GRiD OFPERATINMG SYSTEM (GRiD-085) REFERENCE

APRIL 1985

Hanual Hams
Order HMumber:
Tesue date: &

publicetion may be

Ho part of thi
t any form or by any

transmit

7
or otherwise, without the prior wri

]
B0

The information in this document is

MEITHER GR:iD GYSTEHWS CORFORATION MOE

WERFANTY, INCLUDING, BUT NOT LIMITED

BUALITY, OR FITMESS FOR A& FARTICULAR

representation as to the accuracy

The foillowing are trsdemsrks of &

The followin

ar
orooration has no obhligation to upnda

03
5]
[y
(s
i
3
=5
i
5
Y
-
g
i
=+
=4
]
i~
]
t—

DOCHMENT

&, GRi

i
i
-
£
]

"

HE ITHPLIED WARRA
as b &y

hi

ull

TERLLE OF CORNTENTS

CHAPTER 1: AN INTRODUCTION TO THE GRID OPERATING SYSTEM (GRID-0S8)

Features of GRID-05. . . . & & o o v v & & 4 4 a & & « w o &

Data TypEE + o & o & 2 o & = & o o & o « o & & & & » = =
Short Strings « « « v & & o o = w 4 & & & = & s s 5 s
The Bytes Type &+ & o v & v o & w v o s & 5 w o & » & & =

1
o LA o

bbb pes e
I

CHAPTER 2: PROCESSOR AND MEMORY MANAGEMENT FACILITIES

Frocessor Ménagement « a s mw w v e e s w o om o ow s s s w 2-1
Bhat Is a Process o o ¢ & & v & o v & & & & 2 = = = & » 2-1
Frocess Scheduling ~— an Overview . + o « o « o o s o » 2=2
Creating Deleting and Executing Processes . . -« . « . «» 23

3
|
$

Meszages —— Sending and Receiving « o « « v s & o = & » o =
Message ClassEs o & v o« s v « w o o % o s = « » &«
flessage Trancsfer Example . . .« « o o o & & ¢ 4 « a4 & &
Fassing Motes o - & o v« s & 5 & o o &« & & n = & 2 & =
fieseage Format . o + & v v o « w v & & 4 o & & s o @

Creating and Using Semaphores .+ v o o &« & & 5 5 o & & & = =
Semaphore Mote FRssIing o « ¢« @ =« & & & & & 2 & s & o a

Hemory Hanagement Facilities . o & o v &« o & & & & & o =

i T
B

1
Ln

SV SN LS B UL S B 0% I

~Ewd oo

CHAPTER 3: DEVICE AND FILE MANAGEMENT FACILITIES

Fathrmames . . v o o & & 2 2 2 « « a a « s s 5 a & » « « o o &

Devices « v ¢ & & ¢ & & & = s
Subjects and Titles
File Kinds . . + + & & & & & & + =

L] u n - “

An Overview of File Management Calls . .

Operating on Files
Current File Position Marker
Operating ocn File Directories

CHAPTER 4. WINDOW GRAPHICS

Setting Up Windows
Alternate Windows .«
Clipping Rectangles
Text Graphice « . « -~ « « + .« .
Character Fonts . .« . . « « . .
Line Graphics « . .
Fixel Graphics
Coordinate System
Data Structuwres

CHAPTER 5. CONSOLE ROUTINES

CHAPTER 6.GENERAL UTILITY CALLS

CHAPTER 7. GRiD-0S PROCEDURES AND

BaseLine+ . « « + &« + &« &
CharHeight « « ¢« &« &« « « .
CharWidth « « + « « « « &
ConCharlIn . . + & « & & & & &« « .
ConCharDOut . . . o ¢ « ¢« & =« « &+ &
ConDefCer . o « v & & « & & o &« =«
ComHexOut «
ConkevFressed « +» « & & « » -«
ConLineIn . . . « « + & & &« « « &
ConLineOut . . - . ¢ « &« o « « &
ConMoveCsr .« & v o « & o o o o = «
ConFPeekChar . . . « « + &« & « « =
ConResetDisplay . . « + « « « + .
GetConscleState « .
LingHeight
OsAddDevice . & « « « & & «
OsAllocate « .« & & v & & w w & o
OsAttach « &« v & & o o v & v & o =
OsCallDriver . . + v & o & & & & &
OeChangeExtension . « - + « « .
OsClose -~ . & & & & « & o o = o =
OsCreateFrocesse + + ¢ « o o o«
OsCreateSemaphore
OeDecodeException « « « + &« « & .

3

m .] “

a =
® u o=
w m -
" w "
s @ "
a & a
® & @ @® &
= w & &
a & a

FUNCT IONS

" "
a an & & w
- e &
P "
® w = ow
a & = @
e & & &
« &

« o n
= mn & o a
= & w
e =
a & & w
a m u
- e a w
“ a w oW
LI -
v & a s w
PR
v = = &
a = & =
- "
L
" oA

i
]
I

|
&

!

L Gl Gt D L
o0
oo &

!
o-

.....

7-15
7-164
7-17
7-14
7-19

(=helay . . . « « & « &
(Oelelete -~ . . « + « .
O=zDeletefrocess
OsDeleteSemaphare . . .
Oshetach - . .
OsExit & « & = o o o .
DeFlushallbuffers . . .
OeForkProcesse . . .+« .
OsFree « - .« .
OsGetéroument . .o o . .
OzGetMemStatus
OQeGetFrefix o . .+ « . .
OeGetProperty . « « « .
UeGetlize & & « & & o
QeGetStatus
O=GetSvetemlD
OeGetTime - .« .
OeGetWork . . o+ « « &
Osl cokUphame . - « - &
{sHandlelCancel
fizMatchWildocard
Oslipen = - - = v & « =
Oelverlay . « « « « « &
QeFfutFraoperty - + « o«
OsRead . . . « + « « .
OsFeceive © + &« & 2 &
OskegisterMame .~ . . .
(sRemovelevice
OskRername . . . « - « .
O=Seek . . « « « « o =«
Os%end . . « « « « .« .

OsSetFriacrity o o o« « .

o
OsSetbtatus & . . o W .

Sigral « ¢« & + o o«
QefwitchBuffer
OeTruncate« .« .
Osbait . . . - « - « .
OsbhofAml .« o o ¢ & o .
Oebrite . . o . « & & 4

WinAllocateWindowMemory

WinClipline
WinClipRectangle . . .
MinCopvRectangle . . .
WinCopvRemoteRectangle
HinDrawChar . . .« o« o
WinbrawChars . . . « .
Winlrawline
WinDrawFixel
bhirnErazeChar . . - . .
WinEraseline «
WinkEraseFixel
WinEraseRectangle . . .

~

7-39
7-40
7-41
742
7-43
745
7-47
7-49
7-50

7-52
7-53
7-54
7-55
7._.
-

0 oo

|

|
U‘U‘U‘*D‘D‘E:UIU'ILHU‘,U!LH

S NS N SN

i
o~ o~

|

s B *'lxi ~l
RS s s BN s L U R S S|

I

.

!
R I RN

RTINS

fot

el

o]
T

Mindowlyp

INDEX

it

CHAPTER 1. AN INTRODUCTION TO THE GRiD OPERATING SYSTEM (GRiD-0S)

The GRiD Operating Svstem (GRiD-05) has been designed to support GRiD's
application programs., such as GRiDPLAN, GRiDFLOT, GRiDWRITE, and GRiDFILE, and
to simplify the development of other application proagrams using anv of the
available languages {(Fascal, PL/M. Assembly, FORTRAN, and C).

FEATURES OF GRiD-0S

GRiD-05 is essentially a resource management tool that simplifies memory
management, and device and file management. Additionally, GRiD-08 supports
multitasking and provides & variety of system utility services.

Table 1-1 summarizes the system calls provided by GRiD-05 and indicates the

chapter where an overview of the calle is provided. Detailed descriptions of
all system calls are provided in the alphabetically-ordered Chapter 6.

Introduction 1-1

Table 1-1. A Summarvy of GRiD-05 Calls

PROCESS0OR AND MEMORY MANAGEMENT {(Chapter 2}

OsCreateProcess

OsForkPFrocess
OsDelay

OsSetPriority
OsWhoAmI

OsDeleteFrocess
OsExit

OsReceive

O=Send
OsCreateSemaphore
Oslait

NsSignal

OsDel eteSemaphore
OsAllocate

OsFree
O=GetSize
OsGetMemStatus

Creates a procese by loading a program from mass
storage.

Creates a process from a parameterless procedure.
Suspends execution of a process for a specified delay
interval.

Changes the priority of a process.

Returns the identification number assigned to a
process.

Deletes another process from the system.

Deletes the current process from the system and frees
its resources.

Suspends execution of a process while it awaits a
message.

Sends & message to another process.

Creates a semaphore for use with OsSignal and OsWait.
Suspends execution of a process while it waits at a
semaphore for an OsSignal.

Signals a semaphore to allow a waiting process to
proceed.

Deletes a semaphore.

Allocates from 1 to 64k bytes of memory to the
requesting process.

Deallocates a previously assigned block of memory.
Feturns the size of a particular block of memorv.
Frovides information about memory allocation.

DEVICE ANMD FILE MANAGEMENT {(Chapter 3)

O=httach
OsOpen
OsRead
OskWrite
OsSeek

OsTruncate
fI=sFlushAllBuffers

OsRename
OsChangeExtension
O=Close

OsDelete

OsDetach
OsGetStatus
(s8etStatus

Makes a device or file available to a program.
Allocates buffers for an attached file.

Reads data from an open file.

Writes data to an open file.

Changes the point at which a subsequent access of an
open file will begin.

Deletes data from the end of an open file.

Writes the contents of memory buffers to all open
files.

Changes the name of an attached file.

Changes only the extension portion of a file's name.
Closes and deallocates memory assigned to a file.
Deletes an open file from the system.

Makes a file unavailable to programs.

Frovides summary information about an attached file.
Ezstablishes device specific status information
associated with an attached file.

WINDOW GRAPHICS CALLS (Chapter 4)

Haseline

1-2 G6GRiD-05 Reference

Returns the baseline position of the current font.

CharHeight
CharWidth
LineHeight

WinlInitDefaultWindow

WinSetWindow
WinFrameWindow

WinEraseWindow
WinScrollWindow

WinGetWindowExtent
WinSetClip

WinResetClip

WinEraseRectangle

WininvertRectangle
WinCopyRectangle

WinScroliRectangle

WinSethlternateWindow

WinCopyRemoteRectangle
HinAllocatelindowMenory

WinDrawChar

WinEraseChar
WinInvertChar

WinDrawChars
WinloadFont
WinSetFont

WinDrawlLine
WinErasel.ine
WinlnvertlLine
WinDrawPixel
WinEraseFixel
WinInvertPixel

Returns the height of characters in the current font.
Feturns the width of characters in the current font.
Returns the height of a character line in the current
font.

Clears the window, resets the clipping rectangle, and
{if sgpecified) draws a one-pixel frame surrounding the
SCrEer.

Sets the window size to the rectangle it receives as
an argument.

Draws a one—pixel frame outside the current window
bounds.

Erases the contents of the current window.

Scrolls the entire window in the given direction by
the distance given in pixels.

Returns the dimensions of the application’s current
window.

Sets a clipping rectangle within the window
boundaries.

Resets the clipping rectangle to the entire window.
Erases a rectangle in the window.

Inverts the bit-map area inside a rectangle in the
window.

Copies one rectangle into another rectangular area of
the window,

Scrolls a rectangle in the given direction by the
distance given in pixels.

Forces all subsequent window calls to be performed on
the alternate window specified.

Copies a rectangle from one window to another.
Allocates memory for an alternate window.

Draws a character in the window at a specified pixel
location.

Erases a character position.

Performs an inversion of all the pixels of a character
position.

Outputs a character string of a specified length from
a text buffer to the screen.

Loads a font file into memory and returns a pointer to
the font.

Sets the designated {previously loaded) font as the
cuwrrent font.

Draws a line within the window.

Erases a line within the current window.

Inverts all the pixels on the given line.

Draws a single pixel at the given window coordinate.
Erases a single pisxel at the given window coordinate.
Inverts a single pixel at the given window coordinate.

CONSOLE CALLS (Chapter 5)

ConkevPressed
ConChar In

Telle vou if any key on the keyvboard has been pressed.
Waits for one character to be typed on the keyboard

Introduction 1-3

ConDefCsr
ConResetDicsplay

ConMoveCsr
ConCharQOut
ConLineOut
ConLineln

ConFeekChar
ConHex0Out

GENERAL UTILITY CALLS
OsGetArgument
OsSwitchBuffer
Os0verlay
OsGetSystemID
OsGetTime

OsGetWork

OsFegisterName

OsbookUpName

OsDecodeException
OsHandleCancel
OsMatchWildcard
OsCallDriver

OsAddDevice
O=RemoveDevice

OsPutProperty

OsGetFroperty

1-4 GBRiD-0S5 Reference

and then returns that character.

Turns the small cursor character on or off.
Clears the screen and displays the cursor character at
the top, left hand position of the window.

Moves the cur=sor to the specified u,y character
position on the screen.

Dutputs the supplied character teoc the screen at the
current cursor position.

Outputs the number of characters specified by length
to the screen.

Inputs the number of characters specified by length
from the keyboard.

Returne the first character in the keyboard queue.
Outputs the supplied hexadecimal value to the screen
at the current cursor position.

Scans and parses the contents of the command line or
other designated buffer.

Changes the buffer that OsGetArgument operates on.
Brings a subprogram into memorvy.

Returns system identification information.

Returns all information from the system clock.

Returns a pointer to the current "work" device used by
compilers and the link proagram.

Registers a name and a small amount of associated
information.

Looks for a name that has been previously registered
and returns some information associated with that
name.

Translates an exception number into an exception
message.

Specifies whether the system or application program
will handle CODE-ESC.

Compares a target string, for example a file name,
against a string containing wildcard characters.

Used by device drivers to pass device-specific
requests.

Adds a device to the system®s table of active devices.
Removes a device from the system s table of active
devices.

Sets a system property such as screen frame or time in
the User™“Profile™ file.

Examines a system property such as screen frame or
time in the User™Profile™ file.

DATA TYPES

The descriptions of the system calls in this book use the data types defined
by Pascal-8& (which include some extensions beyond those of standard Fascal).
Your calls must supply parameters meeting the specifications of these data
types as defined in Table 1-2.

Table 1-2. Data Types for GRiD-0S Calls

Type Description

Boolean Simple ordinal with predefined values of False (0) and
True (1).

Byte An enumerated type defined (0,.258).

Integer Simple ordinal of two bytes in the range -32767 through
+32747.

Char A simple ordinal defined on the ASCII character set.

kbWord Simple ordinal of two bytes. Integers in the range ©

J B NVET

through 63535. Unsigned.

fLongInt Simple ordinal of four bytes in the range -2,147,483,647
through +2,147,483%,647.

Fointer In Fascal, must be declared by the programmer as a
pointer to some defined type.

¥ Indicates a Pascal-B86 extension of standard Pascal data types.

ShortStrinos

The ShortString type is simply a collection of bytes, the first of which tells
you how many data bvtes follow. It is used to describe any sequence of bytes
where the first byte (also known asz the "length” byte) represents the number
of bytes (0 -~ 255) in the seguence (excluding the length byte). Thus, this
type is often used to interface to operating system routines that require
ASCII names (such as filenames) which don®t have a standard length.
ShortStrings are different from (and should not be confused with) strings
found in the Common Code routines and in some versions of Pascal or C.
ShortStrings can be defined as:

ShortString = RECORD

length Bytes
Chars & [G..255] OF Char:
END

[

Introduction 1-

When vou call a GRiD-0S routine that expects a parameter formatted as a
ShortString, vou must pass the parameter by reference rather than by value.
That is, vou pass a pointer to the shortstring rather than passing the
structure itself. Since many routines accept ShortStrings shorter than the
maximum length of 255 bvtes., vou can often declare shorter versions of this
type to save memory space.

Bytes

Pascal-86 defines one special data type to override standard Fascal’s rigorous
type-checking. It is the Bytes type. HMNote that this is not the Byte
(singular) type. The Bytes type is not part of standard Pascal.

A& parameter of a procedure or function outside of any module {(such as & svstem
call) can be defined to be of type Bytes. This lets vou pass any type of
variable as a parameter and bypase Fascal’s normal tvpe-checking. FRegardless
of the parameter type actually passed, it will always he passed by reference,
not by value.

Some of the operating system routines reguire the Bytes type because it is not
known ahead of time exactly which tvpe will be used. Use great caution when
passing a pointer variable as a parameter which is of the Bytes tvpe. The
Bytes parameter is thus acting as an untyped pointer. For example, OsFree and
OsSend use Bytes parameters so that they can accept a pointer of any tvpe.

The pointer must be dereferenced {(use ™ at the end) to ensure that the correct
value iz passed. The program erxample below illustrates the right (and wronag)
way to pass a pointer toc a VAR RYTES parameter.

NOTE: The Bytes identifier can appear only in an external module’s PURLIC
section: see the Pascal-86 manual for & detailed discussion of the Bytes type.
MODULE BytesExamples

{ When passing a pointer to a "VAR BYTES" parameter

{ such as "VAR ch: BYTES" below, remember to dereference
{ the pointer, or the wrong code will be generated

e L N

{ From WindowFrocs. Inc ¥

PUBLIC Commong
FROCEDURE WinDrawChars (VAR ch: BYTES; count.x.v: Integer):

PROGRAM ByteszExample:
CONST someletters = °abcedfghij:

TYPE SomeTextType = FACKED ARRAY [1..101 OF CHAR;
SomeTextTypePtr = “SomeTextType:

VAR someText : SomeTextType;

1-6 GRiD-05 Reference

someTextPtr : SomeTextTypePtr:
BEGIN
someText := somelLetters;
NEW (someTextPtr);
someTextPtr™ := somelLetters;

{ correct

WinDrawChars (someText, 10, 100, 100)j
WinDrawChars (someTextFtr~, 10, 100, 150);

{ incorrect %
{ WinDrawChars (someTextPtr, 10, 100, 100)3}

END.

Introduction 1-7

CHAPTER 2: PROCESSOR AND MEMORY MANAGEMENT FACILITIES

Two critical resources of the GRiD Compass are the central processing unit and
system memory (RAM). Ultimately, the efficiency of the entire system depends
on how efficiently you utilize the power of the central processor and how you

manage the available memory.

PROCESSOR MANAGEMENT

GRiD-0S maximizes the power, or throughput, of the central processor by using
a multi-tasking technique —-— the various activities that the system must
accomplish are broken into individual tasks or processes. You assign each
process a priority which determines when it will be given the use of the
central processor. This technique ensures that the central processor is never
idle and is always working on the "ready" process with the highest prioritv.
(We’ll describe the precise meaning of "ready" in a few paragraphs.)

Tvpically, many of the processes in the system must interact with one another.
They may have a need to share data, pass information back and forth, check on
the availability of information from another process, wait for the occurrence
of some external event, and so on. Therefore, in addition to scheduling
procese access to the central processor, GRiD-0S provides the synchronization
mechanisme of message passing and semaphore signalling.

In this chapter., we will describe how processes are scheduled, how they are
created, executed, and deleted. and how information is passed between
pProCesses.

WHAT IS5 A PROCESS?
A process is an executable entity consisting of some data and some executable

code, and requiring its own set of regicsters and its own stack area. Since
the GRiD Compass is a single processor system, only one process can be

Frocessor and Memory Management 2-1

executing at any instant in time. However. many processes can be created and
exist simultaneously within the system: GRiD-0S controls the scheduling and
execution sequencing of multiple processes.

Process Scheduling —— #&n Overview

GRiD-0S5 performs process scheduling whenever any process issues any system
call or when an event which a process has been “waiting® for occcurs. The
scheduling technique used by GRiD-08 can be defined as priority-based,
preemptive scheduling. It is called priority based since each process has a
priority rating assigned to it when it is created. GRiD-05 examines this
prioritvy whenever it does process scheduling to determine which process should
be the current, running process. The scheduling algorithm is called
preemptive because BRiD-05 can preempt the current process whenever
rescheduling ococurs.,

There are many system calls that affect process scheduling. We will give a
brief overview here of the technigque used by GRiD-05 to handle multiple
processes. Details of the calls that affect scheduling are provided with the
description of each call in Chapter 6.

The following illustration is a simplified state diagram showing the three
possible states in which processes can exist. It also shows 11 possible

transition paths that a process can traverse as it goes from one state to

another:

READY

K 4

b,

(%]

&

WARIT RLiH

£

FIGURE 2-1. Process State Diagram

Since there is but one central processor in the GRID Compass svstem, onlvy one
process can actually be executing at any given moment. This process is
sometimes referred to as the "current” process and its state is referred to as
the "run" state. All other processes existing in the system are either in the

2~2 GRiD-05 Reference

"ready” state or the "wait" state.

Note in the preceding 1llustration that the run state is indicated by & single
sguare, while the ready and wait states are indicated by several concentric
squares. This convention indicates that there can be but one process in the
run state, while there can be any number of processes in the ready and wait
states.

