
overlay that has the same name as an overlay already
encountered in the input list.

What to do Remove one of the duplicate names from the input list
and relink. If both overlays are needed, relink one
of them specifying a different overlay name.

ERROR 36i ILLEGAL OVERLAY CONSTRUCTION

What happened Some of the modules in the input list contain overlay
definitions while others do not. This is illegal:
all modules in the input list must be the same with
respect to overlays.

What to do Remove the non-overlav files and relink.

WARNING 37: DIFFERENT PUBLICS FOR EXTERNAL IN ROOT

What happened The linker has found two symbol definitions 1n the
overlay modules that resolve the same external symbol
definition in the root. The definition in the file
and module specified with the warning message is
ignored and processing continues with no side
effects.

What to do Remove the unwanted symbol definition and relink.

ERROR 41: SPECIFIED SEGMENT NOT FOUND IN INPUT MODULE

What happened This error is usually caused by a typographical error
in the SEGSIZE control.

What to do Check the input list for accuracy. If necessary, find
the module that contains the specified segment and
add it to the input list.

WARNING 42: DECREASING SIZE OF SEGMENT

What happened The size change specified in SEGSIZE has caused the

Link Error Messages D-9

What to do

linker to decrease the size of the specified segment.
Decreasing the size of a segment can cause sections
of code to be unaccounted for during the memory
allocation process. Processing continues with no
side effects.

This is usually caused by leaving out
in the SEGSIZE<STACK+nnnnll control.
list and correct.

the plus sign
Check the input

ERROR 43: SEGMENT SIZE OVERFLOW; OLD SIZE+CHANGE > 64K

What happened The size change specified in the
SEGSIZEISTACKl+nnnn)) control caused the segment to
become greater than 64K.

What to do Reinvoke the linker with the correct
SEGSIZE!STACK(+nnnnll control.

ERROR 44: SEGMENT SIZE UNDERFLOW; OLD SIZE+CHANGE < 0

What happened The size change specified in the
SEGSIZEISTACKl+nnnnl) control caused the segment to
become less than zero.

What to do Reinvoke the linker with the correct
SEGSIZEISTACK(+nnnnll control.

WARNING 47: GROUP HAS NO CONSTITUENT SEGMENTS

What happened The group specified with the warning message has no
segments and is not placed in the output object file.
This error is often the result of a typographical
error in the invocation line. The group is left out
of the object file ~nd processing continues.

What to do Unless there is a particular need for the specified
group 1 no action is necessary.

WARNING 48: SIZE OF GROUP EXCEEDS 64K

What happened Al] of the segments that belong to the group
specified with the warning message do not fit within
the physical segment defined for that group. This

D-10 Program Devleopment Guide

error is usually caused by misuse of the SEGSIZE
control. The linker includes all segments in the
object file and continues processing the input
module. The output module will be executable,
although addressing errors may occur.

What to do Examine the invocation line and reinvoke the linker
using the SEGSIZE control more carefully.

WARNING 52: OFFSET FIXUP OVERFLOW

What happened While computing an offset from a base, the linker
found that the offset was greater than 64K. This is
a result of one of the segments of the group being
outside the 64K frame of reference defined by its
group base. The linker continues processing and the
print file will be valid. The output file, however,
with regard to the out-of-place segment, will not be
usable.

What to do

ERROR 55:

Modify the group definitions in your source file,
retranslate and relink.

ILLEGAL FIXUP

What happened While processing a fixup record 1 the linker found
that the base for the reference and target are
different. This is usually a coding error.

What to do Check your source carefully, retranslate and relink.

WARNING 58: NO START ADDRESS SPECIFIED IN INPUT MODULES

What happened The BIND control was specified, and none of the input
modules has a start address. This indicates that the
input list contains no main module. The CS and IP
registers remain uninitialized, and their values are
dependent on your system loader. The object module
will be valid.

What to do Reinvoke the linker with a main module.

Link Error Messages D-11

ERROR 60: OUTPUT FILE IS SAME AS INPUT FILE

What happened The pathname of the input file specified with the
error message is identical to the output file
pathname.

What to do Fix the duplicate-name situation and reinvoke the
linker.

WARNING 641 PUBLIC SYMBOLS NOT SORTED DUE TO INSUFFICIENT MEMORY

What happened The number of public symbols in the input-list
modules is too large for the linker to sort with
available memory resources. The print file lists the
public symbols in the order in which they were
encountered in the input files. This condition has
no effect on the correctness or validity of the
output object module.

What to do Increase the amount of available RAM (for example 1 by
unloading unneeded packages) or decrease the number
of public symbols.

WARNING 65: ILLEGAL FIXUP: INCORRECT DECLARATION OF EXTERNAL
SYMBOL

What happened The declaration of the symbol specified with the
warning message was inconsistent with a corresponding
public symbol definition and the linker could not
resolve the reference. This condition is usually
caused by an attempt to access absolute entry points
from pre-located code without using the PUBLICSONLY
control explicitly. The linker internally converts
these illegal fixups to legal formats to identify all
occurrences in a single execution. Thus the output
object module may not be correct, although it will be
a valid 8086 object module.

What to do If the warning occurred because of an attempted
access of absolute entry points from pre-located
code 1 use the PUBLICSONLY control in conjunction with
the file that contains public definitions for those
entry points.

D-12 Program Devleopment Guide

WARNING 69: OVERLAPPING DATA RECORDS

VJ ,, a t ,1 i1 p p e n P d l h e F A S T I O A r1 c: o n t r o l w a s s p e c I t 1 ,, d , a n d t 1, o d c1 t a

records belung1ng to the same segment nave offsets

~!;1at to ,io

WARNING 71:

~ihat happened

which make them overlapping. Th1s is U5-uai iv the
result of a translation error, unless vou have
intentionally overlapped dc1tc1 records. The linker
ignorec;. the second rec:ord c1nci does not 1r1clucie it 1n
t h e i'.) u t p u r f i .1 e 8 T h e c o d e l,--J i l 1 b e u n u '::- a b l e .