811 processes begin thelr existence in the ready state. Transition #1 to the
run state occure when the procesz becomes the ready process with the highest
priority. The process remains in the run state until (transition #2) a
process with higher priority enters the ready state, or (transition #3) the
process must wait for some event to occur.

Note that GRiID-05 doess its process scheduling whenever an event occurs that
causes a waiting process to enter the ready state. Examples of these events
are hardware interrupts, reception by waiting processes of messages or
signals, or completion of timed waite by processes. Whenever any of these
events occur, GRiD-0S examines the priorities of the ready processes and, if
any of them is of a higher priority than the running process, the ready
procese will preempt the current process.

When the current process leaves the run state, via either transition path #2
or #3, the next ready process with the highest priority makes transition %1
and becomes the current process in the run state. If there are multiple ready
processes with the same priority, they will be served {(that is, become the
current process) in a first-in, first-out fashion. Each time a system call is
issued, the cuwrrent process retwns to the ready queue and the next ready
process with an equally high priority becomes the current process.

Frocesses in the wait state remain there until the required event {(for
example, reception of a3 message) occurs. When the required event occurs, the
process makes transition #4 to the ready state. If it happens to be of higher
priority than the current process, and than any other ready process, it would
proceed to the run state immediately. Otherwise, it would just take its
appiropriate prioritized position among the other ready processes.

Creating, Deleting, and Executing Processes

The GRiD-08 calls listed below are the basic ones needed to bring a process
into existence {(Create, Fork), terminate a process (Delete, Exit), and
directly affect the execution or running of a process (Delay, Set Priority).

o DsCreateProcess - creates a new process by loading & program from a
mass storage device.

o OsForkProcess - createe a process whose code is already in memory

o OskExit - terminates the current process

o O=DeleteFrocess - terminates a "forked” process

o OsbDelay — suspends execution of the current process

o OsSetPriority - assigns new priority level to the current process

Processor and Memory Management 2-3

Each of these calls i= described in detail in the alphabeticallv-ordered
reference chapter (Chapter &) of this manual.

MESSAGES -- SENDING AND RECEIVING

GRiD-0S provides two calls that let processes transfer messages between one
another. The OsReceive call suspends a procese while it awaits a message.
The OsSend call delivers a message to a waiting process.

GRiD-0S delivers messages on a first-come, first-served basis. However, each
message is addressed or sent to a specific receiving process. If the
specified process is not currently waiting to receive a message, GRiD-05 hold=
all messages sent to that process and delivers them (one by mie in the order
received) when the process is receiving. Mote that onlv one message can be
received per each OsReceive call.

You can specify that a receiving prruess accept a message sent only by one
specified sending process or that it accept a message =ent to it by anvy other
process. ‘

Message Classes

Each message sent in the system also is of a user-specified class. The class
parameter is a Word; therefore, you can have up to 65,336 different message
classes. You carn specify that a receiving process accept a message of only
one specified class or that it accept a message regardless of class.

Message Transfer Example

The following figure illustrates the various options you have when
transferring messages between processes:

Frocess ¢
Message Queus Frrocess o
Mezsasge Dusus

i1 3 i

21211 14
= = 2

ER NI 171

415 1 3

F JI

Mess

age class

AGE SO

X

bz
{sending process 1.0,
freiuval oerder

11}

N

b =)
A DR P
S

This figue is a conceptualization of message gueues maintained by GRiD-0S5.
The svystem maintains a separate message queue for each process that has a
message sent to it. In this figwe, GRiD-0S is holding seven messages that

2-4 GRiD-0S Reference

have been sent but which have not vet been received by the addressed
processes: four messages for process 7 and three messages for process 9.
Let’s assume that process 7 issues an OsFeceive call specifying that it will
receive a mecscsage of class 1 from any process. When process 7 issues an
OsFeceive, GRiD-0S would immediately deliver message 4 from its gueue that
was sent bv process S, and move process 7 to the ready state. Messages 1, 2,

and 3 would not be delivered at this point because thev are not of class 1.

ffter process 7 resumes execution, it issues an OsReceive specifying that it
will accept a message of any class but only if sent by process 9. GRiD-0S
will deliver message 2.

The send and receive calls can be issued in any sequence. That is, a process
can issue OsReceive first and then go and wait for another process to send a
message, or a process can issue OsSend to leave a message for a subsequent
process to pick up using OsReceive.

Passing Notes

The message sent by the OsSend call is passed by reference rather than
directly. The receiving process is given a pointer to the buffer where the
actual message is contained. You can, however, deliver a short message more
simply by directly =ending a "note" via the 0sSend call. One of parameters
for OsSend is "note", a Word that is passed by value rather than by reference.
If you have information to pacss between processes that is 16 bits or less in
length, vou can use this note passing mechanism to send the information.

Message Format

GRiD-05 reserves the first 16 bytes for system use. These bytes are used for
the Inter-Process Communications {(IPC) record which is defined as follows:
IPCHMessageType =
RECORD
functionCode: BYTE:
deleteSource: BOOLEAM;

sparel: WORD3
sparel: WORD3
sourcelID: WORD 3
destPID: WORD;
msgClass: WORD3
meghote: WORD3
msglength: WORD3
ENDs
IFCHes=sagePtr = “IFCHessageTypes

The sender should simply allocate these 16 bytes: GRiD-0S will fill in the
values when the message is sent. The receiving process can examine the IFC
record when it receives the message. The first six bytes of the record are
used only when passing messages to remote processes (for example, via

Frocessor and Memory Management 2-5

GRiDLink) and will be discussed in a separate document. The sourcePID can be
examined by the receiving process to determine who sent the message. This may
be necessary if the receiving process has specified that it will receive
messages sent by any other process irather than from a single specified
process). The destPID, msgClass, and msghote entries are filled in by GRiD-0S
using the parameters supplied by the sending process via OsSend.

Beyond these first 16 bytes, the system makes no other assumptions about the
format of messages, nor does it place any restrictions on the message format.
Since messages are passed by reference, their format and interpretation (after
the 16-byte header) are left entirely up to the application.

CREATING AND USING SEMAPHORES

Semaphores let you synchronize the activities of multiple processes. They can
be used to sequence the execution of a number of processes, to implement rapid
responses to asynchronous events, and to provide a mechanism for mutual
exclusion of procecsses.

In railroad terminology, a semaphore is a traffic signal that determines
whether a train can enter a particular section of track. The semaphores
provided by GRiD-0S perform an analogous function: they can cause processes to
wait for a signal before proceeding to execute a section of code.

There are four system calle related to semaphores.

o DsCreateSemaphore - creates a semaphore

o (OsDeleteSemaphore - deletes a semaphore

o OsWait - causes a process to wait for a =signal
o Osbignal - lets & waiting process proceed

There can be as many semaphores in the system as vou want: you’re limited only
by memory availability. Each semaphore you create is assigned a number
(called the semaphore ID, or "sid") by GRiD-0S.

You cause a process to stop at a semaphore by issuing an OsWait specifying the
semaphore number to wait at. The process will wait at that semaphore until
the semaphore is "not busy" {or until a specified period of time has
elapsed). The 0OsSignal call is used to set a semaphore to the "not busy"
condition. A= scon as the semaphore is not busy, a process waiting at the
semaphore can proceed.

When a waiting process is given the signal to proceed past a semaphore, its
passage cets the semaphore to the busy condition. This prevents any other
processe that might be waiting at the semaphore from proceeding.

Any number of processes can be queued up waiting for the same semaphore. Each
time the semaphore becomes not busy, ancother process is allowed to proceed.
They are granted passage in order of their process priority. Alternatively,
you can simultaneously signal all processes that are waiting at a semaphore
and allow them all to proceed to the ready state.

2-&4 GRiD-0S Reference

The functions that semaphores are used to accomplish could also be pertormed
using the message passing facililties of GRiD-05. Semaphores, however,
execute much faster than message passing and are therefore a more efficient
wav of accomplishing process synchronization.

Semaphore Note Passing

In addition to signalling or waiting at a semaphore, the GRiD-0S5 semaphore
calls let you pass a short message or "note” between signalling processes and
waiting processes. One of the parameters for OsBignal is "note", a Word that
iz passed by value to the semaphore. The note will be given to the next
process waiting at the semaphore. Interpretation of the contents of the note
ig application dependent.

MEMORY MANABEMENT FACILITIES

The memory management facilities provided by GRiD-05 provide rapid allocation
of memory while minimizing fragmentation which can produce small, essentially
useless, blocks of memory. The technigue used by GRiD-05 to accomplish these
goals iz a "first fit" approach.

Whenever GRiD-05 receives a reguest to allocate & block of memory, it starts
at the beginning of its unallocated memory list and searches until it finds a
free block of sufficient size to meet the reguest. The first block that it
comes to that will fit the request is the one allocated to the process.

When a block of memory is freed, it is removed from the allocated list and
added to the free list, which is stored in order of increasing addresses. A
freed block of memory is automatically combined, or coalesced, with any
adjacent free memory to form the largest contiguous block possible.

The GRIiD-0S calls listed below are the ones related to memory management.

o OsAllocate — allocates from memory to a process

o OsFree - deallocates & block of memory

o OsGetSize — returns the size of a block of memory

o OsGetMenStatus - provides inforsation about memory usage
Each of these calls is described in detail in the alphabeticallv-ordered
reference chapter (Chapter 6) of this manual.

Frocessor and Memory Management -7

CHAPTER 3. DEVICE AND FILE MANAGEMENT FACILITIES

The GRID-02 file management system provides a uniform and straightforward
interface to all system files regardless of the type of device that a file is
asspciated with. Thus, you can access files throughout the system without
concerning vowself with the characterictice and idiosyncracies of devices.

pdditionally, GRiD-0S provides a "virtual” file system. The system can not
only accese local devices such as bubble memory and hard disks, it can also
access remote devices such as GRiD Server (via GRiDLink or PhonelLink) and GRiD
Central {(via PhonelLink). The application programmer doesn’t have to write any
special code to use these devices; GRiD-08 handles them transparently.

The organization of the file system is illustrated in Figure 3-1. A
hierarchical, three-level structure is utilized. OSystem devices comprise the
uppermost level. Within each system device are any number of directories or
"sub jects", and within each subject are any number of "titles".

Device and File Management 3-1

Gl s 05
FILE S%STEM

DEUICE LELEL
, | .
i | - =
LT = I T
Hard Fortabls Bubble Frinter Miodem GR1D
Oisk Floppy Memora SRS
' SUEJECT LEVEL
L | 1 I T
REETT T Froo ams AEE =t
Eﬂ _J rr"-— =lat= 1 lTﬂ.u.._.,_ Py nal
! TITLE LEVEL !
e ———— I ! e
GREIDHrite GRIDFlan ihugkbuu@
i Tank| [Fun Workeheet Databasé Wokshuee
L______,_L K THO }\ |
Figure &-1. GRID-0S File System Organization
PATHNAMES

A file is fully identified by specifiving its "pathname”. A pathname defines
the route to take when accessing a file; that is, it specifies the device and
subject where a title is located. To a programmer, the complete pathname
schema is as follows:

"device"subject *title™kind™ i password

Three delimiter characters are used in pathname specifications. The left
single guote or "tick" (%) -— ASCII code 60 hex —- must precede device.
subject, and title names. This character is generated on the Compass kevboard
by pressing CODE-". The tilde (™) -— ASBCII code 7E hex —-— must precede and
follow the kind. This character is generated on the keyboard by pressing
CODE-3;. The vertical bar (J) -— ASCII code 7C hex -- must precede the
password. Thie character is generated on the kevboard by pressing
CODE-SHIFT—-:.

NOTE: These delimiter characters were purposely chosen for their obscurity so

that end-users could have most commonly used characters available when naming
their files.

-2 GRiD-0S Reference

I+ & kind is not supplied as part of the pathname, the system uses a default
kind of “Untyped™. The pacssword portion of the pathname is opticnal. If a
file was created with a password, then the password must be included as part
of the pathname.

I vou specify a pathname that does not begin with the tick, the system
assumes that the first name 1t encounters is the title and that vou have left

off the device and subject names. The search for the title will then be
limited to the cwrent directory, that is, to the current “device’subject”.

If vou provide the complete pathname including device, subject., and title, the
sgarch for the file will begin at the top of the virtual device tree (zee
Figure 3-1) —— if the title is anywhere in the system, it will be located.
The maximum length of subject and title names is BO characters each. Subject
and title names can concist of any printing characters {(including spaces)
except the following:
leftt single guotation mark ("tick'™)
™ tilde

: vertical bar

The maximum length of a title includes its two optional extensions of kind and
password.

DEVICES

The devices currently included in the file system are identified as follows:

Bubble Memory The nonvolatile, mass storage built into the GRiD
Compass.
bb Bit-Bucket {(or "byte-bucket") is a null device used

primarily as a dummy device for testing. Data written to
the bit-bucket is accepted and then simply disappears.
Fead operations directed to the bit-bucket return an
end-of—-file.

ci Console Input. The kevboard of the GRiD Compass.

co Console Output. The screen of the GRiD Compass.

Extra Floppy Disk The floppy disk in a system’s second 2101 disk drive.

Extra Hard Disk A svetem™s second 2101 disk drive.
Floppy Disk The floppy dishk drive in a 2101 disk unit.
GFIE General Purpose Interface Bus. The IEEE-488 connector

Device and File Management 3-3

on the GRiD Compass. This device provides access to all
devices that attach to the GFIE connector.

Hard Disk 2101 hard dicgk (Winchester) mass storage device.
Modem The 212/103 modem built inteo the GRiD Compass.
Flotter " The plotter currently attached toc the svstem.

FPortable Floppy 2102 portable floppy disk drive.

Frinter The printer currently being used with the svstem.
Serial The =erial input/output port of the GRiD Compass.
Work A temporary file used by many programs f{for example

language translators, and the linker) to store
intermediate resultes.

Not all of the devices participate fully in the hierarchical structure of the
file system. Only mass storage devices (Bubble Memory, Hard Disks, Floppvy
Disks) can hold subjects and titles. Devices such as the printer or the GRiD
Compass screen, can have files sent to them, but the files can obviously not
be retrieved from such devices. Devices can alec be remote, such as disks and
printers provided by GRiD Server.

SUBJECTS AND TITLES

A title (or file name, as it is sometimes called) is a name given to a file
which might consist of a program, pure data, or some combination of code and
data. Subjects {(or directories, as they are sometimes called) are also
considered to be files —— but a subject is a file whose content=z always
consist of a collection of titles.

All subject names on a particular device are unique and all title names within
a particular subject are unique. That is, vou can have multiple occurrences
of the same title {identical title name) so long as each occurrence is
associated with a different subject and vou can use the same subject on
different devices. Thus, for example, a file titled DataFileA could exist on
both Bubble Memory and Hard Disk. Or DataFileA could reside on the Hard Disk
under Subjectl and SubjectZ.

FILE KINDS

The file kind {(cometimes referred to as file "type") extension to titles lets
vyou give several related files the same title while assigning them different
"kind" characteristics. Interpretation of the kind extension is left up to

the application.

You can directly examine and change the kind externsions of files using the
OsChangeExtension call described in Chapter 6.

3-4 GRiD-0S8 Reference

AN OVERVIEW OF FILE MANABEMENT CALLS

A1l of the GRID-0S calls that are related to the file management system are
described in detail in Chapter 6. In this chapter we will provide an overview
of the interactions and usage of these system calls.

Figure 3-2 illustrates the relationship of the various activities performed in

the file management system.

Fdd Renque
[ham 102 Dy i

1T

Hpen Clonse [elete
- 1 |
1 1
Read Flush ALL Renars
i WiFFers
- i
Write bt
g st atus
|
Seak St
I Shalus
Truncate

Figure 3-2. An Overview of File Management Calls

Operating on Files

In order for a f+ile to exist in the file system, it must be asscciated with &
device. Most files are associated with, and reside on disk or bubble.
However, vou can also send files to printers, plotters, or the screen. Hefore
performing a transaction such as attach, open., read or write on a file, the
operating system must have the approprate device included in its table of
active devices. When the system is powered on, GRiD-05 goes around the system
and adds all devices currently connected to the active device table. If a
device is subseqguently added, vou inform GRiD-05 of this event using the
O=AddDevice call. You can remove a device from the active device takle, in
agrder to free the memory used by its driver, using the OsRemoveDevice call.

Once the appropriate device is in the system, & file is connected to the
system with the OsAttach call. If the file does not already exist, it is
created by OsAttach. After a file is attached, you must open the file {using
Usten)‘befnre vou can perform any activity on the file.

o

Device and File Management

GRiD-0S uses the two-step sequence of attach/open to increase efficiency. The
attach locates the file in the system but allocates no buffer space.
Allocation of buffer space occurs only when a file is opened. #Attaching a
file is a relatively time consuming process but usesz little memory space.
Opening a file iz guite fast but consumes more memorv. Thus, a program can
keep many files attached but, by having only one file at a time open, wastes
no buffer space. When the program needs to access a file, that single file
can then be gquickly opened.

After a file is open, you can access the contentz of the file using the
DeRead, OsWrite, OsSeek, and OsTruncate calls. These calls are the ones that
actually access the contents of files. They let vou read the contents of a
file (OsRead), alter the contents of a file {(OsWrite), change the point of
access within a file {(OsSeek), and delete a portion of a file.

You can terminate file accese using O=Close and then reopen the file without
reattaching it. You can sever the connection to a file with OsDetach or vou
can detach and delete the file from a device with UsDelete.

You can change the title of a file using the OsRename call and vou can examine
and alter the =svstem characteristics of a file using the OsBGetStatus and
DsSetStatus calls. The OsFlushAllBuffers call writes the contents of
temporary system buffers in memory out to the device where the file is
permanently stored.

Mote that the OsChangeExtension call does not actually operate within the file
system. It is really just a string function that changes a string which
contains the pathname of the file: the extension of the file in the file
eystem remains unaltered.

Current File Position Marker

Each open file has a "current file position” marker associated with it. When
a file is first opened, thisz marker is at the first byte (byte zero) of the
file. Whenever vou access a file, vou specify the number of bytes that are to
be acces=sed. As part of that access, the cwrvrent file position marker is
moved so that it is just bevond the last byte accessed and thus indicates the
first bvte available to & subseguent access. You can directly move the
current file position marker with OsS5eek which does not read or wite any dats
in the file. Note, however, that you can not insert data in the middle of a
file. It vou move the cwrent file position marker to somewhere within a file
and then perform a wite, data will be written over pre-existing data.

Operating on File Directories
GRiD-08 lets vou read the contents of directories just as vou do with any
other file. The only difference is that instead of reading a byte at a time,

one directory entry at a time is read.

To prepare a file to be read in "directorv mode", use the Common Code call
Openlirectory {(refer to the Common Code Reference manual, Chapter 12) which

Z—-6 GRiD-0S Reference

attaches and opens the directory file.

Mow, O=Read operations or OsSeek operations performed on the tile, instead of
treating bytes as their object, treat each directory entry as the object.
Thus, a read with a length of three would retwn three directory entries
{either partial or complete entries) instead of three bytes of data.

You can read either a partial directory entry containing just the name of the
directory file, or the complete directory entry giving all the information
about the characteristics of a file. The format for partial directory entries
is as follows:

FartialDirEntrvType = RECORD

dummy : ARRAY [1..81 OF Char:

length : Byte:

name : ARRAY [1..11 OF Chars

ENDs

Mote that the size of the name portion of the entry is defined by the length
parameter. The name length is variable and can be up to 80 bytes long. If
information bevond the name of a directory entry ie reguired, you can read
complete directory entries whose format is as follows:

CompleteDirkEntrvType = RECORD
dummy = ARRAY [1..81 OF Charg
length : Bvte:
name : ARFRAY [1..801 OF Chary
creationDate : ARRAY [1..111 OF Char;
unusedl : Word
lastModDate = ARRAY [1..113 OF Charg
expirationDate : ARRAY [1..111 OF Char;:
unused? : ARRAY [1..251 OF Char:
uses8087 : Booleans
versionl : BRyte:
version? @ Hytes
unused3 : ARRAY [1..131 OF Charg
version3 ¢ Byte;
propertylLength: Longlntg
unusedsd 3 ARRAY [1..28] OF Charg

ENDz

When vou read a complete directory entry., the information returned will be of
a ftixed lenoth since all fields in each record are filled out to their masimum
length. For example, the name retwned will always be 80 characters in
length. The significant or used portion of the name field will be indicated
by the length parameter; the rest of the name field will be filled out with
hlanks to occupy the full BU charactere of the field.

Device and File Management 3-7

CHAPTER 4. WINDOW GRAPHICS

The window graphics routines are a set of procedures that let applications
display text and graphics on the screen.

With these routines, you can

o Create an application that runs completely independent of the physical
screen size or characteristics.

g Draw, erase, or invert text characters, pixels, lines, and rectangles.

o Clip the display within a clipping rectangle =so that data outside the
rectangle is not displaved.

o Perform bit-by-bit scrolling within a display window, to change the
display rapidly.

o Establish slternate windows and pass data from one window to another.

SETTING UP WINDOWS

A window defines an area of the screen {often the entire screen) that can
subsequently be referenced by cther graphic calle to display information
consisting of rectangles, text, lines, and pixels., GRiID-08 lets you maintain
more than one window at a time. You can have more than one window image in
memory at a time and switch from one window to another.

Orce vou define a window, only those portions of information sent to that

window that do not extend bevond the window boundariesz are displaved on the
screen —— the window "clipe” information that would be outside of the defined

Window Graphics 4-1

window.

A window is detined using the calls described below.

o MWinInitDefaultWindow —-- Clears the window and resets the clipping
rectangle.

o WinSetWindow —— Sets the window to a specified size.

o WinFrameWindow —— Draws a frame around the window

o WinEraseWindow -- Erases the contents of the current window.

o WinScrollWindow —— Scrolls the entire window a specified distance and
direction.

o WinGetWindowE:xtent -—- Returns the csize of the current window.

ALTERNATE WINDOWS

There can only be one window at a time displayed on the screen. This window
ie called the "current window". GRiD-05, however provides calls that let vou
maintain multiple windows in memory. There are two reasons why vou might want
to have alternate windows: to redirect the contents of one window to ancther
window or to convert screen image files stored in GRiD" s format to the format
needed by a screen other than that of the Compass computer.

The alternate window calls make the window routines compatible with other
computer systems regardless of the screen size or formats of =creen image data
as stored in memory. The calls also let you maintain multiple windows in
memory and bring window contents to the screen or dismiss them from the screen
to display other windows. ' '

A window is established in memory with the WinAllocateWindowMemory call. This
call specifies the characteristics of the window such as format, size,
bits/pixel, and so on. Each program has a "current" window where the
program’s calls are directed to perform such operations as drawing lines and
displaying characters.

A program establishes alernate windows with separate WinAllocateWindowMemory
calls for each window and specifies which window is the current window with
the WinSetAlternateWindow call.

You can copy information from one window in memory to ancther with the
WinCopyRemoteRectangle call. This call can place the entire contente or any
portion of one window inte another window.

Applications that use screen image files or that need to manipulate the screen
directly must use alternate windows in order to work with computers having
screen characteristics that differ from those of the Compase computer. For
example, a screen image stored on disk or in bubble memory must first be read
into a window that ic specified as being in GRiD format. You can then copy
the contents of that window (with WinCopyRemoteRectangle) to one specified as
being in host =creen format so that the image will be properly displaved.

The calls used with alternate windows are as follows:

4-2 GRiD-0S Reference

o WinAllocateWindowMemcry —— Allocates memory for an alternate window.

o WinSetAlternateWindow —— Causes all subsequent window calls to operate on
an alternate window.
o WinCopyFRempteRectanagle —— Copies a rectangle from one window region to

another and converts display data (if necessary) to the format reguired by
the destination window.

CLIPPING RECTANGLES

Within each window, vou can further define rectangular areas that have
specific characteristics. You can have multiple rectangles within a single
window and can manipulate all of the pixels in each rectangle separately from
other rectangles in the window. A rectangle can also clip information at its
boundaries just as a window does. The calls that operate on rectangles are as
follows:

o WinSetClip —— Sets a clipping rectangle within a window.

o WinResetClip —-— Resets the clipping rectangle to the entire window.
o WinEraseRectangle —— Erases the contents of a rectanagle.

o WinlInvertRectangle —— Inverte the contents of a rectangle.

o WinCopyRectangle —- Copies one rectangle into another.

o WinScrollRectangle —— Scrolls a rectangle a specified distance and

direction.

TEXT GRAPHICS

These routines complete characters within defined window locations. For a
further discussion of character formation, see the discussion of character
fonts that follows.

o WinDrawChar —-— Draws a character at a specified location in the window.

o WinEraseChar —-—- Erasee a character at a specified location in the window.

o WinInvertChar —— Inverts a character at a specified location in the window.
o WinDrawChars —- Outpute a character string to the screen at a specified

location in the window.

CHARACTER FONTS

The character spacing used when displaying text on the screen depends on which
font is the "current” font. Two calls are used to handle fonts: WinLoadFont
loads a specified font into memory and WinSetFont determines which of the
currently loaded fonts is to be the current font used to display characters on
the screen. You can determine the characteristics (character size, spacing,
and =0 on) of a font by examining the FontInfoRecord associated with each font
(see WinSetFont) or by using the functions Baseline, Charheight, Charwidth,
and Lineheight.

The standard {(built-in) font contained in ROM for the Compass computer has the

Window Graphics 4-3

following characteristics {(values listed are in number of pixels):

charWidth (= &)
charHeight (= 8)
lineHeight (= 14)
baseline (= 7}

Figure 4-1 illustrates how the dimensions of font characters are measured.
Mote that there are other fonts available besides the built-in font depicted
in this +figure.

bazeline

charlidith

ra
hl -
=

tone pixel showe

sach chatracter s

limeHeight = 18 pixes
=Y

Figure 4-1. Built-In Character Font Dimensions

Even though each character displays as 5 pixels across, the actual font is &
pixels wide., There is a blank pixel at the right edge of each character thus
leaving & single pixel space between characters. While each character is
eight pixels high, the line height is 10 pixels altogether, which leaves a two
pixel vertical spacing between lines of text.

The value of lineHeight represents the height of capital letters plus one
pixel for descenders plus the two pixel space between lines. Each line has a
pne-pixel space above it and belew it. The value of baseiine represents the
height of capital letters.

o MWinLoadFont -- Loads a font file into memory.
o WinSetFont -- Sets a previously loaded font as the current font.

4-4 GRiD~05 Reference

LINE GRAPHICS

These routines let vou manipulate lines within defined windows. Lines are
defined by defining their two end points {(pixel coordinates).

¢ WinDrawLine -- Draws a line within the window.
o WinEraseline -- Erases a line within the current window.
o WinlnvertLine -- Inverts a line within the window.

PIXEL GRAPHICS

These calls let you manipulate a single pixel within a window. Note: usually,
the Line graphic calls can be used to accomplish detailed graphics. However,
the pixel graphic calls are provided to give you completely detailed control
of the display.

o WinDrawPixel -- Draws a single pixel at a specified coordinate.
o MWinErasePixel -- Erases a cingle pixel at a specified coordinate.
o WinInvertFixel -- Inverts a single pixel at a specified coordinate.

CODRDINATE SYSTEM

The window ctalls draw pixeles, characters, and lines on the screen within a
window coordinate system. All coordinates are ultimately designated with
absolute pixel locations on the screen by the system. However, almost all
window routines use relative pixel coordinates that are based on the current
window instead of absolute screen locations. Each window has its own
coordinate system with 0,0 at its top left.

Each ctoordinate refers to one pixel. Thus, drawing a line from (0, 0) to (0,

1) will cause two pixels to be displayed. Drawing a line from one pixel te
itself causes a single pixel to be displayed.

DATA STRUCTURES
TYPE Foint = RECORD x,y: Integer EMD:
Foint is a record of ¥,y pixel coordinates which are either absolute or

relative to the window. Points can represent two-dimensional positioning
offsets or window dimensions, as well.

TYFE Rectangle =
RECORD topieft, extent: Foint END;

Rectangle is a record of two Points. The variable toplLeft defines the pixel
coordinates of the upper left corner of a rectangle. The x codrdinate of

w

Window Graphics 4-

extent defines the width of the rectangle in pixels; the y coordinate of
gxtent determines the height of the rectangle.

#TYPE Direction = (up, down, left, right};
Defines a direction for scrolling rectangles and windows on the screen

displav.

TYPE
WindowFormat = (screenFormat, GRilFormati;

RECORD
format : WindowFormat:
width : Word;
height : Words
buflength : Word;
but : Pointer:
bitsFerPel : Byte:
bytesPerlLine : Word;

WindowRegicn

END;

format -- GRiD format or host screen format.

width -- the width of the window in pixels,

height -- the height of the window in pixels.

buflength -- the size, in bytes, of the buffer allocated by the system for
this window.

buf -- a pointer to the first byte of the buffer allocated for this window.

bitsPerPel -- the number of bite per pixel used for the window. For GRiD
format windows, there is one bit per pixel.

bytesPerLine -- the number of bytes used by the system to store one horizontal

line of pixels for the allocated window.

4-6 GRiD-DS Reference

CHAPTER 5. CONSOLE ROUTINES

These routines give you direct access to the screen and keyboard of the
Compase Computer. All of the routines that output information to the screen
operate within the current window (see Chapter 4). They differ from the
related window graphic routines such as WinDrawChar because they treat the
window as a virtual consocle. Thus, while characters output by WinDrawChar
will be clipped when they reach the window or clipping rectangle boundaries,
characters output by the console routines will wrap to the next line within a
window when a boundary is reached. A1l GRID application programs display
text on the screen using the window routines.

The following three console routines are useful for obtaining input from the
Compass keybopard:

ConkeyPressed Tells yvou if any key on the keyboard has been pressed.

ConCharIn Waits for one character to be tvyped on the keyboard and
then retwns that character.

ConFeekChar Feturns the first character in the kevboard gueue without
removing the character from the gueue..

The kevboard provides a 40-character buffer to support the type-ahead feature.
Mote that if the ESC key is pressed, all keys in the buffer {(kevyboard gueue)
are cleared and only the ESC key itself remains in the buffer.

The remaining consele routines are provided primarily to be compatible with
the interface requirements of the compilers and other Intel development tools.
They are rarely used within GRiD applications but can be handy during
debugging.

Console Routines S-1

ConDefCer

ConResetDisplay

ConMoveCsr

ConCharOut

ConLineOut

ConLineln

ConHex0Out

GetConsoleState

Turns the small cursor character "_" on or off.

Clears the screen and displays the cursor character at the
top, left hand pocsition of the window.

Moves the cursor to the specified .y character position on
the screen.

Outputs the supplied character to the screen at the current
cuwrsor position.

Outpute the specified number of characters to the screen.

Inputs the specified number of characters from the
keyboard.

Outputs the supplied hexadecimal value to the screen at the
current cursor position.

Feturns information describing the current state of the
conscle, such as cursor location and last character printed
to the screen.

5-2 BGRiD-0S Reference

CHAPTER 6. GENERAL UTILITY CALLS

These calls perform general-purpose, utility functions such as scanning
inpute, obtaining system ID and time, passing names, and decoding exceptions.
Detailed descriptions of these call are provided in the alphabetically-ordered
Chapter 7.

OsGetArgument Scans and parses the contents of the command line or
other designated buffer.

O=SwitchBuffer Changes the buffer that OsGetArgument operates on.
Os0verlay Brings a subprogram into memory.

OcsGetSystemID Retufns system identification information.

O=GetTime Returns all information from the system clock.
OsHegicsterMame Fegisters a process-specified name and a small amount

of associated information.

OsLookUpName Looks for a name that has been previously registered
and returns some information associated with that
name.

OsDecodeEsxception Translates an exception number into an exception
message.

OsHandleCancel Specifies whether an application or the operating

system should handle the Cancel (CODE-ESC) key.

General Utility Routines 6-1

OsFutProperty Sets a system property such as screen frame or time.

OsGetProperty Examiness a system property such as screen frame or
time.

6~-2 GRiD-0S Reference

CHAPTER 7. GRiD-0S PROCEDURES AND FUNCTIONS

This chapter liste all of the procedures and functions provided by GRiD-08 in
alphabetical order. For discussions of concepts and interactions of these
calle, refer to the appropriate chapter earlier in thiz manual. This chapter
simply lists the calls in alphabetical order and provides a comprehensive
description of each call for reference purposes.

Frocedures and Functions 7-1

Basel_ine
FUMCTIONM Baseline : Integer;
Purpose and Operation

This routine returns an integer that is baseline of the current font. The
bazeline is the height in pixels of capital letters of the current font.
Haseline is also the line where the tip of the cursor is positioned.

m n H B chiarHe 1 ant
L EREE B l

chartidty,

ra
k] -
| =6

}l
!

lineHeight = 16 pixels
Tome pixel above and below
each character

CharHeight
FUNCTIOM CharHeight : Integer;
Purpose and Operation
This routine returns an integer that is the height {in pixels) of the capital

lettere in the current font, plus one for the descenders. See the Baseline
function for a figure illustrating CharHeight.

72 BRID-0% Retference

ChariWidth
FUNCTION CharWidth : Integer;:
Purpose and Operation
This routine returns an integer that is the width {in pixels) of the

characteres in the current font. GSee the Baseline function for a figure
illustrating CharWidth.

ConCharIn
FUNCTION ConCharlIn: Charsg
Purpose and Operation
Thie routine waits for one character to be typed on the keyboard and then
returnse that character. (See Appendix A for a table showing the values
returned by each keystroke.)
This routine actually returns a 16-bit word. The low order byte contains the
8-bit value reprecsenting the key that was pressed. The high-order byte of the

word provides the following additional information from the keyboard:

Bit # Interpretation

12 Set to 1 if a repeated character

13 Set to 1 if SHIFT key also depressed
14 Set to 1 if CODE key also depressed
15 Set to 1 if CTRL key also deprescsed

If you want to receive this additional information, you must change the
ConCharIn function declaration /in the include file ConPas.Inc) to "FUNCTION
ConChariIn : Word:" in order to have the full 16-bit value returned.

ConCharOut
FROCEDURE ConCharOut ich: Char);
Purpose and Operation

This routine outputs the supplied character to the screen at the current
cursor position.

Procedures and Functions 7-3

ComDedfTCse
FROCEDURE ConDefCsr ton: Boolean):

Purpose and Operation

This routine twns the small cursor character " " on or off. If the parameter
"on" is True, the cur=zocr will be displaved:; if False, the cursor will not be
displavyed.

ComnHe>xOwut
FROCEDURE ConHex0Out {rum: Word);
Purpose and Operation

This routine outputs the hexadecimal number specified by num to the current
cuwr=sor pocsition.

ConKeviFressed
FUNCTION ConkeyFressed: Hooleans
Purpose and Operation
This routine retwns a Boolean True i any key on the kevbosrd has been

pressed. If you want to determine which key is depressed, rather than just
the fact that & key was depressed, use the function ConCharlIn or ConFeekChar.

7-4 GRiD-0S Reference

Coml.imelImn

FUNCTION ConbLineln (VAR buffer: Bytes:
) maxlLength: Word): Word

Purpose and Operation

This routine inputs characters from the kevboard and places them in the
designated text buffer. The kevboard entry is terminated either when the
number of characters specified by maxbength has been entered or when the
RETURM key is pressed. The function returns a word indicating the actual
number of characters returned {including the terminating CR/LF if less than
maxLength characters read).

MOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR buffer:
BYTES", remember to dereference the pointer, or the wrong code will be
generated. See the discussion of the Bytes data type in Chapter 1 for an

example.

Parameters

buffer —— the text buffer where the characters are to be stored.
maxLength —— the maximum number of characters to input.

MOTE: When passing & pointer to & "VAR BYTES" parameter such as "VAR chs
BYTES", remember to dereference the pointer, or the wrong code will be
generated. See the discussion of the Bytes data type in Chapter 1 for an
example.

Frocedures and Functions 7-5

Coml_ imneOut

FROCEDURE ConLineOut (VAR buffer: Bytes;
length: Word);

Purpose and Operation

This routine outputs the number of characters specified by length to the
window. If the window or clipping rectangle boundary is reached, the
characters wrap around to the next line.

MOTE: When passing a pointer to a "VAR BYTES" parameter such as "VOR buffer:
BYTES", remember to dereference the pointer, or the wrong code will be
generated. See the discussion of the Bytes data tvpe in Chapter 1 for an

example.

Parameters

buffer —- the text buffer where the characters are to be output are stored.
length —-- the number of characters to output.

MOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR che:
RYTES", remember to dereference the pointer, or the wrong code will be
generated. See the discussion of the Bytes data type in Chapter 1 for an
example.

ConMovelCsr
FROCEDURE ConMoveCesr (x, v: Bytel):
Purpose and Operation
This routine repositions the cuwrrent cursor location to the specified »,v
character position (not pixel position) in the current window: 0,0 is the
upper left corner. This new cursor location will be the starting point for
subsequent ConCharOut ConbineOut calls.

Parameters

#.y —— the character row and column position relative to youw window {not the
screen) where the cursor is to be positioned.

7-6 GRiD-0S5 Feference

ConFPeaelzChar
FUNCTION ConPeekChar: Charsg
Purpose and Operation
This routine returns the first character in the keyboard queue. Unlike
ConCharlin, however, this function does not remove the key from the kevbpard
buffer. If the queue is empty, this routine waits until a key is pressed.
{See Appendix A for a table showing the values returned by each keystroke.)
This routine actually retwrns a 16-bit word. The low order byte contains the
B-bit value representing the key that was pressed. The high-order byte of the

word provides the following additional information from the kevyboard:

Bit # Interpretation

12 Set to 1 it a repeated character

13 Set to 1| if SHIFT key alsp déepressed
14 Set to 1 if CODE key also depressed

1% Set toc 1 if CTRL key also depressed

I¥ vou want to receive thie additional information, vou must change the
ConPeekChar function declaration {in the include file ConPas.Inc) to "FUNCTION
ConFeekChar : Word:"” in order to have the full 16-bit value returned.

ConResetDispl ay
FROCEDURE ConFResetDisplay;
Purpose and Operation
This routine clears the current window, moves the small cuwrsor character " "

to the top., left hand position (0,0) of the window, and twns the small cursor
character "_" on.

Procedures and Functions 77

CetConscleState
FUNCTION GetConsoleState : ConsoleStateFtr:

Purpose and Operation

This routine retwns a pointer to a record describing the current state of the
consale. The organization of the console =tate record is as follows:

ConsoleStateType = RECORD
»Loc ¢ Integer:
vioc @ Integer:
cState : Byte;
scroll @ Bytes
curChar : Bytes
upperFlag @ Byte:
MMIFlag @ Bytes
END:

ConscleStatePtr = “ConsoleStateType:

ConsoleStateType Record Fields

#l.oc, vloc —— the current cursor location {see ConCharOut) indicating where
the last character was drawn on the screen.

cState ~— cursor state. This is 1 if cwsor is on and O if cursor is off.

scroll -— an internal wvariable used by the window routines.

curChar —-— current character. The character last printed to the screen.

upperfFlag -— internal flag indicating whether the upper case kevylock
(SHIFT-ESC) i= =et on.

MMIFiag —— an internal variable used by the window routines.

LinmeHei gt
FUNCTIONM LineHeight :@: Integer:
Purpose and Operation
This routine returns an integer that is the height {(in pixels) of the

character lines (character height plus the spacing between lines) in the
current font. See the Baseline function for a figure illustrating LineHeight.

7-8 GRiD-0S Reference

Os~AddDewvice

FPROCEDURE OsAddDevice (VAR pathName : Bytes;

VAR name : Hytes;

VAR entryFoint : HBytes:
intAddr : Byte;
mass : Hooleans;
mode : Byte;

VAR error : Word):

Purpose and Operation

This call adds a device to the Active Device Table maintained by GRiD-05. The
device can then be accessed by programe just as though it were another file.
Thus, this call is the equivalent of "activating” a device from the command
line (see the Program Development Guide for a description of the Activate
program). This call can add & device that is in a file, or that is linked
into a program or can make & second copy of an already activated device. For
a detailed discussion of how to use this call, refer to GRiD documentation on
device drivers.

MOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR
pathMame: BYTES", remember to dereference the pointer, or the wrong code will
be generated. See the discussion of the Bytes data type in Chapter 1 for an
example.

Parameters

pathMame —— the pathname {(formatted as a ShortString) of the file containing
the device driver or the name of device already listed in the Active Device
Tahle, depending on the setting of bit O of the mode parameter. If the
driver is linked intoc the cuwrrently running program, this parameter should
ke a NULL pointer {(OFFFFFH).
name —— the actual name (formatted as a ShortString) of the driver as it will
be listed in the Active Device Table. (MNpte: the specified name should not
have a backguote (%) in front of it.) If this parameter is & NULL pointer
(OFFFFFH), the title part of the pathMame parameter is used as the device
name.
entrvFoint —— the name of the device driver main procedure if the driver is
linked into the currently running program. In this case, the pathName
parameter is ignored. If the driver is not linked into the program, the
entryFoint parameter should be a MULL pointer (OFFFFFH).
intAddr —-- the interface address {usually, the device’s GPIR address. If this
device is not a GPIR device, set intAddr to MULLRBYTE (OFFh).
mass —— a Boolean that, if TRUE, indicates that the device being added is a
mass storage device such as a hard disk, floppy disk, or bubble.
mode —— the bits of this Byte determine various attributes of the device
beirng added as follows:
Bit #
0 -- driver location. If set to O, the pathMame parameter specifies
the device driver location. If set to 1, the pathName parameter is

Procedures and Functions 7-9

the name of a device already in the Active Device Table.

1 — wisible/invisible. If set to O and the mass parameter is TRUE,
the device will appear on active device list and be displaved on
the File form. If set to 1 or if the mass parameter is FALSE, the
device will be invisible.

2 -- local/remote. If set to O, the device is local. If set to i,
the device is remote, that is, accessed through the serial port or
a modem) .

3 —— mass storage. If set to O, indicates that the device is not &
mass storage device. If set to 1, indicates a mass storage device
such as hard dishk.

4 —— server. If set to 0, indicates that the device is not a network
server. 1f set to 1, indicates that device is 3 network serverm
accessed through GRiDLink or Phonebink.