If \OU want an overlap condition to exist, reinvoke
the linker but cio net use the FASTLOAD c □ ntroi.

Otherwise. retranslate, then reinvoke the linker.

TOO MANY MAIN MODULES IN INPUT

There are two or more main modules
start address) in the input list.
the start address af the first main
and ignores the others. The object
valid.

(modules t~i th
The linker uses.

module it reads
code will be

Make surP that the linker s interpretation is
'= u i t "b 1 e i: o y- our ob j e c t 1 v e s . I f n o t , mod i + v t h e
input list and relink.

WARNING 72: REGISTER INITIALIZATION CODE EXISTS 1 NEW INITIALIZATION
IGNORED

What haopened Because of a translation or linker problem 1 two or
more initialization codes for 8086 registers were
encountered in the input list. The linker uses the
first initialization code and ignores the others.
The object code will be valid.

If retranslating or relinking does not correct the
error, contact the GRiD Customer Supaort Center.

WARNING 74: PRINT FILE SAME AS INPUT FILE

What h~ooened The aathnames of the print file and one of tne input
files are identical.

What to do Fix the duolicate-name situation and reinvoke the

Link Error Messaoes [j- 13

linker.

ERROR 75: PRINT FILE SAME AS OUTPUT FILE

What happened Th2 pathnames of the print file and the output file
are identical.

What to do Fix the duplicate-name situation and reinvoke the
linker.

D-14 Proqram Devleopment Guide

APPENDIX E. SOUND

The :Goad Tune: and :Bad Tune: tokens in GRiDDevel □ o let vou define
a seouence of notes that will be output to the speaker in the
C o m D a s s. c o m u I.I t er . T h e s e t o i,: e n s a s s. u m e t h a t v o u h a v e t. h e f i 1 e n a m e d
Sound 0 Device~ in the Programs subJect ot vour system and that this
device has been activated.

The :Goc,d Tune: and :Baci Tune: tcd,ens. let. vciu enter 2. te:d: string
f □ llowino the token. The characters in this text string are
interureted according tc I.he following rules:

Character

H to 1:"i

#.

n
n

Pl to Ft,4

Result

Plavs the indicated note in the current octave,
"O" below for octave control.I

(See

Plavs the oreceding note IA through Gl as a sharp note
·ti-12

00 to 06 Octave. Sets the current octave for all
notes that follow until another Octave command character
1s encountered. If no Octave is specified, the default
1s Octave 4.
Go up to next hioher octave and plav note n (A-G).
Go down to next lower octave and play note n IA-Gl.
l.ength. Specifies length of the notelsl that follow.
LI = whole note. L64 = 1164th note. L•ef2.ult is 4
(qttarter notp~./ n

Pause for soecified ienoth.
1,64th not,,,.

Pl = whole note, P64 =

Sound 1:--i

r ' C - . .:

T32 to TJ55 Tempo. Specifies number of beats 11/4 notesl per
minute. Default = 120.
Dot or period. After a note. causes the note to be

i:-,•la\1 ed as ct dotted not.e ~the length oft.he r,cit.t:• :'.~

multiplied by ~~/2.
Volume.

Pro □ ram Development Guide

0 = min1m11m, ,··; ~ i::­
.: .J,._! m2·,,tmum . --,~!:-

·- l, ,__I 1,../,.

INDEX

8086 registers, displ~ying in debug prograa, 5-7
8087 1 Libraries, 3-3
87null~Lib~, 3-3
@Syte•Errors file, C-2

A

~t,:.Mem, dE-bi . .i~ prcigreim • 5-3
Act'vB~e p•og•2•, C-3
A: ti ·,ct 1 n g,

device~., C-3
p;1Qde11•, (-3

:.er1 c:l \ C-3
AddrE~~~s, d1spl~ying in debug proGram, 5- 0

~lternate deve]opae~t 1pp•c1che!, A-1
All~rn8te W)ndo~, 1r debug progr~~, 5- 7

Ap~•~r,d1ng file ltndc, 1-5
A~f!, t1t1e 1:-L••.f1t 1n 6RiDDe 1•elc1 ~•~ :·-!3

~;~~i:::~iu~:;~~~~~:;:;~~~;:::~~~a:~~~-t:~
A~teri:k (*, i

B

debug pro~~t, 5-3
wi]dcer~ ch~•acte,, [-::'

~~d Tune to~en~ GP1D0evel~pi
B~d tur!e 1 E-1
E,~rid, link control~ 4-2, 4-4
Br~;~ tfble entryi debug progr~m, 5-5
Bre~l-po1nt~ 1n de~ug prograIB•

C

c}e-ctr1ng, 5-6
'.::-ett1ng, 5-5
proceeding after, 5-7
use in overlays, B-5

C title suifii: in GRiDDevelop, 2-13
C?lculator, in GRiDDevel □ p CLI ~odef 2-17
Ca~n~t find ~odule w~rning, lin!~ program, D-7
C2t (Catalogi program 1 C-4
CBtalog file, creating, C-5
cel87''Lib~, 3-3
c~~r•gE source groups comm~nd, 2-17
Ch~n~f ~o~rce group~ formJ in GP!DGe~elor 9 2-14
Ch~nging d2ta file~ in GG1Dr~~·elopi 2-19
(hinging me~~ry co~tents, debLJg progrbm, 5-11
Che-cl' ~Ufl Errer 1 lin~ proyr~_,1,1 D-3
Clear brea~pDint co~m~nd, debug progr~m, 5-b
CL!, 2- P
Clock. ctiip, C-11