3 —— reserved for system use: always set to 0.

b6 —— reserved for system use: always set to 0.

7 —— search. If =set to 0 and if the mass starage bit {(bit 3) is set

toe 1. indicates a searchable device. GRiD-05 may search this
device for an appropriate application program, such as
GRiDWrite™Fun Text™ to use with a file of Kind “Text™. If set to
1, the device will never be searched.

7-10 GRiD-0S Retference

Os=MAl locate
FUNCTIOM OsAllocate {length : Words
VAR error : Word) @ Pointers
Purpose and Operation
This call assigns or allocates a memory block of a specified number of bvytes
to the calling program. The memory block can be of any sire from one byte to
a4k bytes. If more than &4k bytes are needed, additional 0OsAllocate calls

mist be issued. The allocated block will be the lowest addressed segment that
satisfies the reqguest.

MNOTE: Since there is no inherent memory protection, the program must ensure
that it does not alter any memory outside of the allocated block. When vour
program exits, any memory allocated to the program is freed by the system.

Parameters

length —— & Word specifying the number of bytes of memory to be allocated. A
length of zero implies a request of 64k bytes.

Function Return

block —— a pointer to the first byte of the allocated block of memory. WNOTE:
If you call this function from Pascal, vou must define Pointer to be a
pointer to whatever kind of variable you are trying to allocate space for.
For example: Type Pointer = “Array(1..20001 OF Word;

Possible Errors

Out of memory f{error 2).

Frocedures and Functions 7-11

OsAttach

FUNCTIOM Osfttach (VAR pathMame : Bytes:
fileMode : Ryte;
VAR reserved : Bytes;
accessMode : Hytes;
VAR error @ Word) @ Words

Purpose and Operation

This call establishes a connection to the file specified by pathMame and
returns a connection number which other calls use to refer to the file.

OsAttach will establish a connection to an existing file and can also create a
new file and connect to that new file.

A connection is always dedicated to a specific type of access: read only,
write only, update f(read and write), partial directory read, or complete
directory read. If a connmection is for a wite or update access, there can be
only one active connection to the file. There can be multiple active
connections to the file, however, if all of the connections are for read only
ACCEeEssS.

The maximum number of active connections to all files in the system is limited
only by available memory. '

If the access mode is for a partial directory read or complete directory read,
the system not only attaches the file, it also opens the file in preparation
for subseqguent read or seek operations. NOTE: See Chapter 3 for & description
of directory entry formats.

NOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR
pathMame: RYTES", remember to dereference the pointer, or the wrong code will
be generated. BSee the discussion of the Bytes data type in Chapter 1 for an
example.

Parameters

pathName -- device-subject-title-kind-password of the file to be attached.
This parameter should be formatted as a shortString.

fileMode —- specifies whether the connection is to an existing file or new
file as follows:

oldFileMode. The file must already exist. If the file does not
exist, a file-not-found error ie returned. (The two directory-type

accesses work only with old files.)

updateFileMode. If the file already exists, that file is attached.
If the file does not exist, it is created and then attached.

7-12 GRiD-0S Reference

newFileMode. If the file does not exist, it is created and
attached. If the file already exists, the contents of the existing
version are deleted and this new empty file is attached.

reserved —— reserved for future svstem uwee. Set to zero using a "dummy”
variable. NOTE: See "Special Note" at the end of this description.
accessMode —— & byte defining the type of access that will be permitted for

this attachment to the file:

readhccess. Used for read-only access to a file

writefccess., Used for wite-only access to a file
updateficcess. Used for read/wite access to a file
systemfeszervedfccess. Do not use —— reserved for the system.
partialDirfccess,. Limited read access of directories.
completeDirfccess. Complete read access of directories.

Function Return

conn —— connection number (data type Word) that can be used in subsequent
file-related calls to refer to this file.

Possible Errors

Out of memorv (error 2).

Fassword protected f{error 27).

File does not exist f{error 33).
File cannot be shared f{error 40},
Device full f{error 41),

Bad parameter (error 225).

Device not active flerror 227).

Any disk errors (errors 101 - 108).

Special Note

The "reszerved" parameter was formerly {version 3.0.0 and earlier) used to
specify the file password. In version 3.1.0 and later, the password must be
specified as part of the pathMame parameter. Programs using the old format of
this call must put the password in the pathname using the OsChangeExtension
call. Frograms witten prior to version 3.1.0 do not have to be modified if
they do not explicitly manipulate passwords.

Procedures and Functions 7-13

OsCal i Driwver

FROCEDURE D=CallDriver (VAR pathMame @ Hytes:
level : Byte:
request : Word;
VAR paraml.ist : ParambistType:
VAR error @ bWords:

Purpose and Operation

This procedure is used from within device driver shells. Application programs
would not normally call this procedure. A descripton of how to write device
drivers and how to use this call within drivers is beyvond the scope of this
document. FHefer to GRID documents describing device drivers for details on
the use of this call.

NOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR
pathName: BYTES", remember to dereference the pointer, or the wrong code will
be generated. See the discussion of the Hytes data tvpe in Chapter 1 for an
example.

Parameters

pathMame —— the pathname (formatted as a ShortString) of the device to which a
request is being sent {typically, “serial or “gpib).

level -— a value of 1| specifies that this is a low-level driver {for a mass
storage device such as bubble memory, hard disk, or floppvy dick), a value
of O specifies that it is a file level driver (for devices such as
printers, PhonelLink, or =serial port). MOTE: if the high-order bit of this
byte is set (value = 80 or 81), it specifies that the device driver (rather
than the 05) will supply the interface address.

request —— a word defining the specific activity f{such as open, read, write)
that the device driver iz to perform on the device. Hefer to the "Guide to
GRiD Devices and Device Drivers" for details.

paramlist ~— a list specifying device characteristics in the following format:

FParamListType = RECORD
conn @ Word:
buffer : Fointers
position : LonglInt:
length : Word;
mode @ Byte:
numBuf @ Byte:
intAddr @ Byte:
overflow : Pointer;

EMD3

7~-14 GRiD-08 Reference

OsChangeExtemnsi on

PROCEDURE OsChangeExtension (VAR pathName :@: Bytes:
extNum : Byte;

VAR extension : Bytes:
VAR error @ Word):

Purpose and Operation

This call lets vou examine or change the filename extension (kind or password)
on a pathname short string while leaving the rest of the pathname unchanged.
This call is just a string function. You pass it & string representing a
pathname and it retuwrns a portion of this string or modifies the string
(depending on what vou request with the extMum parameter). Note that this
call has no effect whatscever on the file system or the actual titles of
files.

If the pathname already has an extension, then it will be changed to the new
one that vou specify. If there is cwrently no extension, the new one will be
appended to the file name.

The maximum length of a file name is 80 characters. including any extensions.
Since a new extension can increase the length of the file name, you must make
sure the pathname buffer is large enough to hold the new name and also ensure
that the maximum length is not exceeded.

NOTE: When passing a pointer to a "VAR BRYTES" parameter such as "VAR
pathName: BYTES"., remember to dereference the pointer, or the wrong code will
be generated. See the discussion of the Bytes data type in Chapter 1 for an

example.

Parameters

pathName —-— retferences the file whose extension is to be changed. This
parameter should be formatted as a short string.

exthum —— specifies which extension (kind or password) is to be examined or

changed as follows:

changeType. Change the Kind extension.

changeSubtype. FReserved for system use.

changeFassword. Change the password extension.

returnType. Buerv current Kind extension.

returnSubType. FReserved for system use.

returnPassword. Buery current password extension.

changelfMoType. Change Kind only if none cwrently appended.

changelfhobubtype. Reserved for sysitem use.

changelfNoFPassword, Change password only if none is currently appended,

extenzion -- the actual extension to be appended or the current extension

retuwned by a gquery. This parameter should be formatted as a short string.

FPossible Errors

Bad parameter f{error 228).

Procedures and Functions 715

OsClose

FPROCEDURE O=sClose f{conn : Words
VAR error : Word):

Purpose and Operation
This call closes a file that was previously opened. The contents of all
buffers assigned to the file are written to the file and all memory alloccated

to the file released to the system.

The file remains attached and can be re-opened without deing another OsAttach.

Parameters

conn —— connection number f{data type Word) that specifies the file that is to
be closed.

Possible Errors

File not open f(error 203).

Bad connection (error 221).
All disk errorse (101 - 108).

7-16 GRiD-0S Reference

O=sCreateFProcess

FUNCTIOM QOsCreateProcess (VAR commandlLine : Bytes;
priority : Byte;
uses8087 : Hoolean:

VAR error @ Word) : Words

Purpose and Operation

This call creates a new process with the parameters specified. The process
being created is loaded into memory from mass storage —— bubble, disk, etc.
{as contrasted with a forked process, which must already be in memory) and is
created in the ready state. Thus, if the created process happens to be the
highest priority ready process, it would begin executing immediately. NOTE:
After a process has been created. it can only be terminated by issuing an
OsExit call —— itself. It can not be deleted by another process.

MOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR
commandLIne: BYTES", remember to dereference the pointer, or the wrong code
will be generated. GSee the discussion of the Bytes data type in Chapter 1 for
an example.

Parameters

commandl.ine —— the buffer containing the command to rurn and any parameters
required for that command. This parameter is NOT formatted as a
shortString. The buffer contents should be just as though you entered a
command via a command line. For example, "GRiDWrite pathName". You must
end the command line with a carriage retwn. MNOTE: the file that iz to be
created as a process is expected to have a Kind of “Run™ or “Fun filekind™
(for example, “Hun Database™). I+ no kind is specified in the commandLine,
the system supplies a kind of “Run™. If no device or subject is specified,
the system will first look in the currently prefixed subject and then in
the Programs subject of the cuwrrently prefixed device.

priority —— a value-in the range of 0 to 235 indicating the priority of this
process. The highest priority is O, the lowest is 253,

uses8087 —— if this Boolean value is true, it indicates that the 8087
numerical data processor is used by this process. This informs GRiD-0S
that the contents of the B0B7 registers must be saved whenever the process
leaves the run state.

Function Return

pid‘—— process identification number f{(data type Word) that can be used by
pther system calls to refer to this process.

Procedures and Functions 7-17

Possible Errors

Out of Memory f{error 2) if insufficient memory is available to load this
process.
All file svystem errors.

All disk errors (101 - 108).
All GPIE errors.

Os=CreateSemaphore
FUNCTIOM OsCreateSemaphore (VAR error : Word) @ bord:
Purpose and Operation

This call creates a semaphore for use by system processes. This function
returns a word that is the semaphore number or semaphore ID. Frocesses use
this ID number {=id) to refer to the semaphore when issuing Osklait and
OeSignal calls.

When a semaphore is created, it is initially set to the busy state. If vou
want the semaphore to initially be in the not busy state (for example, if

you're using it for mutual exclusion), you must issue an 0OsSignal to the
semaphore.

Function Return
sid —— the semaphore ID assigned to the =emaphore created.
Possible Errors

1

Out of Memory ferror 2) if there is insufficient memory available for storage
of the semaphore.

7-18 GRiD-0S Reference

OsDecodebException

PROCEDURE O=sDecodeException f{code : Word;
VAR execption : Bytes);

Purpose and Operation

This call converts a numerical error code generated by the system to a more
meaningful =tring of up to 80 ASCII characters. (NOTE: the text comprising
the character string associated with each error code is in the file named
DSystemErrorsMtext™. This file must be under the programs directory of the
currently prefixed device.). The resultant string can provide a more useful
grror message to users and operators of the Compass.

MOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR
exception: BYTES", remember to dereference the pointer, or the wrong code will
be generated. See the discussion of the Bytes data type in Chapter 1 for an
example.

Parameters

code —— the system error number that is to be decoded. See the
P5ystemErrors™Text™ file for a numerical listing of the error numbers and
the message strings that will be returned.

exception —— a buffer (which should be formatted as a shortstring) where the
ervror message will be returned.

Procedures and Functions 7-19

O=s=Del ayw
PROCEDURE OsDelay f{timelimit : Word);
Purpose and Operation

This call suspends execution of the current process by placing it in the wait
state for a specified time limit. The process will remain in the wait state
until the specified time limit has expired. It will then proceed to the ready
state where it as=umes its prioritized position among the other ready
processes.

I vou specify a time limit of zero, the process will leave the run state, go
to the wait state, and then proceed immediately to the ready state. Thus,
processes of eqgual priority could use this mechanism to ensure that they all
get their twrn as the current process.

Mote that a process can only delay itself i{there is no process ID parameter to
let vou specify another process).

Parameters

timelimit —— a word specifving the number of milliseconds f{rounded up to a
miltiple of 10 milliseconds) toc suspend the current process. Thus, vou can
specify delays ranging from zero to 65,540 milliseconds.

7-20 GRiD-05 Reference

OsDelete
FROCEDURE OsDelete f(conn : Word:
VAR error @ Word)
Purpose and Operation
This call deletes the specified file from the file system. The file must
currently be attached for either a write access or update access and it must
also be open.
An OcDetach iz performed avtomatically after the file is deleted since the
connection is meaningless after the file is deleted.

Parameters

conn —— connection number f(data tvype Word) that specifies the file that is to
be deleted.

Possible Errors

File does not exist f{error 33).
A1l disk errors (101 - 108).

Procedures and Functions 7-2

OsDel eteFrocess
FROCEDURE OsDeleteProcess {pid : Word;
VAR error @ Word)s
Purpose and Operation
This call deletes the specified forked process from the system. A process can
be deleted regardless of which state it is in. (NOTE: OcDeletefrocess cannot
be used to terminate a process that was created with OsCreate: 0OsExit call
must be used for that purpose.)
Parameters
pid —— process ID, a word identifying the forked process to ke deleted.

Possible Errors

Process does not exist f{error 281).

OsDel eteSemaphore

FROCEDURE OsDeleteSemaphore (sid : Word;
VAR error @ Word):

This call deletes the specified semaphore from the system. Any process that
issues an 0sSignal or OsWait to this semaphore will receive a Semaphore does
not exist error. Any processes that are actually waiting at this semaphore
when it is deleted, will proceed to the ready state and have a Semaphore does
not exist f{error 252) error returned.

Parameters

zid —-— semaphore identification number that was returned by GRiD-05 when the
semaphore was created.

Possible Errors

Semaphore does not exist {error 252).

7-22 BRiD-0S Reference

OsDetach
FROCEDURE OsDetach f{conn : Words
VAR error : Word)j
Furpose and Operation
This call severs & file connection that was established previously by
OsAttach. A1l system resowces being utilized for the connection are released

and the relationship between this connection and a pathname is severed.

If the file has not been closed, an OsClose will automatically be performed by
the system.

Parameters

conn —— connection number {(data type Word) that specifies the file connection
that ie to be severed. CAUTIOM: Passing an uninitialized value to conn
can result in the 0S5 trvying to access memory-mapped I1/0 space —- this could

hang the system.

Possible Errors
Bad connection ferror 221) i the specified connection number does not exist.

All disk errors (101 - 108)

Procedures and Functions 723

OsE>=it
FROCEDURE OsExit {code : Word):
Purpose and Operation
This call is used to exit a program by causing the current process to delete
itself. When a process exits or is deleted, all of its rescurces, such as
memory or active file and device comnections are returned to the system.
Any processes waiting for a message from this process will receive the
contents of the code parameter f{(as the "note" parameter of OsReceive) and will
also get a "Proceses does not exist" error. #Any semaphores created by this

process are also deleted. Therefore, any processes that subsequently wait on
thesze csemaphores will get a "Semaphore does not exist" errar.

Parameters

code -—- the contents of this word are put into the "note" parameter f(see
OcsFeceive) of any process waiting for a message from the exiting precess.

OsFlushédal il Buffers

PROCEDURE O=FlushAllBuffers {(conn : Words
VAR error : Word):

Purpose and Operation

This call writes the contents of all of a file's buffers in memory (allocated
with Os0pen) out teo the file in its storage device. It can thus be thought of
as a precautionary call that lets vou save the contents of file buffers
without going through an 0OsClose-0OsOpen sequence.

Parameters

conn —— connection number {(data type Word) that specifies the file whose
bufferi{s) i= to be saved.

Possible Errors
File not open f{(error 20%).

Had connection f{error 221).
All diegk errors (101 -108).

7-24 GRiD-05 Reference

OsForkProcess

FUMCTION OsForkFrocess (VAR entryFoint @: Bvytes;
priority : Byte:;
uses8087 : Hoolean:
stackSize @ Word;

VAR error : Word) : Word:

Purpose and Operation

This call forks a new process with the parameters specified. "Forking" a
process ig similar to creating a process with the following exceptions and
limitations:

o The code for the process being forked must already be present in memory.

o The procese being forked must be a parameterless procedure. Mo parameters
can be passed to it or returned.

o The forked process cannot be terminated using an OsExit call: it must be
terminated using OsDeleteProcess.

When a process is first forked, it will be in the ready state. Thus, if it
happene to be the highest priority ready process, it could begin executing
immediatelvy.

NOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR
entryFoint: BYTES"., remember to dereference the pointer, or the wrong code
will be generated. See the discussion of the Hytes data type in Chapter 1 for
an example.

Parameters

entryFoint —— the address of & LARGE parameterless procedure. (In Fascal, you
can just specify the name of the procedure.)

priority —— & wvalue in the range of 0 to 255 indicating the priority of this
process. The highest priority is 0, the lowest is 238.

uses8087 —— if this Boolean value is true, it indicates that the 8087

numerical data processor is used by this process. This informs GRiD-0S
that the contents of the 8087 registers must be saved whenever this process
leaves the run state.

stackSize —— cpecifies the number of bytes to be reserved as stack for the
process {typically in the range of S00-1000 bytes). Note: an insufficient
stack size will cause seemingly random failures.

Function Retufn

pid -— process identification number {data type Word) that can be used by
other system calls to refer to this process.

Possible Errors

Out of Memory ferror 2) if insufficient memory is available to fork this
pProcEsSE.

Procedures and Functions 7-25

O=Fre=e

PROCEDURE OsFree (block : Fointer:
VAR error @ bord):

Purpose and Operation

This call frees or deallocates a block of memory that was previcusly allocated
to the calling process.

Parameters

block —— points to the first byte of the block of memory to be freed. This
cshould be the same as the pointer retuirned from Dsfllocate when the block
was allocated. See the "block” parameter for the OsAllocate function for a
discussion.

Possible Errors

Invalid memory block flerror 11).

7-26 GRiD-05 Reference

OsGetAr-gument

FUNCTION DeBGetArgument (partial : Hoolean;
VAR argument : Bytes) : Char;

Purpose and Operation

This call returns arguments from the command line in the form of a string of
characters up to 235 charactere in length. Each argument must be separated by
a delimiting character {(described below) and each call to OsGetArgument
returns one argument. Therefore, you would use this call repeatedly until vou
have obtained all of the arguments contained in the command line.

The argument record returned by this call is a short string that may be up to
255 bytes in length excluding the length byte. Since you cannot know the
length of the argument until it is retuwrned, you must ensure that the buffer
vou provide can accommodate the maximum length of the argument.

Delimiter Characters

In addition to returning an argument, this function also returns the character
that was used as the delimiter to mark the end of each argument. The ASCII
codes recognized as delimiters are as follows:

character ASCII hex wvalue

+ ~ -~
b

3A
ac
= 3D
* 3E
SH
aC

£
\\
] aD
E

T

7C
DEL ’ 7F

Additionally, any byte with a value from 00 to 20 hex or with a value of 80
hex or greater will be recognized as a delimiter character and returned by
OsGetArgument. These delimiter characters can be used within an argument (for
example, within a file name) but the argument must then be enclosed in single
guotation marks (7).

Frocedures and Functions 7-27

MOTE: When passing a pointer to a "JAR BYTES" parameter such as "VAR
argument: BYTES", remember to dereference the pointer, or the wrong code will
be generated. Gee the discussion of the Bytes data type in Chapter 1 for an
example.

Parameters

partial -— a Hoolean indicating whether the argument to be retuwned is partial
(true) or complete (false). A partial argument can be up to B0 characters
in length and all alphabetic characters will be shifted to uppér case. A
complete argument can be up to 285 characters in length and no shifting of
alphabetic characters is performed.

argument —— the buffer where the returned argument (formatted as a short
string) is to be placed.

Function Return

delim —— the character used as the trailing delimiter for the argument.
Possible Errors |

Mone.

Examples

The following example illustrates the ;hnrt string records and delimiters

returned by successive calls to OsGetArgument from the following argument.

CAT “List Directory” <RETURN:

length argument : delimiter
ist call 3 CAT - 20 hex (space)
2nd call 14 List Directory OD hex (RETURN)

Motice that a string enclosed in singlé quotation marks (°) is considered &
literal and characters within such a sﬁring that would normally be considered
to be delimiters are simply returned as part of the arqument. Thus, the space
separating "List" and “Directory” is not treated as a delimiter. Note alsc
that the enclosing guoctes are not returned as part of the arqument.

Another example of the OsGetArgument ié when a file of Kind "Text" is selected
from the File form. The system invokes GRiDWRite and when that application
program begins executing, it obtains tﬁe pathname of the selected file by
calling OsGetfrgument to parse the cam@and line passed to it by the Executive
program.