CODE-? COMar,d,

debug proqram, 5-4
in GRiDDevelop, 2-16

CQ~E-B com~B~d, debug progra~, 5-5
CODE-C corn~~nd, debug program, 5-6
CODE-(, co~meDd, GRiDDevelop, 2-1 7

COf1E-D cori,mi=ind,
deb~g program, 5-6
i~ G~iGDe~elop CLI mode, 2-17
1n De ✓ elop~ent E~ecuti•e, A-2

C[l~1E-E con,IT•Eincl 1 debug progr~_m, :,-6
COD~-G com~~n □, 1n GAiDDe~elop, 2-2 1 2-13,
[G~E-1 co~~and, debug progr~~, 5-5 1 5-6
CODE-L co~mandij debug progr~~, 5-6
CODE-H co~,,~nd, ~~~L1Q progra~ 1

CODE-D coJT,tr·~nd,
d~~ug prQgra~, 5-7
G~iD~~~elop Optio~! co~mand,

CODE-F com~~nd, debu~ program,

[[i [, E - R cc, f!HT, ~ n d ,
CODE-S!-II>T-E;c,
CGDE-T corr,rr•s.nd,

d~bug progr~m; 5-6

~ -
._•- I

Tr?nsfer cc~~~nQ, i~ G~iDDevel0p 1

C0[E-W co~~?~d 1 ~?D··g pro~rems S-E
c0~ fil~ •·1nd 1 1-o
=Ci'.T' 't!lE:::, C-b

,: ·:· ,,, rr, e , · d -f 1 } E- ~ i 1 - c. , A - 3 1 C - 6
E-,· f<!f,p l i?7 0.f 1 A-3 1 A-!:.
erECl·tin~ fro~ File ~orm, A-~
t?~'.~[_i~Jtj r,i; fr,:,rr, Gh.•i DM?.!!EcQer 1 A-9

,.., i -.
..:.. - l ;,

C D Fu1' ~rid 1 n p u t e f r or 1 l 1 n ~ pr c, gr ~ '!! ~ D - 3
Cc~~~nd line co~~2nds, debwG progr2m, 5-9
Commend line interpreter, in GR1rI•evelop 1 2-1 7
Commar,d
C r,f!H!'1 ~ n d
Commarid

~1nes, in GPiDGevel0p D~bu, to~en~ 1 2-~
lir!es, termir,e1tir1 g 1 H-2
modifie~ char2cte~~, 1n CR1DI1evelop! 2-1t

debug progr~w, s- 1

GRiDManager, A-6
Cow~~nd~ menu, in GRiGGeve]op, 2-16
Cc,n,~~~d~i d~b~g proGr~m 5-4 - 5-~
[o~mands 1 i~s~ing to ~til1ty prog~acsi C-2
r~~~ents 1 inserting 1n com~!nd file~, ~-4
C0mwon, u~lo~d1~g from co~m~nd file~, A-4

~~=~:~!s:~~=m~:~~;:1;_~o~pilers,
3-:

[oq!per~ progr~~, C-6
Compile cons1der~tion~, debug program, 5-7
Compile 4orm, in 6RiDDe~elop, 2-5
Cowpile source '1le! form, ir GRiDDevelop,
Com~iler reference ~aruals, 3-1
Compiler,

Fortr1r,, 3-1
Pascal, 3-1
F'LiM, 3-1

Compiler!: 1

i r.vol.i ng 9 3-3
1~vo!:1ng from corr,m~~d fi}e5, A-4
invoking Mith GR1DDeve]op, 1-3
size controls, 3-li 3-2

Program Development Guide

2-14

ConFas. i rec, 3-4
Cc,nPlm.inc, ~-4

[c,r,trol token, GRi Df.evel op,
Control!:- 1

include, 3-4
~i:e 1n compilers, 3-1, 3-2

Convention=, tile r!Brr,:ing~ 1-:
Count~ breaf.ing e1.t in deb=.tg, 5-':,

Creating catalog file, C-5
Creating G~iDDeveiop date ~ile~,
C~EF program, •-I
[ros1;: reference p~oQr~~, 4-1
CTPL-S, 1n CLI mode, :-17
Currer,t]c,cation 1 d1ple:yir!g !r• det,ug proi;;•-~r·, :,-t
Cur~Dr, for develop~ent e~EC!Jtive, A-2

D

Lh3•!,;;iri 1;f .i-1•;•
dcein87'••Li t'I,·, 3-3

De~ctivate program- [-6

Dtb~G com~Bnd line co~~!nds,
[,ebL11~ command'=,

es~ign v~lue, 5-10
clear breei,pc1r,t (CD[,E-C\,
di 1;:.pl a.y ciddre=-1::- 1 5-9

5-9

C C
,_,- ... 1

di5play ~e~ory contents, 5-Q

dl1p]ic2ttE- line iCC1[[-[i'J, :--6

e ~m1ne/1:~~nge J1·Efl1ory 1 5-11
E- ','. '=' c tit , \' e , C O [! L -E } , ~. - 6
1n'o (COnE- I•, 5-6
Jc,cet!or, di~r,ley •COH-L·,, 5-6
me~ory d~rr,~· 1 5-1(,
tlf:"~:,ge di=pl~y \([l[,f:-M1, ~,-7