7-28 GRiD-0S5 Reference

O=GCGetiMemStatus

FROCEDURE (OsGetMemStatus {(pid : Word;

VAR memStatus

MemStatusTypes

VAR error :Word);

Purpose and Operation

This call returns information concerning the amount of memory that has been

allocated and how much is still available.
summary of system—wide information but,

ig &

Most of the information retwned
if you supply a process ID {(pid)

with the call, vou will be given some specific information about memory

allocation for that process.

The organization of the memory status record

returned by this call ie as follows:

MemStatusType =

RECORD
freelytes :
freeBlocks :

Longint;
Words

largestFree : bord:

allocBytes :
allocBlocks
largestflloc @

EMD3
Parameters

pid —-- process ID.
information
memor Yy
PrOCESEES.

memStatus —— the location

Longint;
Words
bord;

A word identifving the process whose memory status
is to be returned.
status information returned will be a

If this word is null (OFFFF hex), then the

summary of memory usage by all

where the memory status record should be returned.

MemStatusType Record Fields

freeBytes —— the number of unallocated bytes remaining in the system.
freeBlocks -~ the total number of unallocated blocks, regardless of size,
remaining in the system.

largestFree —— the size,
in the system.

allocBytes —— the number of bytes allocated to the calling process or,
(OFFFFH) pid is specified, the total number of bytes allocated to all

nulil

in bytes,

of the largest unallocated block remaining

if a

processes in the system.

allocBlocks —— the number
calling process or, if
of blocks allocated to
largestAlloc —— the size,
to the calling process

of blocks, regardless of size, allocated to the

a null (OFFFFH) pid is specified, the total number
all processes in the system.

in bytes, of the largest block of memory allocated
or, if no pid is specified, the largest block of

memory allocated to any process in the system.

Possible Errors

Frocess does not exist

{error

251).

Procedures and Functions 7-29

ODOsasGetPref i
FUMCTION OsGetPrefix @ ShortStringPtr;
Purpose and Operatian
This routine retuwrns a pointer to a short string containing the current
device-sub ject prefix and can be used to read the current prefixz. MNote: the
pointer that is returned peoints to & string that is in the system data space.

This string should not be updated. You can use a Common Code call, if it is
necessary to change the prefix.

7-Z0 GRiD-08 Reference

OsGetPropertvw

FROCEDURE OsGetProperty f{(tag : Word;
VAR lenath : Word:
YAR buffer : Bytes;
YAR error @ Word):

Purpose and Operation

This routine lets vou examine some of the system—wide properties that apply to
a specific Compase computer. These properties are normally examined and set
using GRiDManager and the settings of the properties are recorded in the file
User™Profile™ under the Frograms subject.

See OsPutFroperty for additional information on the User™Frofile™ file.

MOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR buffer:
BYTES", remember to dereference the pointer, or the wrong code will be
generated. BSee the discussion of the Bytes data type in Chapter 1 for an
example.

Parameters

tag —— specifies which system property is to be examined as follows:
Value Froperty

1 time offset
2 screen frame on/off
o system—-wide font
g current printer
10 current plotter
11 start-up file
length —— the number of bytes retwned in the buffer by the call.
buffer -- a sequence of bvtes defining the characteristics of the designated
tag as follows: {(Note: the user must allocate this buffer.)
Tag Data

timeQffset record (described below)
data = 1, frame is ony 2 = frame is off
system—-wide font name
current printer name
0 current plotter name
11 start-up f‘boot) file name
The data associated with font, printer., plotter, and start-up file is the
name of the device/file as it would appear in the Optione form of
GRiDManager: a complete pathrname is not required.
error —— if the tag specified does not exist, an error 225 (Bad parameter) is
returned.

= 0 WM -

TimeOffsetType Record Fields

TimeDf fsetType = RECORD
vear : Word:

Procedures and Functions 7-31

davOffset : Word;

hour @ Eyte:

minute : Byte;

second @ Hyte;

dayDfWeek @ Byte;
EMD:

Each of the fields imn this record specify an offset from the time as
maintained by the built-in clock in the Compasse computer. The built-in clock
maintains Greenwich Mean Time {(GMT). The offset values in this record provide

the information needed to "localize” the time displayed by applications to the
time where the Compass is currently located.

7-32 GRiD-05 Reference

O=sGCetSize
FUMCTION OsGetSize (block : Fointers
VAR error @ Word) @ Word;
Purpose and Operation

This call returns the size of a memory block that was previously allocated to

the calling procese.

Parameters

block —— points to the first byte of the block whose size is to be returned.
This should be the same as the pointer returned from DzAllocate when the
block was allocated.

Function Return

length —— a word specifving the length, in bytes, of the specified memory
block allocated to this process. & length of zero indicates 64k bytes.

Possible Errors

Invalid memory block (error 11).

Procedures and Functions 7-33

De=GetStatus

FROCEDURE OsGetStatus {(conn @ Word;
VAR status 3 Bytess;
length @ Word:
VOR error @ bord)g

Furpose and Operation

"This call is a rather special-purpose call that would normally be used only by
svstem level maintenance or trouble-shocoting programs. It letse vou examine
the status information associated with each file or device. This call retuwns
status information about a file that is currently attached. The status
information includes such things as whether the file is open., what type of
access 1t is open for, permissible seek directions, current file position,
cuwrrent size of the file, and total space allocated for the file. The
arganization of the status record retwned for files and mase storage devices
by this call is as follows: '

StatusType = RECORD
open @ Hoolean:
access : Bytes
seek @ Hyte;
filePpsition : Longint:
filelength : Longint:
numFages . @ Words;
numPagesAllocated @ Word;

EMD:

Note: The status record returned for non—-mass-storage devices {such as
printers) is uniguely defined and different for each device.

Parameters

conn —— connection number {data type Word) that specifies the file whose
status is to be examined.

setatus —— the location where the status information

ie to be retwned. MNOTE: When passing & pointer to a "VARE BYTES"
parameter such as "VAR status: BYTES", remember to dereference the pointer,
or the wrong code will be generated. BSee the discussion of the Bytes data
type in Chapter 1 for an example.

length -- the number of status bytes to get from the StatusType record.

StatusType Record Fields i(for files or mass storage devices)

open —— a Hoolean that, if frue, indicates that the file is cwrrently open.
If False, then no other values in the record are valid.
access — a byte indicating the access rights for this file {(specified at

Osfdttach time). If the appropriate bit listed below is on (1), then the
indicated access is allowed:

7-34 GHRiD-0S Reference

bit # access

delete access

i read access
2 write access
3 update access
seek —— a byte indicating the types of seeking which can be perforised on this

connection. The types of seeks permitted are device dependziat. If the
appropriate bit listed below is on (1), then the indicated access is
allowed:

bit # access

O seek forward
i seek backward

fileFosition —— a leng integer indicating the byte number that is the current
Tile position location.

filelength —— & long integer indicating the total number of bvtes in the file.

numPages —-— a word indicating the total number of pages this connection
currently occupies on the device. Page size (sector size) is 256 bytes on
bubble memory and 512 bytes for all other mass storage devices.

numFagesAllocated -- a word indicating the total number of pages (sectors)
allocated for thise connection on the device.

Possible Errors

Bad connection f{(error 221i.

Procedures and Functions 7=35

O=GCetSvstemID

FROCEDURE OsGetSystemlID (VAR systemID : Bytes);

Purpose and Operation

This call returns the identification string for the system in the form
"Wersion #.#.# of GRiD-05". The identifier is in the format of a ShortString.

Parameters

syetemID ~- the location to store the retwned system ID record. This should
be formatted as a short string.
NOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR
svstemID: BYTES"., remember to dereference the pointer, or the wrong code
will be generated. BSee the discussion of the Bytes data type in Chapter 1
for an example.

736 GRiD-05 Reference

OsGCGetTime

FPROCEDURE OsGetTime ‘mode
VAR time

Byte;
TimeType);

zs 8s

Purpose and Operation

This call returns all available information from the Compass’ real time clock.

The organization of the time record returned is as follows:

TimeType = RECORD
vear @ bords
month : Byte:
day : Bytes
howr @ Bytes
minute : Byte:
second : Hyte:
tenthOfSec : Byte:

dayOfleek : Byte:
dayOfYear : Word;
END3j
Parameters
mode —— if this parameter is "GreenwichMeanTime", then time is based on

Greenwich Mearn Time (GMT). If this parameter is "CompassRelativeTime"

then all times are based on the local. or Compass-relative time.
time —— the location where the time information is to be returned.

TimeType Record Fields

vear —— a Word specifying the current vyear.

month -— a Byte specifying the number of the current month (1-12).
day —— & Byte specifvying the current day (1-31).

howr -—- a Byte specifving the current hour (0-23).

minute —— a Byte =specifying the cwrent minute (0-39).

second —— & Hyte specifying the current second (0-59).

tenth0f5ec —— a Hyte specifying the current 1/10 second (0-9).

dayOfleelk -- a Byte specifying the current day of week {(Sunday = 1, Saturday

= 7).
dayBfYear -- a Word specifying the current day of vear {(1-366).

Frocedures and Functiones

7-37

OCs=sGetbor k
FUMCTION OsGetWork : ShortStringPtr:
Purpose and Operation
This routine retwns a pointer to the short string containing the current
device designated as the “work® device used by compilers and the link program.

Note: the pointer that is retwned points to a string in the system data
space. This string should not be updated.

Osl oolkUphName
FUMCTION OslocckupMame (VAR name @ Bytes;
VAR error @ Word) : Longlnt:
Purpose and Operation

This call looks up a specified name and returns the token that was stored with
it by an OsRegisterName call.

Parameters

name —— the location of the name to look up. The name should be formatted as
a ShortString up to 255 charactere in length. WMNOTE: When passing a
pointer to a "VAR BYTES" parameter such as "VAR name: BYTES", remember to
dereference the pointer, or the wrong code will be generated. See the
discussion of the Bytes data type in Chapter 1 for an example.

Function Return

token —— the LonglInt that accompanied the specified name.

Possible Errors

File {(Mame) does not ewist {(error 33).

7-38 BRiD-0S Reference

OsHandl eCancel
FROCEDURE OsHandleCancel {(mode : Boolean);
Purpose and Operation

This call lets vou specify whether GRiD-0S or youwr application is responsible
for taking action when CODE-ESC (Cancel) is pressed on the keyboard. If you
specify that the system has this responsibility, GRiD-05 will terminate the
current process if CODE-ESC is pressed. If you specify that your application
has this responsibility, the CODE-ESC character is passed to the application
for processing through the normal stream of keyboard characters. If an
application does not issue this call, the default mode is for GRiD-0S to
handle the CODE-ESC.

IMPORTANT: All applications should call OsHandleCancel and should set mode to
Falee. Otherwise, it is possible under certain conditions for the system to
terminate the application’s process if the user happens to press CODDE-ESC
while certain system activities {(such as allocating memory) are being
performed.

Parameters

mode —— a Boolean. If true, GRiD-0S has responsibility for handling CODE-ESC.
If false, the application must handle CODE-ESC.

Procedures and Functions 7-39

OstMMatchinNi L doear o

FROCEDURE OsMatchWildCard (VAR testS5tr : Bytes:
strien : Word:

VAR matchStr : Bytes:
matchlen @ bord;
ideplfCase : Boolean:
fullMatch : Boolean:

VAR lenagth @ Word)s

Purpose and Operation

Thie routine compares a specified string f{testStr) to a wildcard string
{matchStr) and is typically used for comparing pathnames. The wildcard
string can contain the wild card character (OF7 hew) which will match with
any character or string of characters. For example, if the match3tr is
"G...n" f{where "..." represents the wildcard character OF7 hex), this
string would match fully with GRiDFlan and Govern, and would match through
the first =i characters with the string "Goldenrod'.

You can specify that upper case and lower case be ignored and whether the
two strings must match completely. Upon completion, the variable length
indicates how many characters of the two strings are the =zame. If length is
zero, then there was no match.

MOTE: When passing a pointer to a "VAR BYTER" parameter szuch as "VAR
testStr: BYTESY, remember to dereference the pointer, or the wrong code
will bhe generated. See the discussion of the Bytes data type in Chapter 1
for an example.

Parameters

testStr —— the sequence of bytes that are to ke compared against the
wildecard =string.

strien -- the length of the strimg that is to be compared against the
wildcard string.

matchStr —- the wildcard byte string against which the comparison is to be

made. Thie string can contain the wildcard character {(7F hex) that will
match with any character{s) in the target string.

matchien —— the length of the wildcard string.

idepOfCase —— ignore case. If true, the compariscon is made without regard
to upper or lower case. If falee, the case of characters in the strings
must match exactly.

fullMatch —— If true, the two =trings must match in their entirety. If
they do not, a length of zerc is retwned. If false, the length will
indicate how many bytes of the tweo strings matched.

length —— indicates how many bytes of the two strings matched. The call ics
terminated as soon as a non—matching byte is encountered.

7-40 GRiD-05 Reference

Os0pen

FROCEDURE O=0pen {(conn : Word;
numBuf @ Bytes
VAR error : Word)g;

Purpose and Operation

Thie call opens a file by allocating memory for the file buffer and file
pointers that will be used during subsequent accesses. The file must have
previously been attached using OsAttach.

Each opening of a file reguires the allocation of at a buffer in memory.
Currently, one buffer is allocated by the system for each file. NOTE: the
buffer length for hard disks and floppy disks is 512 bytes, and for bubble
memory is 256 bytes.

When a file is first opened, the current file position marker is set to
zerc. See "Operating on Files" in Chapter 3 for a discussion of the
current file position marker.

Parameters

conn -—- connection number f{data type Word) that specifies the file that is
toc be opened.

numBuf —-— the number of buffers to use for this file. Currently, the

system supports only one buffer per file and ignores this parameter.
You should, however, specify a value of one to ensure future
compatibility.

Possible Errors
Out of memory f{error 2).
Bad connection {error 221).

File already open f{(error 222).
All disk errors (101 - 108).

Procedures and Functions 7-41

Os0wer 1 &y

PROCEDURE O=0verlay (VAR name Bytes:
pid bords:
VAR error = Wordls

Purpose and Operation

This call loade a specified overlay program into memory. Only ocne level of
overlays is allowed: a program that has been brought intoc memory as an
overlay cannot then issue an OsOverlay call. This routine can be called
only from the rooct {non-overlaid) phase.

IMPORTANT: When an overlay module is loaded into memory, the previous
overlav'e code and data segments are overwritten. Therefore, vou cannot
have any static variables in the data segment of an overlay: they must he
in the root module. For a thorough discussion of overlays, see the GRiD
Frogram Development Guide.

Parameters
name —— a record, formatted as a ShortString, containing the name of the
overlay. The overlay name is defined using the linker overlay control.

Fefer to the Frogram Development Guide for details. NOTE: When passing
a pointer to a "VYAR BYTES" parameter such as "VAR name: RYTES", remember
to dereference the pointer, or the wrong code will be generated. GSee
the discussion of the Bytes data type in Chapter 1 for an example.

pid —-— the process ID of the overlay. Usually, this will be the same as
the pid returned by OsWhoAml; that i=, the overlay is part of the same
process that is issuing the OsOverbay call.

Possible Errors
File not found {(error 335).

£11 disk errors (101 - 108).
All loader errorse (300 — 304).

7-42 GRiD-0S Reference

OsFPutPFProperty

FROCEDURE OsFutProperty (tag : Words
length : Word;
VAR buffer : Bytes;
VAR error : bord);

Purpose and Operation

This routine lets you alter some of the system—wide properties that apply
to a specific Compase computer. These properties are usually set using
GRiDManager and the current settings are recorded in the file User“Profile™
under the Programs subject.

WARNING: Tag wvalues 1 through 1000 {(decimal) are reserved for use by GRiD.
Never specify a tag value in the range 1 - 1000 other than those listed
below. Other tag values in this range are associated with system internal
information and altering the data associated with these other tags can have
unpredictable results. You can, however, use tags beyond this range to
record user—-specific information in the file User™Frofile™.

Parameters

tag —— specifies which system property is to be altered as follows:
Value Froperty
time offset
screen frame on/off
system—wide font
current printer
10 current plotter
i1 start-up file
length -- the number of bytes to be "put”.
buffer —— a sequence of bytes defining the characteristics of the
designated tag as follows:
Tag Data
timeOffeet record {(described below)
data = 1, turn frame ony; 2 = turn frame off
system—wide font name
current printer name
10 current plotter name
11 start-up (boot) file name
The data associated with font, printer, plotter, and start-up file is
the name of the device/file as it would appear in the Options form of
GRiDManager: a complete pathname is not regquired. NOTE: When passing
a pointer to a "VAR BYTES" parameter such as "VAR buffer: RYTES",
remember to dereference the pointer, or the wrong code will be
generated. See the discussion of the Bytees data type in Chapter 1 for
an example.

S v B oh B o

0 e

error —— if the tag specified does not exist, an error 225 (Bad parameter)
is returned.

Procedures and Functions 7-43

TimeOffsetType Record Fields

TimeOffsetType = RECORD
vear @ Word;
dayOffset : Word;
hour : Byte;
minute : Byte:
second : Byte:
dayOfbleek : Byte;
END3

Each of the fields in this record specify an offset from the time acs
maintained by the built-in clock in the Compass computer. The built-in
clock maintains Greenwich Mean Time (GMT). The offset values in this
record provide the information needed to "localize" the time displaved by
applications to the time where the Compass is currently located.

7-44 GRiD-05 Reference

OsRead

FUNCTION O=sRead f{conn @ Words
VAR buffer : Bytes;
length @ Word;
VAR error @ bord) @ Words

Purpose and Operation

This call reads a specified number of bytes from & file and places them in
a specified buffer. The read operation begins at the current file
position. If the end of the file is reached before the specified number of
bytes are read, the read is terminated and the cuwrrent file position is
left at the first byte bevond the end of the file. This function retuwrns a
word specifying the number of bytes actually read from the file. The
number of bvtes read can be less than the number specified by length only
if the end of file is reached or if an error occurs.

If the file was attached in the partial directory mode or complete
directory mode, this call treatse directory entries, rather than bytes, as
the objects that are read. The read operation begins at the current
directory entry. If the end of the directorvy ie reached before the
specified number of entries are read, the read is terminated and the
current file position is left at one entry bevond the end of the directory.
In directory mode, this function retuwrns a word specifying the number of
entries actually read from the file. The number of entries read will bhe
less than the number specified by length only if the end of the directory
i= reached or if an error occurs.

Parameters

conn —— connection number {data type Word) that specifies the file to be
read.

buffer —- references the buffer where the data read from the file is to bhe

placed. It is the programmer’c responsibility to provide a buffer large
enough to accommodate the data that is read. The operating system does
not check the =ize of the buffer. NOTE: When passing a pointer to a
"WAR EYTES" parameter such as "VAR buffer: RBRYTES", remember to
dereference the pointer, or the wong code will be generated. See the
discussion of the Bytes data type in Chapter 1 for an example.

length —-- the number of bvtes {or directory entries) to be read from the
file. The maximum lenagth is 65,535 bytes.

Function Return

amountfead -— a word specifving the number of bytes for entries) actually
read from the file.

Possible Errors

File accecss denied f{error 38).

Frocedures and Functions 7-45

File not open f(error 203).
Bad connection f{(error 221).
All disk errors (101 - 108).

7-46 GRiD-05 Reference

OsReceiwve

FUNMCTION OsReceive (sowrcePid @ Words
class @ Word
timelimit @ Word;
VAR note @ Word;
Vak error @ Word) @ Fointer;

Purpose and Operation

This call places the current process in the wait state where it remains
until it receives a message sent by another process, or until a specified
time limit has ewpired, or until it receives an appropriate error message
from the system.

If an appropriate message is already available when the process issues an
OsReceive, the process immediately proceeds to the ready state. If vou
specify that the message must be sent by a particular process, and if that
procecss does not exist, GRID-05 will give the waiting process a Frocess
Does Mot Exist error and move the process to the ready state.

I¥ a message of the specified class and from the specified sending process
iz not available when this process enters the wait state, the process will
remain there. The process will stay in the wait state until an appropriate
mezsage is received or until the specified time limit expires. You can
cspecify a time limit with & null (OffffH) value. In this case, the process
will wait forever to receive the appropriate message. (NOTE: i+ the
cspecified sending process is deleted, the waiting process would be given an
appropriate error indication and moved to the ready state.)

The sending process does not make a separate copy of the message for the
receiving process: there is but a single instance of the message.
Therefore, when the receiving process gete back to the run state, it should
immediately make its own copy of the message and inform the sending process
that it is finiched with the message. The receiving process could
accomplish this by passing a note back to the sending process.

Parameters

sourceFid —— the process from which the mescsage is to be received. If null
{OFFFFH), thern a message sent by any other process can be received.

clase~-- the class of message that can be received. If this is
null (OFFFFH) , a message of any class can be received.

timelimit -— the amount of time, in milliseconds (rounded up to a multiple
of 10 milliseconds), that the process will wait for an appropriate
message. If the time limit expires before a message is received, the
procese goes to the ready state and a Time Out error is returned. If
vou specify a null {(OFFFFH) timelimit, the process will wait forever for
a message. If vou specify a timelLimit of zero, the process will proceed
immediately to the ready state.