1l:':'':'::<1]E tj1 =~·IE!-~- i'[Q[1E-MI ! 5-7

c,~,tic.,r::: ,.cc1r1E-O\, :,-7
prc,cfed \COLiE-P!, 5-7

~~~: 5 ~~~D:~:~;a~-~CODE-PI, •-7 
tf=-t- '::-/=-emEiph0re- di =pl c-y •_CDL1E-T), 

~indo~ toggle (CODE-WI, 5-8 
Debug menu in GRiDDevelop, 2-6 
Debug prog•~rn, 5-1 

command su~mary, 5-2 
compile considerations, 
flleis, 5-3 
Help command, 5-4 
invoking, 5-2 
link con~ide,..c1.tic•r=-, 
pro,11pt sytf1beil, 5-3 
set bre?i:point cowm~nd, 5-5 
syr1tf)', ::,-::', 

lirii prc11~r~•T•, 4-8 
r- £- t, u g to i· en 1 n G F; 1 [1 De • ., f ) c, ~· ; ~ - c 

using com~6r1d line~ ~1th, ~-o 

~ull1,·le, >6 

5-8 

D ,=.. b I'~~ t;• t"' r t j n \'I' I } r g ,; r O IT! I~ R J D ~. e y F 1 0 r1 ' ~· b 
f\1•l1111jqll!I_, n'1 1•,l<"y id'f•fj'cdl\L' f, ~' 

111-1 l fl,,t I I 1, 1 1• ',..,,II tlr/1111. 11' f!IJr r-<111 I 

Gecreasing size of segment ~arning, 
Default menu, GRiDDeve!op, :-! 
Default module, in debug, 5-7 

l1nl pro~r-.am, D-10 

Deli~et~r char~cter~ in fil~ n~me= 1 1-4 
De·{elopme-nt c1pprc,a.ches, !:!lternf.t1ve~-, ;..,-1 
Deve]or•~ent en~1ronment, 

~emory con=ider~tions, A-4 

GRiDDe"elop, 1-3 
DEvelopment eYecutiv~ interf~~e, 5-t 
Development eierut1ve rrogr~m, A-:, C-6 
Develop~ent s~quencE, 1-1 
[,evi ce dr i ·1·ev- 1 modem, C-8 
Device level. ir directorie~, 1-4 
Device=- 1 

~ctivating, C-3 
de2ct1vBti~g, C-6 

D1.fferent public: fc,r e1;t'=rr,ci1 E-r-rc,r, lir,I ~,rc,9r=rr•, D-q 

[1 l f .f E- re 17 ~ V C' 1 ll e: f Gr 1:: y m b c• l ~ t,,I a F n l r, ·~ I 1 ; n ~ pr[• g ·~ '=' ff' I [ 1 - 4 

Direc+.c,r·•l'I typical, 1-4 

D1:pl~y ~ddress c0m~~0d 1 d~bt1g progr~~, S-Q 
Di s p l a y memory cont e Pt s co fl, fl",= n d , debug pr c, gr ci m ; ::, -· q 

Di~play of variables 1 term1neting in debug, 5-9 
Displ~y varl~ble contents, deb~g progr~m, 5-Q 
Displ~ying ~essages, in debug progra~, 5-7 
Displayir!g tasks/se~~p~io~es in debug, 5-8 
[10 progr e.m, C.-6 

using ~ith comm~nd files, A-3 
L1 qL!:!~ge, 3-3 
Durr1~ prograrr!, C-7 
Du~rinG me~ory cont~0ts, d~buG progr~~, 5-1(1 

Pl·p]]cate l1nE commar,d, debug program, 5-6 

E 

Edit source fil,;; menu, GP,D[•evelop, 
Editor, te~t, See GR1DWr1te 
eh87.'\,Li br~- 9 3-3 
El o.psed tiff,e preogrcm, (-7 

Enter to!en, in GRiDDeve!op, 2-7 
Error me=·=age=·, 

!inf program, 4-9, D-1 
4::y!:tem, D-1 

Errorf- 1 

hilting on, 2-17 
5yste1 file, c-: 

E:-:cimlning ]cg file er1trif'=•( 2-1i), 2-lc;i 
Excl~mation point ( 1 l f used in Cat progr?m, 
Executable files, 1-6 

C-5 

E~ecutin~ command line= fr~m GPiD~an?~er, t-6 
E~ecutive comma~d, debug prog~am, 5-b 
E·>·ecutive file, C-7 
E~it from deb0g progra~, 5-7 
Er i t t er ( en , 1 r, G F· i [, I· eve 1 c, p , '.2- 7 
E j t r C1 reg j 5 t f .- j r1 i ~ i e. 1 l = :-: t 1 '=' r, 1-,/ e- r n 1 r, g ' l j r.' r· ,. ,::.· ;·,. :" ri-, ' [ 1 - ;: 

E i: t I'" 2' = t ~ .. t e, d d ,- E- = = l ;;:i r, C, .- e ·~ ..., ~ r r, l !l i;: ! l i n I ~· ' C, i; ,- C' IT, I [; - -

Inde:~-2 Program Development Guide 



F 

i86r~0~Lib~ - f86rn4~Lit~, 3-3 
F:i=tio~d'I linL c~~r,trcl, 4-S, 4-2 
F 1 j e + c,r "1 1 

e):ecut1ng comrner,d i1le~ fron•, A-9 
invo~.1~g applic2tions fro~i 1-5 

Fj l E greiL1 pi;. 1 2-8 
File l.:ind!:- 1 1-5 

il'::-t oi 1 1-6 
l="1le name:., 

~ssumptions in GRiDGevelo~, 1-5 
convention'::\ l-3 
l ~ rt 9 L! a: g e i de ri t i cat i on i n , 1 - :, 
li~t1ng ~ith Cat prDGr~rn, [-& 
restriction in compilers, 1-5 

Fi I e~, 
creatir,g c2teilcig 1 C-5 
((,U,(l',an d, 1-6, A-3 
corr,petr i nq, C-6 
d1ebug prc,gr,;m, 5-3 
du1T1 pi ng 1 C-7 
e•ecutcble, 1-6 
G~1[[1evelop dc-t;, 
GR1['1~rite, 1-6 
include" 3-4 
!itrary, 1-6 
list, 1-6 
fi'i!p, 1-6 
ot,j~ct, 1-6 
c,rgarii:ing, 1-3 

p~inting lists and sources i~ GP1D[Evelop, 2-19 
run 9 1-6 
sy~tem, C-1 
text, 1-6 

Form, 
Change source groups, 2-14 
Compile source files, in GRiDDevelop, 2-14 
JiH: in GFiDD1:velop, 2-q 
Fr-}r·~ li=-t file=·, 2-20 
i::ririt i:.eiurce files~ 2-20 

i="ortran compiler, reference manu~l, 3-1 
i="ortr- ari, 

overlay e~~~p]e, B-5 
run-ti~e libraries, 3-3 

Ftq title suffix 1n GPiDDeve}op 1 

G 

Gc-od tune 1 E-1 
Good Tune to~en, in GPiDDe~elop! 
GF:iD[evElop 

c~]cu]ator mode 

2-13 

comma~d line int~rpreter (C~I· 1 2-17 
(om~ar,ds m2nt1 , 2-16 
cc-mp1le form, ::-5 
d€<~E< 'jle 1 :·-:. 2-3 
dct2 
~ d ! t 

rri3in ff,er11 .. ,, L-1 
tess~ge linE 1 2-11 
o•,· er v1 ew o 4 , 1-:. 
rrerieiined to~ens, :-4 

GPiDDeve!or to~en=! 
Cein~rr,l, 2-5 
Debug 1 L-6 
Enter 1 2-7 
E.l; it, '2-7 
Link, 2-8 
Listing=., 2-5· 
Name, 2-11 
Groups, 2-8 
Log File, 2-10 
Objecte, 2-1 l 
Pre.fix, 2-12 
Print to~ :·-12 
SO LI r CE-=· 1 2-1 2 
TE-~t, 2-15 

GF.1 [;Me,r,~ger, 

co,r1mf<nd:. 1 A-6 

~dding devices from, C-3 
e~ecuting com~and files fromi ~-q 

GR1[:.J,-ite file=, 1-6 
GP1r1 ~J,·itej 

creating comm~nd files with, A-3 
creating source files with, 1-2 
e~ecuting comtand files irom 1 A-9 
i~voking from GRiDDevelop, 2-3 

Group enlarged warning, Jin~ program, D-5 
6roup has no c0Pst1tuent sements warning, l1n~ progra~ 1 G-11 
8roup n~me~. for sci11rce +i les, 2-13 
GroLlps tol;er, in G~1DDevelop~ 2-8 

H 

~2lt1nG on errors, 2-17 
Help comm?nt 1 oetu; progrew 1 5-4 
he~c~r1sta~t 1 debug program, 5-3 

I 

I /[i '='rreir, J J !if program, D-2 
i~Pi 86,E3 Utilities User ·s Gu1de 1 4-1 
J}}E-ge-! .f1\u~, error! )int prog~~m, [1-11 

I 1 l e g c-.1 4 1 ,- up : I n [ 0 r re Ct ,j e C l C' f~ ~ t i Dr· i,J 51. r f! j n Q ' l l r,; pt~ : 1 'J.,. :;, ff• ,; 

!lleg~l c,·•1+:-rJ21y cor:i:.truction er1·or1 }1r1! pr!'.:iQ ... ?1r 1 [.,-c; 

:!:~~;!ru;~.~; :::::~;,c~~~~ □~,;;:~:: ~~~I pr0g,i~, ~-2 

I~pr0rer start adcire:::: ~arning, linl; program~ [-6 
I ft c l 1_1 1:: e c cir• tr Q l ft at t" rr1 er, ts ~ E ;: ~ m ~1 l E:: 1 
Incl0de tile~! 3-4 

lis~ing w1th source file~t 2-13 
nBming conve~tion~ 1 1-5 
or Q ~ r, ! z ! r1 g 1 1 - 4 
f:2~•:2.l, :?,-a 
PL d•~. 3-4 

!nfo ~o~ms~di debltQ progr~~, 5-6 
Inr~t ph~s~ errori li~k prcgr2m, 

':' -= 

F' r o g r a m D e v e l o p ii'. e n t G u i d e 



lnput/o~tput rout1nes 1 

GPiD-DS, '.'-2 
Fi:11=ci?l 1 3-2 

Insufficient me~ory error, lin~. program, 
Intel compiler name re!tr1ction!, 1-5 
Inv~! id :ynt;;.x error, Jin! prog'e~,, D-6 
Invocatior e~~mple!, link progr~m, 4-2 
Invoking co~pile~s, 3-3 

frorri ceirr•ir,!:!nd f i 1 e-= 1 i:i-4 
~i th GF· i [;[;eve] c,p, 1-3 

Invc-l:in1; GF:~DW··ite fro<n G::::int1evelop, 1-3, 
In~o~1ng t~e debug program, 5-2 

JG GP1~Ge•eiop, 2-6 
Invo~ing t~e Linf· progr~~, 4-1 