Frocedures and Functions 747

note —- the 2-byte note i{data tvpe Word) that can be passed by valus from
the sending process. Interpretation of the note contente is application
dependent.

Function Return

This procedure returns a pointer to the buffer holding the actual message

sent. If vouw are is=suing this call in Pascal, you must provide an

appropriate data type teo obtain the returned pointer.

Possible Errors

Frocess does not exist {error 251) if the specified message-souwrcing
process does not currently exist in the svstem.

Timeout f{error 253) if a mecssage is not received before the specified time
limit enpires.

7-48 GRiD-0S Reference

OsRegister-iMNames

FPROCEDURE OsRegisterName (VAR name : Hytes;
token : Longlnt:
mode @ Bytes

VAR error @ Word)g

Purpose and Operation

Thiz call records or registers a ShortString containing & name that other
processes or programs can examine or look up (using OslookupMame). A token
{(data tvpe Longlnt) i=s stored along with the name and this token can thus
be accessed by anv process or program that knows the appropriate name.

This zame call can delete or unregister a name so that it is no longer
available to cther processes or programs in the system.

The O=RegisterMame and OslookuplMame calls provide a very siople mechanism
for exchanging information between processes. This capability is most
often used to establish initial contact between processes before they know
the process IDs required to use the message passing or semaphore calls to
communicate with other processes.

Parameters

name ~— the location of the name to be registered or unregistered. The
format of the actual name at this location is a short string up to 255
characters in length. MNOTE: When passing & pointer to a "VAR BYTES"
parameter such as "VARE name: BYTES", remember to dereference the
pointer, or the wrong code will be generated. See the discussion of the
Byvtes data type in Chapter 1 for an example.

token —-— a Longint that is stored along with the name. Interpretation of
the token iz entirely up to the user. .
mode —— if the value of this byte is "registerMame”", it means that the

indicated name is to be registered. If the value of this byte is
"unRegisterMame”, it meansz that the indicated name is to be unregistered
ar deleted.

Possible Errors

Out of memory ferror 2).
File ipame) already exists f{error 32).

Frocedures and Functions 7-49

O=s=RemovelDewvice

PROCEDURE OsRemoveDevice (VAR name @ Bytes:
VAR error @ Word)g

Purpose and Operation

Thie call removes the specified device from the system’ s Active Device
Table. Thus, this call is the equivalent of "deactivating” a device from
the command line {zee the Frogram Development Guide for a description of
the Deactivate program). For a detailed discussion of how to use this
call, refer to GRiD documentation on device drivers.

Parameters
name —— the device name (formatted as a ShortString) assicned during the
OsAddDevice call to the device driver. MOTE: lWhen passing & peointer

to & "VAR BYTES" parameter =uch as "VAR name: BYTES", remember to
dereference the pointer, or the wrong code will be generated. See the
discussion of the Bytes data type in Chapter 1 for an example.

750 GR1D-05 Feference

OsRemname

PROCEDURE OsRename f{conn @ Word;
VAR newName : Bytes;
VAR error @ Word) s

Purpose and Operation
Thiz call changes the name of an existing, attached file. The file must

have been attached with a write access or update access specified and the
file must al=o be open.

Parameters

conn —-— connection number idata type Word) that specifies the file that is
to be renamed.

newMame —-- the new file name to be given to this file. Note that the

device-subject part of the pathname remain unchanged. It is only the
fileMame {or title) portion that is altered. If vyou supply a full
pathname with this parameter, the device-subject are ignored. If you do
not specify & kind, it is given a kind of Untyped. NOTE: When passing
a peinter to a "VAR BYTES" parameter such as "VAR newMame: BYTES",
remember to dereference the pointer. or the wrong code will be
generated. See the discussion of the Bytes data type in Chapter 1 for
an example.

Possible Errors

File already existe f{error 32).
All disk errore (101 - 108).

Frocedures and Functions 7-a1

OsSeel

FROCEDURE OsSeek (conn @ Word;
mode : Bytes
length : Longint;
VAR error @ Word);

Purpose and Operation

This call alters the cwrent file position by moving the marker a specified
number of bytes. The first byte of a file is byte zero. You can move the
marker forward or backward in the file, move it to a specific byte location
in the file, or move to a position a specific number of byvtes in from the
end of the file.

A seek does not actually accese a file on a device —— it simply changes the
current file position.

If a seek is made bevond the end of the file, the cuwrrent file position is
changed but the file is not actually extended until a =ubseguent write is
performed at that position.

Parameters

connn —— connection number f{data type Word) that specifies the file on which
the =eek ie to be performed.

mode ~-— a byte specifying the tvpe of seek to perform as follows:

seekBackwards. Move marker back by length bvtes
seekToHere. 5Set marker at byte specified by length
seekForward. Move marker forward by length bytes
seekFromEnd. Move marker to end of file minue length bytes
length —- the number of bytes toc =eek or the location that the marker
cshould ke positioned to.

Possible Errors
File not open ferror 203).

Bad connmection f(error 221).
Bad parameter ferror 225).

7-52 GRiD-0S Reference

UO=s9Serdd

PROCEDURE O=5end (destPid @ MWord;
class @ Word
note @ Word;

VAR message : Hytes;
VAR error @ Word)s

Purpose and Operation

This call sends a message to another process. The OsSend call does not
make a zeparate copv of the message. Therefore, you must ensure that you
do not alter the message until after the intended receiving process is done
with the message. There iz no automatic mechanism for verifying reception
of a message. You can accomplish this verification yourself by, for
example, having the receiving procese send & note back to the originator
when it has finished with the message.

Parameters
destFid —— the process that is to receive the mescsage.
clase -~ the user specified class that will be assocciated with this message

and examined to determine if it can be delivered to a receiving process.
I vou specify a null {(OFFFFH) class, the message can only be received
by a process that has specified & null class as part of its OsReceive

call.

note -— the Z-byte note {(data type Word) that can be passed by value to the
receiving process. Interpretation of the note contents is application
dependent.

message —— the buffer containing the actual message. IMPORTANT: GRiD-05
requires that the first 16 bytes of the message contain all zeros. The
length and format of the rest of the message is application dependent.
MOTE: When passing & pointer to a "VAR BYTES® parametér such as "VAR
message: BYTES", remember to dereference the pointer, or the wrong code
will be generated. GSee the discussion of the Bytes data type in Chapter
1 for an example.

Possible Errors

Frocess does not exist ferror 251) if the process that the message is
addressed to deez not exist in the system.

fut of memory ferror 2} if there is insufficient memory to =send the
MESSAgE.

Procedures and Functions 753

OsSetPriocority
FROCEDURE OsSetPriority f{pid : bord;
priority @ Hyte:
VAR error @ Word):
Purpose and Operation
This call ascigns & new priority to a specified process. Thus, vou can
dynamically change process prigrities from the initial values assiagned when

each process is created. A process can change the priority of anv cther
process, and can also change its own priority.

Parameters

pid —— process identification number. A word identifving the process whose
priority is to be changed.

priority —— the new priority, in the range of 0 to 255, for the specified
process. Zerpo is the highest priority, 255 the lowest.

Possible Errors

Frocess does not exist f{error 251).

7-54 GRiD-05 Reference

OsSetStatus

FROCEDURE OsSetStatus {conn @ Word;
VAR status 2z Bytess
length : Word:
VAR error @ Word):

Purpose and Dperation

This call sets up status information about a file that is currently
attached. It will typically be used onlvy on special devices, such as the
modem or serial port, that reguire very specific operating parameters. For
evample, you would use the O0sSetStatus procedure to set the baud rate,
parity and other operating parameters for the modem. The usze of
O=5etStatus is device dependent and is described in the documentation for
each specific device.

Mote that the “status” parameter used here is not the same StatusType
record that is used with the 0Oz6GetStatus call. Instead, it simply points
to a buffer containing application or device-dependent bytes.

Parameters

conn —— connection number f{data type Word) that specifies the file whose
statue is to be set.

status —— the status information to be sent. NOTE: When passing a pointer

to a "VAR BYTES” parameter such as "VAR status: BYTES", remember to
dereference the pointer, or the wrong code will be generated. See the
discussion of the Hytes data tvpe in Chapter 1 for an example.

length -- the rnumber of status bvtes to send.

Possible Errors

-y

Bad connection ferror 221).

Procedures and Functions 7-55

O=Sigmal

FROCEDURE OsSignal {=id : Word:
mode @ Hyte;
note @ bWord:

VAR error @ Word)

Purpose and Operation

A semaphore iz always created in the busy state. This call sets the
specified szemaphore toc the not busy state. If another process is waiting
at this semaphore when the 0OsSignal call is issued, that waiting process
proceeds to the ready state. If more than one process iz waiting at this
semaphore, the process with the highest priority procesds to the ready
state {except for mode 3, explained below, which allows all waiting
processes to proceed).

Parameters

sid —— semaphore identification number that was returned by GRiD-05 when
the semaphore was created.

mode —— a byte specifying one of three signalling modes:

signalMormal. This mode always lets one. and only one, process pass. If
no process is currently waiting at the semaphore, the signal is
retained {the semaphore is held not busy) until an DOsWait is issued
to this semaphore. The process issuing the OsWait proceeds to the
ready state and =ets the semaphore busy. If a process is already
waiting at the semaphore, it proceedes to the ready state and the

semaphore retwrns to busy. This mode can be used to ensure that
only one process can proceed through a critical section of code at
a time.

signalEvent. This mode lete one process pass if there ie currently a
process waiting, but the signal is not retained. If a process is
currently waiting at the semaphore, it is signalled and proceeds to
the ready state. Otherwise, the semaphore remains busv and &
process arriving subsequently must wait for another 0sSignal. This
mode is useful for informing any waiting process that a particular
event has ococwred.

signalAlldaiters. This mode lets all currently waiting processes pass.
11 processes waiting at the =semaphore are signalled and proceed to
the ready state. This mode is useful for synchronizing the
initiation of several processes. The signal is not retained; if no
processes are currently waiting at the semaphore, the semaphore
remains busy and processes arriving subseguently must wait for
another 0sSignal.

7-546 GRiD-0% Reference

note - the 2-bvte note {(data type Word) that can be passed by value from
the =ignalling process. Interpretation of the note contents is
application dependent.

Possible Errors

Semaphore does not exist f{error 282) 1f the specified semaphore (sid) does
not exist in the svstem.

h
n
J

Frocedures and Functions

OsSwitchBud Fer

FUMCTION OsSwitchBuffer (VAR buffer : Bytes) @ Word:

Purpose and Operation

Thie call lets vou specify an alternate buffer to be used for the
O=GetArgument call and thus ochtain argquments from places other than the
command line. You should not wvee this call until the commmand lime has been
completely processed since there is no way to switch back.

Parameters

buffer —— the new buffer that a subseguent OsGetfrogument call should scan
for arguments. The end of the data in the buffer is indicated by a
Carriage Return character. NOTE: When passing a pointer to a "VAR
KYTES" parameter such as "VAR buffer: BYTES", remember to dereference
the pointer, or the wrong code will be generated. See the discussion of
the Hytes data type in Chapter 1 for an ewample.

Function Return

length -— a word indicating how far scanning had proceeded in the previous
buffer; that is, the first byte bevond the last delimiter character
encountered on the previous OsbetArgument call.

Possible Errors

Mone.

7-538 GRiD-0S% Feference

OsTruncate
FROCEDURE QeTruncate f(conn @ Word;
VAR error @ Word);
Purpose and Operation
Thie call deletes the contents of a file from the current file position to
the end of the file. Upon completion of the truncation, the current file
position is one byte beyvond the new end of file.
Parameters
conn —— connection number {data type Word) that specifies the file that is
to be truncated.
Possible Errors
File not cpen f{error 205).

Bad connection ferror 221).
A1l disk errors (101 - 108).

Procedures and Functions 7-59

Cskadi &

FUMCTION OsWait (=id
timelimit
VAR error

Words

Hord:

Word) : Word;

B ma ms ’

Purpose and Operation

This call suspends the current process by placing it in the wait state

where it remains until the specified semaphore is not busy or until =&
specified time limit has expired.

It the =zemaphore is not busy when the process issues this call, the process
immediately proceeds to the ready state and the semaphore i= set to busvy.
The =semaphore remains busy until an 0s=sSignal call is directed to it
ttypically, by the process that most recently proceeded past the
semaphore).

If the semaphore is busy when the process issues this call, the process
stays in the wait state until the semaphore is =zignalled (set not busy) or
until the specified time limilt expires. You can specify & time limit with
a null (OFFFFH) value. In thie case. the process will wait forever for the
gsemaphore to become not busy. (MOTE: if the specified semaphore is
deleted, the waiting process would be given an approopriate error indication
and moved to the ready state.)?

I+ other processes had previously issued QOcsblait calls to this semaphore and
are still waiting for their twn to proceed, this process is placed in a
queue according te its process priority. It cannot proceed until all of
the waiting processes of & higher priority have passed the semaphore.

Parameters

sid —— zemaphore identification number that was returned by GRiD-05 when
the =emaphore was created.

timeLimit —~— the amount of time, in milliseconds {rounded up to a multiple

of 10 milliseconds), that the process will wait for a signal. If the
time limit enpires before a =ignal is received, the process goes to the
ready state and a Time Out error is retwned. If you specify a null
(OFFFFHY timelimit, the process will wait forever for a signal. If vou
specify a timelimit of zero, the process will proceed immediately to the
ready state: if there wasz no signal for the semaphore., a timeout error
will be returned.

Function Return

note —— the Z-byte note {data type Word) that can be'passed by value from
the signalling procese. Interpretation of the note contents is application
dependent.

7-60 GRiD-0S Reference

Possible Errors

Timeout f{error 253) i1f a =ignal is not received before the specified time
limit expires.

Semaphore does not exist ferror 252) if the specified semaphore {(sid) does
not exist in the system.

Frocedures and Functions 7-41

C=lkhofm L
FUNCTION Osbhofml : Word;
Purpose and Operation

This call returns the process identification number {(pid) assigrned to this
process when it was created.
Function Return

pid -— a word that is the process identification number assigned to the
requesting process,

Osbir-1 te

FROCEDURE Oslkrite {conn @ Word:
VA buffer @ Bytes:
length @ Word;
VAR error @ Woed)

Purpose and Operation

This call writes a specified number of bytes to a file. The wite
operation begine at the cwrent file position. I+ the end of the file is
reached, the additional data is appended to the file and the end of file
marker is moved to a position one byte bevond the last byte written. If
the current file position where the write begins is already bevond the end
of the file, the file is extended to that point and the writing begins
there.

If the cwrrent file position i=s not bevond the end of the file, the new
data is witten over the previously existing data.

Parameters

conn —— connection number {(data tvpe Word) that specifies the file te be
written to.

buffer —- a pointer to the buffer containing the data to be written to the
file.

length -— the number of bytes to be witten to the file.

Possible Errors

File access denied ferror 38).
Device full f(error 41).

File not open {ervor 2035).

Bad connection {error 221).
ALY disk errors (101 — 108).

7-&42 GRiD-08 Reference

WinmnAal locateWindowMemor v

FUNCTION WinAllocateWindowMemory (width @ Integers;
height Integer;
format WindowFormat.;
VAR error : bord): WindowRegionPtr;

Purpose and Operation

Thie call allocates memory for an alternate window. It frees an
application from concerning itself with the number of bits per pixel
required by the screen. The application must specify whether the window
region is to be used as a GRiID format window or a host (non-GRiD) screen
format window. If the alternate window is to be used to load screenimage
files, then it should be in GRiD format. If the alternate window is only
going to be used to redirect the output so that the user doesn’t see it,
then it chould be in the screen format. In screen format, transfers
between windows will be accomplished more guickly.

A pointer is returned to the WindowRegion record for this window. The
prganization of the WindowRegion record is as follows:

TYFE
WindowFormat = {screenfFormat, GRiDFormat);

RECORD
format : WindowFormat:
width : Integer;:
height : Integer;:
bufLength : Word;
bkuf @ Pointers
bitePerFel : Bytes
bvtesPerLine : Word:
EMD3

i

WindowRegion

WindowRegionPtr = “WindowRegion;

Mote: To deallocate memory for a window, you must use two OsFree calls --
one to free the WindowRegionPtr and one to free the "buf" pointer.

Parameters

width —-- the width of the window in pixeles.
height —- the height of the window in pixels.
format —— GRiD format or host screen format.

WindowRegion Record Fields

format -— GRiD format or host screen format.
width -—- the width of the window in pixels.
height -- the height of the window in pixels.

Frocedures and Functions 7-63

buflength —-—- the size, in bvtes, of the buffer allocated by the svstem for
this window.

buf —— a pointer to the first byte of the buffer allocated for this window.

bitsPerFel -—— the number of bits-per-pixel used for the window. For GRID
format windows, there is one hit per pixel.

bytesFerLine —— the number of bvtes used by the svystem to store one

horizontal line of pixels for the allocated window.

Function Return

bindowRegionFtr - a pointer to the WindowRegion record for this window.

7-64 GRiD-08 Reference

WinmniClipl i e
FUNCTION WinClipline (VAR w1, vl, x2, v3Z: Integer) : Hoolean;
Purpose and Operation

This function tells vou if any portion of a line f{defined by x1,v1l and
#2,v2) evtends outside of the current clipping rectangle. If clipping
would occuwr, the variables xl1, vi, %2, v2 contain the coordinates of the
line as it will be clipped and the function returns a True Boolean value.
I¥ the line lies completely inside the window, this function returns FALSE
and the unchanged coordinates of the line are returned. Note: This
function neither draws nor clips the line: use WinDrawLine to draw the line
-— it will be clipped as necessary by the clipping rectangle. You can use
WinClipLine to determine if a line would be drawn completely ocutside of a
clipping rectangle and thus skip the WinDrawLine if the line would not be
displaved within the rectangle.

Parameters
#l,yl, w2,v2 —— the two window relative pixel coordinates defining the

line. On entry, they define the line that is to be checked for
clipping. On retwn, they define the line as it would be clipped.

Frocedures and Functions 7-65

inmiC} i pRectangl e
FROCEDURE WinClipRectangle (VAR r @ Rectangle):
Purpose and Operation

This function tells vou if any portion of a rectangle (r) extends outside
of the current clipping rectangle. If clipping would occcur, the variable r
containe the coordinates of the rectangle a=s it will be clipped. If the
rectangle lies completely inside the window, the unchanged coordinatess of
the rectangle are returned. Mote: This function does not draw the
rectangle.

Paramters

r —— the rectangle that is to be clipped. On return, containe the clipped
dimensione of the rectangle.

Wii mCopyRectangle

PROCEDURE WinCopyRectangle (VAR r: Rectangle:
newlopleft: Foint)g

Purpose and Operation

This procedure copies an area defined by the rectangle r into another
rectangular area of the window. The new rectangular area iz the same size
as the original, but its top left corner is at the pixel position
newTopLeft in the window. The new rectangle will be clipped az necessary
to be displaved within the clipping rectangle of the window.
WinCopyRectangle copies the areas point by point and overwrites all pixels
in the copy location.

Parameters

r —— the =owrce rectangle whose contents are to be copied. On retuwn, this
variable indicates the size of the resultant destination rectangle
{possibly clipped).

newTopleft —— the upperleft corner position where the rectangle is to ke
copied.

7-66 GRiD-0S5 Reference

HinCopyRemaott e.Rfe-c tangle

PROCEDURE MWinCopyRemoteRectangle {(source : WindowRegionPtr;
‘ dest: WindowRegionFir;
VAR r : Rectangle;
newToplLeft : Point:
mode 3 WORD);

Purposé and Operation

Thie routine lets vou copy a rectangle from one window region to another,
If either the scurce or destination window regions are NIL, then the screen
is assumed to bhe the source or destination. I+ either source or
destination window are in GRiD format,; then the data is not only ceopied,
but is zlso translated to the different format required by the destination
window. If both window regions are in GRiD format, then this rouvtine will
keep the data in GRiD format, The mode parameter is currently reserved for
future use &and its value must be zero in order for the routine to function

properly.

Parameters

spurce -- a pointer to the window from where the rectangle is being copied.
dest -- a pointer to window to which the rectangle is being copied.

r -- on entry, specifies the size of the scurce rectangle that is to ke

copied; on return, the size of the source rectangle as it was clippad to
fit in the destination window. MNote: the =zource and dectinaticn

rectangles are both clipped to the window bounds -- not the clipping
rectangle bounds,

newlTopleft -- the pivel coordinates of the top left corner of the
destination rectangle.

mode -- recserved for foture use. Must be set to zero.

Frocedures and Functiors 7-47

WinmnDr awiCh s
FROCEDURE WinDrawChar (ch: Char; x,y: Integer):

Purpose and Operation

This procedure draws a character in the window, given the window relative
pixel coordinates where the top left corner of the character is to appear.
Mothing is drawn if any part of the character would be clipped hecause it
lies outside the window. The size of the character drawn is dependent on
which font is currently loaded.

Parameters

ch ~— the B-bit ABCII value for the character to be displaved. MNote:
Because of internal reguivements and for historical reasons, two ASCII
codes draw characters other than the characters yvou would esupect. If ch
iz OCDh the font character represented by BOh is drawn and if ch is OF7h
the font character represented by 86h is drawn.

#a.y —— the window-relative pixel location where the upper left cormer of
the character iz to be drawn.

7-68 GRiD-05 Reference

WinmbDr awlCh ar =

FROCEDURE WinDrawChars (VAR ch: Bytes;
count, #. yv: Integer):

FPurpose and Operation

Beginning with character ch in a text buffer, the procedure outputs a
character string that is "count" characters long. It positions the upper
left pixel of the first character at the window-relative pixel coordinate

av).
Example

The following procedure call draws & character string in the window. The
top left pixel of the first character appears at pixel (20, 20) of the
window.

WinDrawCharsistr™.charsl1l, str.len, 20, 20);
Parameters

ch —— & pointer to the first character in a text buffer that is to be
output. HMNOTE: When passing a pointer to a "VAR BYTES" parameter such
as "VAR ch: BYTES", remember to dereference the pointer, or the wrong
code will be generated. GSee the discussion of the Bytes data type in
Chapter 1 for an example.

count —-- the number of characters to be drawn,

Ay —= the window-relative pixel location where the upper left corner of
the first character is to be drawn.

Procedures and Functions 7—-&2

Wi mDrawl. 4 e

FROCEDURE WinDrawline {xl,v1, =2,v2: Integer):
Purpose and Operation

This procedure draws & line within the window. Any portions of the line
lving outside the window are clipped.

Parameters

wl,vl, #2,v2 —— the window-relative pixel coordinates defining the two end
points of the line to be drawn.

Wi mDrrawFi el
FROCEDURE WinDrawPixel (x,v: Integer):
Purpose and Operation

This procedure draws a single pixel at the given window cocordinate. If the
pixel lies outside the window bounds, it will be clipped inot drawn).

Parameters

¥. ¥ —— the window-relative pixel coordinate where the pixel is to ke
drawn.

7-70 GRiD-08 Reference

WinEraseChar
PROCEDURE WinEraseChar (x,vy: Integer):
Purpose and Operation

This procedure will erase a character position {(of dimensions charHeight by
charWidth) even if portions of it extend out of the window bound.

Parameters

#a ¥ —— the window-relative pixel coordinate where the top left pixel of
the character to be erased is located.

Wi mErasel_inmne
PROCEDURE WinEraseline (xl,yl, x2,v2: Integer):
Purpose and Operation

A line within the cuwrrent window is erased. Any portion of the line lvying
outside the current window boundariez will not be affected.

Parameters

wl.yvl, 22,v¥2 —— the window-relative pixel coordinates defining the two end
points of the line to be erased.

Procedures and Functions 7-71

WinEraseFPixel
FROCEDURE WinEraseFixel (x,y: Integer):
Purpose and Operation

This procedure erases a single pixel at the given window-relative
coordinate. If the pixel lies outside the window bounds, no action is

taken.
Parameters
e ¥ -~ the window-relative pixel coordinate of the piszel is to be erased.

WimEraseRectamngl e
PROCEDURE WinEraseFectangle (VAR r: Fectangle);
Purpose and Operation
This procedure erases & rectangle in the window. If two rectangles overlap
and one is erased, the other one will not be restored: the proceduwre
changes the display’s kit map directly. 6&ny portion of the rectangle lving
outside the cuwrrent window iz not affected.
Parameters
r —— the rectangle that is to be erased. On return, this variable

indicates the rectangle that was actually era=sed since portions cutside
the window are not affected.

7-72 GFR1D-05 Reference

WinEraselWi ndow
PROCEDURE WinEraseWindows
Purpose and Operation

This procedure erases the contents of the current window, but not the
surrounding frame.

WinFrameWi mndow
PROCEDURE WinFramelindow;
Purpose and Operation
This procedure draws & one-pixel { thin) frame outside the current window

bounds. The frame will not be drawn if it has been disabled in the user
profile via GRiDManager®s Option command.

Frocedures and Functions 7-73

WimnGetiWid ndowExtent
FROCEDURE WinGetbWindowE:xtent (VAR extent : Point)g
Purpose and Operation

Thig procedure tells yvou the size of vow window by retuwning the variable
extent. Euxtent only tells vou how big yowr current window is; it does not
indicate where the window is on the screen. Because windows can be placed
anywhere on the screen, only the =ize of the window {and not ite location)
ig important.

Typically an application will use this call during imitiaslization to
determine how big & window it has to work with. Since GRiD-0S re=serves the
right to change vouw window =ize at any time, applications should be
designed to run independent of the window =size and screen characteristics.

If GRiD-05 does change vow window size, it places & special character, the
windowlpdatekey (0C3 hex), in the keyboard gueue. When an application
receives this character, it should assume that the dimensions of the window
have been altered and must recalculate the window =size {(using
WinbetWindowExtent) and redisplay the window using the new boundaries.

WiminithDefawl tWimndow
PROCEDURE WinInitDefaultWindow;
Purpose and Operation
This procedure resets the window to the clipping rectangle, erases it, and

draws a one-pixel frame suwrrounding the screen. The frame will not be
drawn if it has been disabled in the user profile via GRiDManager”™s Option

command.

7-74 GRiD-0% Reference

WimnIiImnvertChar
FROCEDURE WinlInvertChar (x,v: Integer);
Purpose and Operation
The procedure performs a logical MOT operation on all the pixels of a
character position (charHeight by chariWidth). Any portion of the character
outside of the window bounds is not affected.

Parameters

.y —— the window-relative pixel location of the upper left-hand corner of
the character.

WimniImnvertli inmne
PROCEDURE WinInvertline(xl,vl, =2,v2: Integer);
Purpose and Operation
This procedure performs a logical NOT operation on the given line,
inverting it within the window. Any portion of the line outside of the
window bounds iz not affected.

Parameters

wl,vl 22,v2 — the window-relative pixel locations defining the two end
points of the line to be inverted.

~J
]

Frocedures and Functions 7=

b@j,rmilrwwfear-ﬁ:Fbj.}géal
FPROCEDURE WinInvertPixzel {u,y: Integer);
Purpose and Operation
The procedure performs a logical MOT operation on the single pixel position

specified. If the pixel lies outside the current window, no action is
takern.

Hay —— the window-relative coordinate defining the pixel tc be inverted.

WimnInvertRectamngl e
PROCEDURE WinlnvertRectangle (VAR r: Rectangle)g
Purpose and Operation
This procedure inverts the bit-map area inside a rectangle in the window.
Any portion of the rectangle lving ocvtside the current window is not
affected.
Parameters
r —-— the rectangle that is to be inverted. On return, this variable

irgicates the rectangle that was actually inverted since portions
rutside the window are not affected.

7-76 GRiD-05 Reference

WinmnlL oadFont

FUMCTIOM WinLoadFont {conn : Word:
VAR error : Word): FontPointers

Purpose and Operation

This routine loads a font file inte memory and returns a pointer to the
font that can subsequently be used by the WinSetFont function. Before the
font can be loaded, vou must first attach {(OsAttach) and open (OsOpen) the

file. WinloadFont alsc does not detach the file; you must close and detach
the file when finished with it. :

The font pointer is allocated on behalf of the systen and is therefore not
avtomatically freed when the calling program exits. You must therefore
specifically free the pointer before vou exit or the pointer remains
allocated. There is no "WinUnloadFont" routine: you "unload" a font by
using OsFree to free the FontFointer.

MOTE: There are alsc font handling procedures provided in the common code
package. Those are higher level calls and therefore may be easier to use.

Parameters

conn —— connection number {data type Word) obtained from OsAttach that
specifies the font file to be loaded.

WinmnResetCl ip
FROCEDURE WinResetClip;
Purpose and Operation

Fesets the clipping rectangle to the entire window., Clipping by the window
boundaries and by the clipping rectangle will now be the same.

Procedures and Functions 7-77

Wi nScrol il Rectamnrgl e

FPROCEDURE WinScrollRectangle (VAR r: FRectangles;
dir: Direction;
distance: Integer);

Purpose and Operation

"The procedure scrolls a rectangle in the given direction by the distance
given in pixels. Portions of the rectangle scrolled out of the display
window are clipped. An open area is left when the rectangle scrolls away
from its original location. WinScreollRectangle retuwns the coordinates of
the open space as the rectangle r, without modifving the space. The
application must update the open area.

Parameters
r -— on entry, defines the rectangular area to be scrolled. On return,

defines the rectangular open area freed by the scrolling that can now be
updated by the application.

dir —— the direction f(up, down, left, right) in which the rectangle is to
be scrolled.

digtance -- the number of pixels that the rectangle is to be =crolled.

7-78 GRiD-05 Reference

WinScrol 1Wi mndow

FROCEDURE WinScrollWindow (VAR r: Rectangle;
dir: Direction:
distance: Integer);

Purpose and Operation

The procedure scrolls the entire window in the given direction by the
distance given in pixels. The window will leave an empty area when it
scrolls away from its location. WinScrollWindow returns the coordinates of
the empty area as the rectangle r, without modifying the area, =o that the
application can update the area. Anvything scrolled beyond the window
bounds will be clipped.

Nocte: The rectangle r, which vou specify in window-relative pixel
coordinates, acts as an output parameter only. It retwns the rectangular
coordinates of an area that the application should update. The procedure
needs no input parameter for the window bounds because it obtains them

directly.

Parameters

r —— 0On retuwrn, defines the rectangular open area freed by the scrolling
that can now be updated by the application.

dir —-— the direction f{up, down, left, right) in which the window is to be
scrolled.

distance —— the number of pixels that the window is to be scrolled.

FProcedures and Functione 7-79

WinmnSetfl termatebii mndows

PROCEDURE WinSetAlternateWindow {alt : WindowRegionFtr);

Purpose and Operation

This call forces all subsequent window calls to be performed on the
alternate window specified. The alternate window must be in the host
screen format. If not, then this routine does nothing. If the
WindowRegionPtr is MNIL, then the screen is assumed.

Parameters

alt — gpecifies the pointer for the alternate window.

WinmnSetClip
FROCEDURE WinSetClip (VAR r @ Rectangle):
Purpose and Operation

Sets a clipping rectangle within the window boundaries. This clipping is
in addition to the clipping performed automatically at the window
boundaries. Note that the clipping rectangle is defined in pixel
coordinates —— it is independent of the visible and constraint parameters
defined by common code routines for tables, menus, and forms.

This procedure makes displaying multiple views guite easy. For example., in
displaying two different views from the same application, each view would
draw an entire window full, just as if it were the only view. But the
clipping window would be set to different parts of the screen for each
view., You only modify the clipping to display different views; you need
not modify vouw window display code.

Parameters

r —— on entry, the coordinates defining the boundaries of the clipping
rectangle being established. On return, the coordinates of the actual
clipping rectangle established; the actual rectangle may differ from
the specified rectangle since any portion of the rectangle lying outeide
the window boundaries is clipped.

7-80 GRiD-05 Reference

WinmnSetFornt

FUMCTION WinSetFont (font
VAR info
count

FontPointer;
FontInfoRecords
Word): FontPointer;

a® gs w®e

Purpose and Operation

This function sets the designated font as the new font. The variable
info can be examined upon retwn to check the characteristics of the
current font. The function returnz & pointer to the font that was
loaded prior to this call; that i=s, a pointer to the previous font. The
format of the FontInfoRecord i as follows:

FontinfoRecord = RECORD
charWidth : Bylte;
charHeight : Bytes
lineHeight : Byte:;
baseline : Byte:
END:

FontPointer = “Byte:

MNOTE: The fouwr bytes in this record can be examined directly using the
function calls charWidih, charHeight, lineHeight, and baseline described
earlier in this chapter.

Parameters

font -— a pointer {(obtained from the function HWinbloadFont) to the font
that is to be set as the current font. If font has a value of TEFO,
the =ystem font in PROM is set. If a Null pointer (OFFFFH) is
specified, the current font is left in place and info on the current
font is returned.

info —— the four byte FontInfoRecord specifving the dimensions of the
font.
count ~~- determines how many bytes of the FontInfoRecord will be

retuwrned in the variable info. For example, if count has a value of
two, only charWidth and charHeight are returned.

Function Return

font -— a pointer to the previous font. You should save this pointer so
that vou can later restore the initial font before exiting.

Frocedures and Functions 7-81

WinSetii mdow
FPROCEDURE WinSethindow (VAR w: Fectangle)s

Purpose and Operation

CAUTION: PMost applications should never need to set the size of
their own window. Instead. they should operate within the window
givern to them by the system. See WinBetWindowExtent for details.
If you call the WinSetWindow routine, unpredictable results will
occur if you are using any GRID software. The call is documented
here primarily for the =sake of completenecss.

This procedure changes the size and location of vouw current window. It
sets the window csize to the rectangle it receives as an argument. The
additional clipping rectangle within this window is rezet to this =ize
too.

WinSetWindow is the only procedure that reguires absclute screen
coordinates. The rectangle must be defined in akeolute screen
coardinates because no window-relative coordinates are walid for this
window until the procedure has finisghed. Windows larger than the
display screen boundaries {(screenHeight by screendWidth) will be clipped.
You must leave a single pixel space on all four margins 1§ vou want a
frame —— this procedure can claim the outermost absolute pixel positions
if you reqguest it. However, vou must call WinFramebindow to actually

diraw the frame.

7-82 GRiD-0S RHeference

APPENDIX A. COMPASS KEYBOARD CODES

Table A-1 on the following page lists all the hexadecimal codes that can be
generated from the Compass keyboard. Since various combinations of the CODE
and SHIFT keys are used in GRiD applications, all of the codes that result
from the key combinations are shown in the table. ‘

Keyboard Codes

Table A-1. Compass Keyboard Codes

CODE-

Key Unshi fted SHIFT CODE CODE-SHIFT CTRL SHIFT-CTRL CODE-CTRL SHIFT-CTRL
? 27 () 22 (") 60 () SC (\) 07 (BEL) 02 (STX) 00 (NUL) 1C (FS)
’ 2C () 3C (<) SsB (0) 7B ({) oC (FF) 1€ (FS) iB (ESC) 1B (ESC)
- 2D (=) 5F () AD 7F DEL 0D (CR) iF (Us) 8D iF (Us)
. 2E (.) 3E () aD () 7D (3) OE (S0) 1E (RS) 1D (BS) 1D (GS)
/ 2F (/) 3F (?) BF BF OF (SI) iF (Us) 9F 9F

0 30 (0) 29) BO A9 10 (DLE) 09 (HT) 0 89

1 31 (1) 21 (1) b1 Al 11 (DCH) 01 (SOH) 91 a1

2 32 (2) 40 () B2 co 12 (DC2) 00 (NUL) 92 80

3 33 (3 23 (#) B3 A3 13 (DC3) 03 (ETX) 93 83

4 34 (4) 24 (%) B4 A4 14 (DC4) 04 (EOT) 94 84

S 35 (3) 25 (%) BS AS 15 (NAK) 05 (ENe) 95 85

) 36 (&) SE () B6 DE 16 (SYN) 1E (RS) 96 9E

7 37 (7) 26 (%) B7 Ab 17 (ETR) 06 (ACK) 97 86

8 38 (8) 2A (%) BB AR 18 (CAN) oA (LF) 98 B8A

9 39 (9 28 () B? AB 19 (EM) 08 (BS) 99 88

H 3B () 3A (@) 7E (™) 7C (1) iB (ESD) 1A (SUB) 1E (RS) iC (F3)
= 3D (=) 2B (+) BD AR ” iD (GS) oB (VD 9D 8RB

A 61 (a) 41 (A) El El 01 (SOH) 0! (SOH) 81 81

B 62 (b) 42 (B) E2 E2 02 (8TX) 02 (STX) 82 82

c 63 (c) 43 (C) E3 E3 03 (ETX) 03 (ETX) 83 83

D 64 (d) 44 (D) E4 E4 04 (EOT) 04 (EOT) 84 84

E 65 (e) 45 (E) ES ES 0S5 (ENQ) 05 (EN@) 85 85

F 66 (f) 46 (F) Eb E6 06 (ACK) 06 (ACK) 86 86

G 67 (g) 47 (B) E7 E7 07 (BEL) 07 (BEL) 87 87

H 68 (h) 48 (H) ES EB 08 (BS) 08 (BS) 88 88

I 69 (i) 49 (D) E? EY 09 (HT) 09 (HT) 89 89

J 6A (j) 4A (J) EA EA 0A (LF) OA (LF) 8A 8A

K 6B (k) 4B (K) EB EB 0B (VT) 0B (VT) =)= 8B

L &6C (1) 4C (L) EC EC oC (FF) oC (FF) 8c ec

M &D (m) 4D (M) ED = ED oD (CR) oD (CR) 8D 8D

N 6E (n) 4E (N) EE EE OE (S0) OE (sO) B8E 8E

0 &6F (o) 4F (0) EF EF OF (8I) OF (SI) 8F 8F

P 70 (p) 50 (P) Fo FO 10 (DLE) 10 (DLE) 90 %0

@ 71 (q) 51 (@ F1 F1 11 (DC1) 11 (DC1) 91 91

R 72 (r) 92 (R) F2 F2 i2 (DC2) 12 (DC2) 92 92

S 73 (s) 33 (S) F3 F3 13 (DC3) 13 (DC3) 93 93

T 74 () 54 (T) F4 Fa 14 (DCH) 14 (DC4) 94 94

u 75 (u) S5 (W) FS FS 15 (NAK) 15 (NAK) 9s 95

v 76 (v) S6 (V) Fé6 F& 16 (SYN) 16 (SYN) 96 96

W 77 (w) o7 (W) F7 F7 17 (ETBY 17 (ETB) 97 Q7

X 78 (») 8 0 Fe F8& 18 (CAN) 18 (CAN) 98 98

Y 79 (y) 599 (Y) F9 F9 19 (EM) 19 (EM) 99 99

z 74 (z) 5A (2) Fa FA iA (SUB) iA (SUR) 9A 70
BACKSPACE 08 ce g8 8a 08 (BS) B8 8o B8A
RETURN oD cDh 8D ac oD (CR) 8D aD 8c
DownArrow C4 CE D2 D& 84 8E 92 96
ESC iR 1B IR 9B 1B (ESC) iB (ESC) 9B 9B
LeftArrow Cé6 DO D4 De =1} 90 94 98
RightArrow C7 Di DS D% 87 91 95 99
Spacebar 20 (sP) 20 (SP) 20 (SP) 20 (SP) 00 (NUL) 00 (NUL) 00 (NUL) 00 (NUL)
TAB 09 ce a9 8B 09 87 89 8B
UpArrow CS CF D3 D7 a5 eF 93 97

A-2 GRiD-0S Reference

APPENDIX E: INCLUDE FILES

Include files are tools for the development environmernt. Each include file
contains & FUBLIC =zection of Fascal {or FPLM) code that describes the interface
to a corresponding Pascal for FLM) moduele.

The structure of the include files varies from that of the Pascal module
because of the limited svmbol table space provided by some versions of the
compiler. Constants and tvpes are uwsually included in one file, with
furcticns and procedures in ancther. This allows easy reference for tvpes
that are defined in terms of octher constante (parameters).

This structure makes the number of files necessarvy for successful compilation
larger, but it =saves on symbol space if the total number of included svmbols
ie smaller in the end. This restriction on symbol space in the compiler has
beern improved with the latest release of the Intel compiler. The precsent file
convention, however, will stand.

Lastly, the interface is purely for the use of the Fascal compiler. It should
not be weed as an External Reference Specification, or associated
documentation. Writing programs that interface with external modules requires
knowledge of the operaticons and their effects on the private data structures
of a module. Much as & programming language is an implementation of a
orammar, €0 include files are a definition of an interface.

REFORE COMPILING

To uvse GRID-05 rowtines, vour sowrce code must refer to the 05 Include Files
listed in Table B-1. Thi=s table lists all the include files for GRID-08 —-

Include Files E-1

the files that contain declarations of data tvpes, funchticons, and procedures.

You include files with the $IHCLUDE statement, as described in the FASCAL-3&
Uzser’s Guide. The files must be available on-line during a compilation.

hle H=-1. Yeour souwrce
hat it czxlls. For
.

You do not have to include all of the files listed in Ta
program generally needs to include only the procedures ©
example, an application that uses only standard 05 calls {(theose procedures and
functions that begin with "0=s") would not need to include the window include
files.

The pages that follow list the contents of all the GRID-05 Include files.
Feter to Common Codes Reference manual for a list of Common Code Include files.