1~ GFiD[~velap, 2-8 

K 

Kind, see File kinds 

L 

[i-4 

LanguBge identification in file names, 1-5 
LEit-ge =-ize control 1 compiler:., 3-2 
LargeSy=.teff,[E?.1 ls, 3-2 
Lib file ~ind, 1-6 
Libra,-lcin prograrr,, 4-1 
L1br€tr1i:1n 1 1-6 
L1br?r1e'=, 3-:: 

en2-:-, ::--3 
Co~pactSy!tem[alls, 3-~ 
Foi-tre-n, ::S-3 
LargeSystemCalls, :-2 
org2n1: 1 r,g, 1-.:i 
P 2a 5 c c- l r 1_1 I"\ - t 1 rr, e , 3- ~ 

L1Dr2!ry r,ot e-llc-1.,,=-d errci~, l1r,\· progr~rr,, D-8 

Linl, con~1der~ti0~!, ~~bug p~cgram, 5-2 

L1<1i cc,r1troJ=, 
A':=-L!fflfr"[1C1t I 4-4 
B l f1 d ' 4 - 2 ! 4 - 4 
Fe1=tlc•e..d, 4-5, 4-S 
Mc-p, ~-5 
tJ~rr,e ~ 4-C' 
0 1,e,·1~/, 4-4, ~-6 
P,-~r:t, 4-i 
Pr 1 n+.i::c,:1trcl ~. 1 t.-7 
F-1_1..-gE-~ L-5, 4-8 
Se~mE~t Size, 4-2, 4-8 
=urr•ftL:!r / of, 4-3 

Li~! !orrn in GPiLDevelop, ~-9 
Li~I invoc~t1on e~amples~ 4-2 
Lir,I ~-e,~•, 4-5, 4-9 
Lint progr3w, 4-1 

2~~umfr~ot control e~~~pl~, B-4 
e~ror me5=~ge~, 4-~ 
1nveil·ing fro~ corr,mand f1l!s, ~-4 
i~vc,lir,g, 4-1 

overlcy cor,trcl er;;rr,ple, B-4 
pt-int file, 4-5, 4-7, 4-9 
print file, 4-9 
synta~, 4-1, 4-2 
w~rning rne~~ages, 4-9 

Link st~te~ent~, termin~ting in GRiGDeve!op, 
Li n k to! en , i n G F; i D [·eve 1 c- p , 2-8 
Link tcden:, rr,uitiple, 2-8 
Linl'. w~rning messages, D-1 
Link86 error, link program, D-5 
Linler map files, 1-6 
Linf,·er progr,.m, invc,1 ing, l-2 

frorr· GR,DDeve]op, 2-8 

Linking overl~y~, B-3 
List files, 1-b 

pr.inting, 2-19 
Listing titles with the Cat progr~•, C-4 
Listings token in GRiDDevelop, 2-q 
Load progr,,,,, (-8 
Load-ti~e-loc~table m~dule 1 4-4 
Loc~t1on d1splBy comm9nd 1 debug progr~m, 5-6 
Log file tolen, in GP1DDevelop, 2-10 
Log files, e\~rn1ning, 2-1(1 1 2-19 
L!=t e,-ter::i:ior1, i?ppend1ng b/ compilEr=~ 2-9 
L ~ t f J l e ~ .. 1 r1 d 1 l - 6 

M 

H~in ~enu, GRiDDeve10p, 2-2 
hEi.r!u~l=-, compiler referc•1cE-, 3-1 
M?p file", 1-6 
Hi:.<p, ] ~ r:I cciritri::,l, 4-5 • 4-c;, 
~dcu!e:', e~Ecutc-ble, 1-2 
Merr,or y 1 

e : ~ 1 gr, i n ~· v ~ 1 1..1 e ~ i n deb u G r,,,.. o gr 2i IT· '. :"· - 1 ,:1 

>8 

cc•rt=)de!'""at1eir·= 1 if' de"elo~,11-er•t env1r-:-r-rr,er,t. k-4 
c cir· t e r1 t ~ , f • 2 ff• i r1 e I c r1 E- ,, g e i r, d et, L' ~ , 5 - 1 1 
•J~ =~·l =· 1r-,~ Ct·•·ter,t= in debL1:; pr-cgr::'o•"i ! ::-~ 

1__1 := i-- g E I ti y E -+ 1 1 €' 1 C - j 1 
Me~·or} dump com~f~d, detug prcgrfm 1 5-! 
Me r:L• 1 

f;EbL•!~ l r, GF·i Iifie·-,el op, ~-6 
G~1[~Eve}op co~meno~, :-16 
GR1DDevelo~ def~u!t 9 2-l 
GPi[1[!e•,-~1or· rr1~1:, 1 :-1 
2~•i[I1E~·E-ic•~ Tre.:!::ier- 1 ~-18 
GF:~[·[•evelop·~- Ed1t Source F1.le 9 ::-2 

Me~~eg~ display com~e~d, delu~ ~r0gr3~, ~-7 
Me==:2ige lir,e, di:.p}e-·~·ini~ 1n GF.1[•De1.•elc,p 1 :-!! 
Me==-sges, 

lird er-ror=-, 4-C:-· 

link ~~rn1ng=, 4-Q 
"'3rni r•g, [1 - l 

Modem, 
~ctivE-t1ng, [-~­
device filE, C-8 

Mc:,dulesi 
d~bUG progr~m, 5-3 
rortra.n, 
1 i r• 1 ) r-. Q 

F' - ~ C ~ ·1 I 

7 -, 
_, -,_1 

Mf:'l file- i r1d, J-6 1 4-5 1 .i:-7, 4 q 

Indeo:-4 Program Development Guide 



N 

N;:, me 1 

a:suo,,,t 1 □n5 1 n GF'1 fi[>evel op, 1-:, 

l!nl cont•ol, 4-6 
ti;l.en, eiemple c,l u:e-, 2-11 
to~en, in GRiDDe~elop, 2-11 

N~mes, 1dding J~nguBge identification to, 1-5 
Naming conventio~s, 

for incl~de files, 1-5 
for source file~, 1-5 

Neo,,ng •i!es, 1-4 
Nam1~g r~strict1ons in co~pilers, l-5 
Ne st~rt addres~ specified WBrn1ng, linl progra~, L-1: 
hieit ~.r. Ctt-ject ii lt er,·or, linl preigr~mj D-7 

0 

c:~~· e;'t'?r•sl~tr,, eo~·~1end1r,,1 Ct'/ CO!T,t'·ll?---1::, 

Ot,; .- 1 le \ 1 n C, 1- 6 
Obj':'ci_ f1je =·l:e, 

Ot,Ject lile=, l-6 
·:- 0 g;;n1"r,g, 1-4 

[1 t· ~· f c t "' ~- "." t.' , e = , l i r• I· i n g 1 1 - : 
Ci i:· ~· e: t = t ,:, ~ e ~ , i r. G ~-' J =· [, e v e] c, p , ::· - 1 ~ 

(· + + 1:" f, ~ t ~ . 1__, p [•,_.EI'" f 1 c, r! l'J ~,.. r1 i ri G ' l 1 f· I ~· r c, gr e, rr, ' ~- - l 1 
Ci~·~] er,= C C•fT <T-~r-o I 

c~t,i•g p~~i;,r:=rr, i 

[,:,=,v~r]~·/ p1·0cE-•j1_,,,.=-, E,-1 

C1 ~ :- ; ~ i.: ,,. C· •: !: , i r, C 1 -

L= :: ; • .:. :: T -: ~ ':':: , ! n C 1 - .:.. 

( 1 \.• t r: ( t .c. i 1 e 1 :. -::. 2- ri, f c -:: ~ 11 p 1_i t .; i '. e e- r r ·:· r 1 l 1 r, I ~- r o G r ~ fi: ~ 

[ive:·iepp1ri~ dcit~ ~-e:o(d::. 1•1::<_rninr;, liq! pr·c,gr~_rr,, D-13 
G ·1 e,,. l c y, 

~c,rtrcir, e•'!:'if•ple OT f:-S 
1 i r,~ cc,qt•·oi, 4-4, 4-Q 1 8-:. 
P ,j ~- c a l e -,. <:11!"• p 1 E c, f I B - 2 

[,,er! <'Y=, 8-1 

p 

c,ddi ti c-ricil cc,r•s1 der-8~] er,~ 1 

bre~.hpc,1 r,t s, B-4 
debugging, B-4 
l inkiPg, B-3 

:,r.clude file:j 3-4 
o•e•l8y e•~~p:e, B-: 

PL/1'1 cornriler, reference f!lu,ual, 3-1 
Pl~ title !uffix 1n GR1DDe•elop 1 2-13 
PU'llit s. inc, 3-4 
Possible overlap warning, l1nl progreo, ~-8 
Predefined to~ens in GR1DDevelop, 2 4 

Prefix progra~, (-8 
Pref 1 x tot·en 'l in GF.i DDevel op, 2-12 
Preprogrem1~d !Df~ey!, [-9 

Pr1nt fi}e s;rne as input file ~arn!ng, l1D1 program 1 D-14 
Print tile :-an,e a=- c,utput -file error 1 l1r,~ prc,grcirr: 9 [:-14 
F' ri r: t f i l i;, , I i r-!. pr c, gr,;_•· , 4 - 5 , 4 - 7 , 4 - c; 
Pri~~ list file~ iorm 1 2-20 
Pr1rt so~rce iiles form, 2-20 
Pr1nt to tol·en, in 6PiDDevelop, 2-1: 
~r1nt, l1r!f: CDf'l'trcii, 4-7 
~r1ntco~trols, Jin~ control, 4-7 
F-r1nt~n~ ~1le:. 1n GPiI,De-veleip, :·-1s· 
Proceeci corn~~nd, debug program, 5-7 
~1ro•=N2~e 1 debt:g progr~m, 5-3 
P .- c· g'" ~- fr• , Pc-~:.~:; de c 1 c< rat 1 on 1 

r~0gr~m~lng soft~eys, C-9 
~rogr~ms !UbJect, C-1 
Pr- ,:.1il!p L 

Pi.1 b 1 ~ c 

::frr·bcil, for devel oprr1er.,,:: e:-:ec;_-~ i •-'E, (:.- :=' 

recorc:1:-. l1r,i progre,1= 1 4-8 

Pub~lC ~y!f,t-c,l:: r'.e+t '=·C'.1f""t~d ...ie.'.·n2r-,~; ~i~,f ~-rc,,1r·e;:, [;-1= 

P1Jr-ge, l1r,j cc,r,trc,1 1 4-5 1 4-E. 

Q 

l• 1_' ':·: t l '.:.' r-. ,1,? r f 

GF1f1Ge~elcp c0~m!G1 ~:,01~ !~ 

u~ed 1r c~t p~r;~~~\ C-5 
~2t c~~~~~o 1 debu; p•-0g~;~ 1 

R 

FE(3cl, F-::::c~l proc~dure-:-, 3-2 
Feg1ster display cc~~a~d 1 debug progr2m, 5-~ 
F:eg1:.ter 1ri1ti2il1zcitic•ri c::d= e;-.1~-~s i.1:-.rri!ni;-, 

Regi~ter, debug progr~m, 5-3 
R~~trict1on~ on f1le ra~~s ?n corr~1ler~ 1 1-5 
f;•c,,:,t file, 4-, 
Root ~odules, B-1 
Pun file ~1nd, 1-6 
RL1n-time }jbrar1e~ 1 

Fc,rtran, 3-~ 

s 

S::.rr,e c '/'="P'" 12'.) n:<!T!E- t'(rC!r 1 1 l l!~ t-•rc-~r,:rfT, 1 r,-·~ 
S>:-(~,.-,~r,t t 

combination warning, link p~ogram, P-3 
overflow Mi•ning, l1n~ progra~, D-6 
size □ vErflow errc,r 1 lln~· program, P-10 
size underflow error, link program, D-10 

Program Development G~1de Indey-5 



Segment Size, I ink control, 11-2, 4-8 
Semaphores, displaying 1n debug program, 5-8 
Semicolc,n (;), 

SRiDDe•Elop command modifier, 2-16 
using in command files, A-4 

Sequence, development, 1-1 
Serial, activating, C-3 
Set brea~point cornmandi debug programi 5-5 
Size controls, cornpiler~ 7 3-lf 3-2 
Size o• group exceeds 64f warning, link progra1, D-11 
Size 1 st~c~ segment, 4-8 
ScftL .. ey=, 

file, C-q 

fl\Ulti~le files, C-10 
prepr0gram~ed, [-Q 

Sound, ~-1 
Source J 1 le group=-, 2-8 
SouF"CE- fi}e:::, 

compi.!1'.lg 1 !-: 
cre?t::ng, 1-2 
ec1ting fro~ GF·1DDevelcp 1 

nE\l!•ir-1; conv=-r,t1c,n5f 1-~5 
o.r-gtr1iz1ng, 1-4 
print1r!g, 2-1c; 

So~rce grou~ na~es, 1n GRiDDeve!0p 1 ?-13 
S·c•ur-ce gr-c,up=-; C!!:--.nging, 2-17 
S.ci1_1rce::-. tD! E'f! I 

1n GRiD~evelop, 2-12 

Spec:1i-1ed =e-gr-1ent nc,t +:::,u.nd e,-ro•-, lln!· prc,~,-~rr•~ G-1(• 
SS !see Seg~ent S1:e) 
Staci ovErfloV" er!-or, lin~:. prugr2rr·, D-:1 

Stcic~- =-eg,1,er t, 4-8 
St~tLl= prQgra~, C-10 
Subject level, in directories, 1-4 
S~ffi~esi title= in GRiDDevelop, 2-13 
Su~marize program, C-11 
Summ~ry of co~mand~, debug program, 5-: 
S L1 rr1 m ctr y ,:, f l ~ ri I co r, t_ r c· l '=· 1 4 - 3 

Sy~bol=i rE~olv1ng during overlay l!n~:si 
Sy r1 t a>'. ~ 

d~bug progr~ij! 1 5-3 
sy!tEm utilities, C-1 

Syste~ errors file, C-2 

T 

Te.~l:~-'sE-mepho1""E di=-plcty ct•f!•il1!:'.nd 1 debug program, 5-8 
Te,·rn10~tl~Q l1nl stateIDe~t=, in G;1DDe~elop, 2-8 
Te::t rn'=r''.li in G~:1DDevelor· 1 2-15 

Test token, 1n GR1DDevelop, 2-15 
TestNa~e token, in GR1DDeve]op, 2-15 
Text editor, !EE GR1DWrite 
Ted file- !ind, 1-6 
Time prog,am, C-11 
Ti a,e, el 21~1=-ed I C-7 
Titlr level, in directories, !-4 
T 1 t 1 e :. !..' f .f 1 x es i n GP 1 DD.Eve l op , :· -1 3 

Title:, 
l1st1ng with Cat program, C-4 
n~mir,g, 1-4 

Toggling ~indow! in deDug, 5-8 
Tolen! 1n GP1[Develop, 2-4 

B ~. d t LI n e , 7 - 5 , E - 1 
Cor,tt-c,l, 2-~1 

Deb1.1g 1 2-6 
Er:ter, L'-7 
Ent_, ?-7 

G c, c, d Tur, e 1 : - 7 1 E- 1 
G,.c,up~, :-8 
Lint· 1 2-8 
Ljstir1g=, 2-9 
Lo~ File, 2-10 
N,:1rr:e, 2-11 
Ot,JE·:t:, :-11 

Fr-ir:t t1:i 1 .=-1-=: 
SoJrc~ ;roup ns~e~, 2-13 
·:iour-ce=-, :,-1::::: 
ie=-t4 :·-!5 

Tero IT12!!\; 0·•11:'f l !:'y:: e ... f" Dr; 11 nl progr2-rr, = D-t;i 

Ti-c1!-•=.+e,- f.!e-!u! 1r, G~_iDD~ 1.,elc•p4 :-18 
Tu r1 e 1 

be.d, 2-5 1 E-1 
gc,od 1 2-7'! E-1 

Two m 2 n '/ m ,:i i n mod u} -=- ::. ii'/ E! r n i f1 g , l 1 n k pr ogre rr, 1 [ 1 - 1 .'j 
Type dE~cription too lo~G error 1 l1ni prog~2~ 1 D-6 
Type mismatch w!:lrning, Jin~- progr2i~!v r!-.3 
Typical directory, 1-4 

u z 

Unload progrs~, C-12 
Un]c,Eod1ng commern 1 from cc.imiT•and fi]e!:- 9 A-4 
Unres0lved symbol~ w~rning, li~~ program, 
User-oef1ned to~ers, 1n GPiDDE~elop, 2-15 
•1t\lit1e!, 1AH 8c:,88, 4-1 
Utlllty prc,grarr,s, C-1 

~1l~cards in, C-2 
VE,,1':'ble=-, 

e'=-~li;ning vf!lue!: in debug progrrm 1 5-1 
d1c:pJ2iyir,g content=- of in debug, 5-9 

verN~~ei debug program, 5-3 

W~rn1ng mess,ge!, l1n~ program, 4-~ 
Wildc1•d! in utility progra~s, C-2 
Window toggle com•and, debug prog•~~, 5-8 
Window, elternate in debug prograffi, 5-7 
Work program, C-12 
Write, P~scal procedures, 3-2 
ZZZDEBUG Ii l e5, 5-3 

Program Development Guide 