GRAD-05 He

{ OsPasFrocs. Inc Updated 10/25/84 &
FUBRLIC Commors

W,

{ Frocessor management routines

FUNCTION OzCreatefrocese (VAR commandline : BYTES: priority @ BYTE;

uses8a87 : BOOLEAM: VAR error @

FROCEDURE QOsDeleteFrocess {pid @ WORD: VAR error @ WORD)

WORDY = WORD:

@
1

FUMCTION QsForkProcess (VAR entrvyPoint @ BYTES:; priority @ BYTE:

uses8087 @ BOOLEAM:; stackSize :
VAR ervor @ WORDY @ WORD:

FROCEDURE O=Send f{destPFid, class, note : BORD; VAR messs

VAR error @ WORDY 3

FUMCTION DsFeceive ifscurceFid, class, timelimit : WORD;
VAR note, error @ WORD) : Frointer:

FUNMCTION UOsCreateSemaphore (VAR error @ WORDY : WORD:

WORD;

ge @ BYTES;

FROCEDURE O=Deletelemaphore {(sid @ WORD: VAR error @ WORD);

FUNCTION QsWait (=id, timelimit : WORD; VAR error @ WORD) @ WORD;

FROCEDURE QsSignal {=id : WORD:; mode : BYTE: note @ WORD: VAR error :

FUNCTION OsWhofmI @ WORD;

FROCEDURE O=sDelay (timeLimit @ WORD):

FROCEDURE OsSetPriority f{pid = WORD: pricrity @ BYTE:; VAR errocr @ WORD)

FROCEDURE QOsExit fcode @ WORD) g
{ Memory management routines ¥
FUNCTION Ospfllocate (length @ WORD; VAR error. @ WORDY

FROCEDURE OsFree (block: Pointery VAR error @ WORD)

FUNMCTION (OsBetSize (block @ Pointer: VAR error @ WORD) @

Fointer:

WORD

FROCEDURE OsGetMemStatus (pid @ WORD:; VAR status @ MemStatusType:

YR error @ WORDY:
{ File svystem routines 7

FROCEDURE OsDelete fcomm @ WORD: VAR error @ WORD):

Include Files

WORD) ;

B-=

FROCEDURE Oshername {conm @ WORD; VAR newdame @ BYTES: YRR erraor @ WORD);
FUMCTION OsfAttach (VAR pathMame : BYTES; filefocde : BEYTE:

VAR reserved @ BYTES:

accesshMode @ BYTE: VAR srror @ WORD) @ WORD:
FROCEDURE O=0pen f{conn @ WORD; numBuf @ BYTE:; VAR errce @ WORD)
FROCEDURE (QsCleose {comm @ WORD: VAR error @ WORDY g

FPROCEDURE OsDetach f{conm @ WORD; VAR error @ WORDY

FUNCTION OsRead f{conm @ WORD: VAR buffer @ BYTES: length @ WORD:
VAR error @ WORDY @ WORD;

FROCEDURE QOsbbrite fconm @ WORD: VAR buffer ¢ BYTES: lenagth @ WORD;
VAR error @ WORD) g

FROCEDURE OsSeek fcomm @ WORD; mode @ BYTE: length @ LONGINT: VAR error
WORD) 3

FROCEDURE OsTruncate {(cormm @ WORD: VAR error @ WORD) 3

FROCEDURE DsGetStatus (conn @ WORD; VAR status & BYTES;
length @ WORD: VAR error @ WORD);

PROCEDURE OesSetStatus fcomn @ WORD; VAR status : BYTES;

length @ WORD: VAR error @ WORD)
FROCEDURE OsChangeExtension (VAR pathMame @ BYTES: extMum @ BYTE;

VYRR extension ¢ BYTES: VAR error @ WORD)

FROCEDURE OsFlushallBuffers {conn @ WORDy; VAR errce @ BORD) :
{ Miscellaneous routines >
PROCEDURE Os0verlay (VAR mame : BYTES: pid @ WORD: VAR error @ WORD)
FUNMCTION O=Getdrgument (short @ BOOLEAM: VAR argument @ BYTER) @ CHAR;
FUMCTIOM OsSwitchBuffer (VAR buffer @ BYTES) @ WORD;:

FROCEDUFRE OsFegisterMame (VAR name : BYTES: token @ LONGINT;
mode @ BYTE:; VAR error : WORD):

FUNCTION OsLockupMame (VAR name @ BYTES: VAR error @ WORD) @ LONGINT;
FROCEDURE OsDeceodeEsception fcode @ WORD; VAR name @ BYTES):

FROCEDURE OsHandleCancel (mode @ BOOLEAN) 3

B-4 GRiD-05 Reference

FROCEDURE QsGetTime (mode : EYTE; VAR time : TimeType):
FROCEDURE OsGetSystemlD (VAR svetemD : RBYTES);
FUMCTION OcsGetFrefix: ShortStringFtrs

FUMCTION O=sGetWork: ShortStringPtr;

FUNCTION GetConscnleState: ConscleStatePtr:

FROCEDURE O=GetFroperty {(tag : WORD: VAR length @ WORD;
VAR buffer @ BYTES:; VAR error : WORD):

FROCEDURE OsFutFroperty {tag. length: WORDy VAR buffer : BYTES;
VAR error o WORD)Y

FROCEDURE OsMatchWildCard (VAR testS5tr: BYTES; strlien: WORD;
VAR matchStr: BYTES; matchblen: WORD:
indepOfCas=e: BOOLEAM; fullMatch: BOOLEAM;
VAR length: WORD);

FROCEDURE OspddDevice (VAR pathMame: BYTES:; VAR name: BYTES;

VAR entryFoint: BYTES: intAddr: BYTE;

mass: BOOLEAN:; mode: WORD: VAR error: WORD);
FROCEDURE GeRemovelevice (VAR name: BYTES; VAR errar: WORD):

FROCEDURE Q=CzllDriver (VAR pathMame: BYTES; level: RYTE; reguest: WORD:
VAR paramblist: ParamlistType; VAR error: WORD):

Include Files

{ OsFasTypes.Inc Updated 12/13/84 »
FUBLIC Commorsg

CONST

oldFileMode = 1;

updateFilefode = 23

newFileMode = 33
readfccess
writefcces H
updateficce i
partialDirfccess = S
completelirfcocess = &3

:1;

= D

-

=.
55 =

a2z

changetType = 13
changeSubtype = 23
changePassword = I3
retwrnType = 41h;
returnSubType = 4Z2h;
returnFassword = 43h;
changelfMoType = 8ih;
changelfMobubtvpe = B2h;
changelfMoFassword = 83h;

cseekBackwards = 1;
seekToHere = 23
seekForward = 3;
seekFromEnd = 43

GreenwichMeanTime = 1
CompassRelativeTime =

D
23
registerpame = 13
unfegisterName = 23

sigrnalfMormal = 13
signalEvent = 23
signalfAllblaiters = 7

statusTypeLen = 13:

TS,

shortStringben = 285:

TYFE
MemStatusTvpe =
RECORD

freeBytes @ LONGINT;
freeBlocks,
largestFree @ WORD;
allocBytes @ LONGIMT;
allocklocks,
largestAlloc & WORD;

B-& GRiD-05 Reterence

EMD s

StatuseTvpe =
RECORD
oper @ BOOLEAM;
RCCBES,
seck @ BYTE:
fileFpsition,
filelength @ LONGINT:
numFages,
numfl locatedFages @ WORD:
END3

Shortatring =
RECORD
length: BYTE;

chars : ARRAY [0..shortStringlenl OF CHAR;

EMND3
ShoartstringPtr = “ShortBtrings

ConscleStateType =

FECORD
slboc ¢ Integer:
viloo @ Integer:
chtate : Bytes
scroll @ Bytes
curChar @ BHvte:
upperFlag @ Bytes
MMIFlag @ Bvie:

EMD;

ConsoleStatefFtr = “ConscleStateTvpe:

ParamListTvpe =

FECORD
conr: bord:
buffer: Fointer:
position: Leonglntg
length: Words:
mode: Byte;
numBuf: Byte:
intAddr: Bytes
overflow: Fointers

EMD;

IFCHessaneType =
RECQRD
functionCode: BYTE:
deleteSowce: BOOLEAN;

eparel: WOGRD:
spareds WORD:

Include Files

B-7

sourceRID: WORDs

destPID: WORD:

megll ass: WORD 5

meghote: WORD:

mealength: WORD;
ERDs

IPCMessageFtr = “IPCHessageType:

B-8 GRiD-05 Reference

",

{ ConPas. Inc Updated 10/23/84 3
FUBLIC Comg

FUNCTION ConkeyPressed: BOOLEAN;

FUNCTION ConCharIn: CHAR:

FROCEDURE CornDetCsr fon: BOOLEAN) 3

FROCEDURE ConRe=setbhisplavs

FROCEDUFE CornMoveCsr (x, v: BYTE):

FROCEDURE ConCharDut (ch: CHAFRD 3

PHDCEDURE ConLineOut (VAR buffer: BYTES: length: WORD);

FUMCTION ConFeekChars CHAR;

PROCEDURE ConHexOut Onum: WORD)

FUNCTION Conlineln (VAR buffer: BYTES:; maxblength: WORD): WORD;

Include Files B-9

F¥ ConFlm.Inc lUpdated 10/25/784 %/

ConkeyFressed: PROCEDURE BROOLEAN EXTERNAL
EMD:

ConCharIn: PROCEDURE BYTE EXTERNAL:
END3

ConDefCer: FROCEDURE {or) EXTERMAL;
DCL on BOOLEAN;
END;

ConResetDisplay: PROCEDURE EXTERNAL:
END;

ConMoveCer: FROCEDURE {x. v) EXTERNAL;
DCL (%, v) EYTE;
END;

ConCharOut: FROCEDURE {ch) EXTERNAL
DCL ch BYTE;
EMD;

Conbinelut: FROCEDURE (pBuffer, lenagth) EXTERNAL;
LDCL pBuffer FTH:
DCL length WORD:
EMDs

ConPeekChar: FROCEDURE BYTE EXTERMAL;
ENMD;

ConHexOut: PROCEDURE (num) EXTERMAL:
DEL num WORD; '
- EMD;

Conbineln: PROCEDURE {pBuffer. maxzLength) WORD EXTERMAL:
DCL maxLencth WORD:
DCL pBuffer FTR:
EMND3

B-10 GRiD-0S Reference

{ WindowFrocs. Inc Updated 10/23/84 1
FUBLIC Commors

FUMCTIOM CharHeight: Integer;
FUNCTION CharWidth: Integer;
FUMCTION LineHeight: Integer;
FUNCTIOM BaseLine: Inteqger:;

FUNMCTIONM WinloadFont f{conn @ Word: VAR error : WORD): FontFointer:

FURMCTION WinSetFont{font @: FontFointer; VAR info : FontinfoRecord;
count @ Word): FontFointers

FROCEDURE WinGetWindowExtent (VAR extent: Foint):
FROCEDURE WinDrawLinefxl,v1l, #2,v2: Integer):
FROCEDURE WinEraselipeixl,vl, 22,v2: Inteqger);
FROCEDURE WinInvertbimneixl,vl, x2,vZ: Integer);
FROCEDURE WinInvertRectangle (VAR rl: Rectangle);
FROCEDURE WinEraseRectangleiVAR ri: Fectangle):

FROCEDURE WinCopyRectangle{VAFR r: Rectangle;
newTopleft: Point)s

FROCEDURE WinScrollRectangle(VAR r: Rectangley
dir: Direction;
distance: Integer):
FROCEDURE WinSetWindow (VAR wr Fectangle) s
FROCEDURE MinSetClip(VAR r: FRectangle);
FROCEDURE WinkecsetClipg
FUNCTIONM WinClipLinedVAR =1, v1, ®2, v2: Integer): Boclean;
FROCEDURE MinClipHectangle (VAR r: Rectangle):
FROCEDURE WinFrameblindow;
FROCEDURE WinEraseWindow;

FROCEDURE WinInitDefaultWindow; |

Include Files

E-11

FROCEDURE WinScrollWindow(VAR r: Fectangles;
dir: Direction;
distance: Integer);
FROCEDURE MinDrawChar (ch: Chary x,v: Integer):
FROCEDURE NinDrawChérg (VAR ch: EYTES: count.x.v: Integer):
FROCEDURE WinEraseChar (x,v: Integer);
FROCEDURE BinInvertChar (x,y: Integer);
FROCEDURE WinDrawFixel ix,y: Integer):
FROCEDURE WinInvertPixel ix,v: Integer!;
FROCEDURE WinEraseFixel {x,v: Integer);
FUMCTION WinTestFixel iz, v : Integer) : Booleans

FROCEDURE WinHandleFhone {newValue: BYTE: VAR coldValue: BYTE;:
YOF error: WORD);

FUMCTION WirnAllocateWindowMemory f{width: Integer;
height: Integer:
format: WindowFormat;
VAR errcor: WORD): WindowRegionFtr:

FROCEDURE WinSetflternateblindow (alt: WindowRegionFtr);

FROCEDURE MinCopyHemthHectangle {source,
dest: WindowRegionPtr:
VAR rr Rectangles
newTopLeft: Point;
mode: WORD)

BE-12 GRiD-05 Reference

{ WindowTvpes. Inc Updated 10/33/84 3
FUBLIC Common:

TYFE Foint = RECORD
: Inteqger:
v @ Integer:
EMDs

‘Rectangle = RECORD
topleft : Point:
externt @ Pointg
EMDe

Direction = {up.down,left.right);

FontInfoRecord = RECORD
charWidth : Byte;
charHeight : Bvte;
lineHeight : Byte:
basel.ine : Byte;
EMD:

FontFointer = “RYTE;

windowFormat = (screenFormat, GRiDFormat):

il

RECORD
format: WindowFormats
width: Integers;
height: Integer:
buflength: WORD;
buf: Fointer:
bitsPerPel: BYTE;
bytesFerbine: WORD:
ERD;

WindowReqgion

MindowRegionPtr = “WindowRegion:

Include Files B-13

INDEX

2]

Absolute screen coordinates. 7-82
Access modes, 7-13
Accessing files, 3-6
Activating devices, 7-9
Active device table, 3-5, 7-9
Adding devices, 3-5, 7-9
Allocating memory, 2-7, 7-11
for windows, 7-63
Alternate windows, 4-2
allocating memory for, 7-63
setting, 7-80
Arguments, command line, 7-27
Attaching a file, 7-12
Attaching in directory mode, 7-4%
Attaching te files, 3-8

B

Faseline, 4-4, 7-2
bt device, 3-32
Eit-bucket device, 3-3
Hoolean data type, 1-9
EBoot file, 7-3
setting. 7-43
Eubble memcry device. 3-3
Buffer space for files, 3-6
Euifers,
allocating for files, 7-41
flushing, 3-é&, 7-24
switchina, 7-5S8
Ruilt-in font, 4-3
Eyte data type, 1-95

C

Calling device drivers, 7-14
Calls, summary of, 1-2

Cancel (CODE-ESC), handling, 7-39
Changing extensions, 7-13, 7-15
Changing file extencions, 3-é
Charging file titles, 3-é

Char data type, 1-5

Character fonts, 4-3

Character graphics, 4-3

character height, 4-3

Character width, 4-3

Characters, delimeters in pathnames, 3-2, 7-

Characters,
drawing, 7-68
erasing, 4-3, 7-71
inverting, 7-75

CharHeight, 7-2
CharWidth, 7-3
ci (console input) device, 3-3
Classes of messages, 2-4
Clipping, 4-1
Clipping rectangle, 4-3, 7-66
resetting, 7-77
setting, 7-80
Closing files, 3-6, 7-16
co (console output) device., 3-3
CODE character code, 7-3
CODE-ESC (Cancel), handling, 7-39
Codes,
keyboard, A-!
system error, 7-19
Command line, 7-58
getting arguements from, 7-27
Complete directory entry mode, 3-7
ConCharln, 7-3
ConCharQut, -2, 7-3
ConDefCsr, 5-2, 7-4
ConHexHout, 5-2, 7-4
ConKeyFPressed, 5-Z., 7-4
ConLineln, 5-2, 7-%
ConLineQut, S-2, 7-6
ConMoveCsr, S5-2, 7-6
Connecting to files, 3-%
Connection, 7-62
Connections to files, 7-12
severing, 3-6
ConFeekChar, &-2, 7-7
ConResetDisplay, 7-7
Console input (ci) device, 3-3
Console output (co) device, 3-3
Conscle routines, -1
Console state, 7-8
Converting screen image files, 4-2
Ccordinate system, window, 4-5
Coordinates, absolute screen, 7-82
Copying rectanples, 7-66
Copying remote rectangles, 7-67
Creating processes, 2-3, 7-17
Creating semaphores, 2-6, 7-18
CTRL character code, 7-3
Current file position, 7-59, 7-62
Current file position marker, 3-6
Current printer, 7-31
Current process, 2-2
Current window, 4-2
Cursor, S5-1, 7-2, 7-4
current location, 7-8
moving, 7-%
turning otf, 7-7

D
Data structures, 4-5

Data types, 1-9
Deactivating devices, 7-50

Index-1

Deallocating memory, 2-7, 7-26
Decoding exceptions, 7-19
Default window, 7-74
Delaying a process, 7-20
Deleting,
files, 3-6, 7-21
processes, 2-3, 7-22
semaphores, 7-22
Delimeter characters, 7-27
in pathnames, 3-2
Detaching files, 3-4, 7-23
Device management, 3-1
Device status, 7-34
setting, 7-5%5
Devices,
adding, 3-5, 7-9
deactivating, 7-50
list of, 3-3
remote, 3-4
removing, 3-5, 7-50
table of active, -5
Direction deta structure, 4-5
Directories, 3-1
operating on, 3-7
reading, 7-4%
Directory mode, attaching in, 7-45
Drawing,
characters, 7-648
lines, 7-70
pixels, 7-7G
Drivers, device, 7-14

E

Erasing,

characters, 4-3, 7-71

lines, 7-71

pixels, 7-72

rectangles, 7-72

windows, 7-73
Error numbers, system, 7-19
Examples of message transfers, 2-4
Exception, decoding, 7-19
Executing processes, 2-3
Exiting a program, 7-24
Extensions,

changing, 3-6, 7-13, 7-1%5

of file names, 3-4
Extent, check window, 7-74
Extra floppy disk device,

3-3
Extra hard disk device, 3-3

'S

File access, terminating, 3-6
File buffer space, 3-6
File connection, 7-12
severing, 3-6
File directories, operating on, 3-7
File extenstions, changing, 3-6

Index-2 GRiD-D5 Reference

File kinds, 3-4
File management, 3-1
File management calls, overview, 3-5
File pathnames, 3-2
File position
marker, 3-6, 7-52
current, 7-59, 62
File status, setting, 7-5%
File subjects, 3-4
File system, 3-1
File titles, 3-4
changing, 3-4
File, start-up, 7-31
Filename extensions, changing, 7-15
Flles,
accessing, 3-6
attaching to, 3-5, 7-12
clesing, 3-6, 7-16
connecting to, 3-5
deleting, 3-6, 7-21
detaching, 3-6, 7-23
include, E-1
kind, 3-3
opening, 3-S5, 7-41
cperating on, 3-35
passwords, 3-3
reading, 3-&, 7-45
renaming, 7-51
seeking in, 3-&
truncating, 3-6, 7-59
User“Profile~, 7-31
writing to, 7-62, 3-6
Fleoppy disk device, 3-3
Flushing buffers, 7-24
Font, 7-2
built-in, 4-4
setting, 7-43
system-wide, 7-31
Fonts,
character, 4-3
loading, 4-4, 7-77
setting, 4-4, 7-81
Forking a process, 7-25
Format of messages, 2-5
Format,
host screen, 7-80
window, 4-6
Formats, of screens, 4-2
Frame,
drawing window, 7-73
screen, 7-31
setting, 7-43
Freeing memory, 2-7, 7-26

G
GetConsoleState, 5-2, 7-8

Getting arguements from command line, 7-27
Getting current prefix, 7-30

Betting memory size, 7-33
Getting memory status, 7-29
Getting status information, 7-34
BFIP address, 7-9
GFIF device, 3-3
Graphics,

character., 4-3

line, 4-4

pivel, 4-%

text, 4-3

window, 4-1
GRiD format windows, 4-2, 7-43

s

Handling Cancel (CODE-ESC), 7-39,
Hard disk device, 3-4
Helght,
line, 7-8
of characters., 4-4
of lines, 4-4
Hierarchical file system, 3-1

Host screen format windows, 4-2, 7-63, 7-67, 7-BC

I

1D, system, 7-26
Include files, B-1
Initializing windows, 7-74
Integer data type, 1-5
Inverting,

characters, 7-75

lines, 7-75

pixels, 7-76

rectangles, 7-76

K

Key, window update, 7-74
k.eyboard characters, 7-3
inputting, 7-5
keyboard codes, 7-7, A-1
keyboard queue, 7-7, 7-74
kind, changing filename’'s, 7-15
Kinds,
file, 3-4
in file pathnames, 3-3

L

Length, maximum of pathnames, 3-3
Line graphics, 4-4
Line height, 4-4
LineHeight, 7-8
Lines.
clipping, 7-65
drawing, 7-70
eraeing, 7-71
inverting. 7-75
Loading fonts, 4-4, 7-77
Longint dats type. 1-%5

™

Managing devices, 3-1
Managing memory, 2-6
Marker, current file position, 3-6, 7-52
Matching wildcards, 7-40
Maximum length of pathnames, 3-3
Memory,
allocating, 2-7, 7-11
allocating for alternate windows, 4-2
allocating for windows, 7-63
bubble, 3-3
f{reeing, 2-7, freeing, 7-26
Hemory management, 2-7
Hemory size, 7-33
Memory status, 7-29
Message clacsses, 2-4
Hessage format, 2-9
Mescage transfer example, 2-4
Mecsages,
receiving, 7-47
sending and receiving, 2-4
sending, 7-53
HMode, directory, 3-7, 7-45
Hodem device, 3-4
Modes,
access, 7-43
$ile connections, 7-12
HModules, overlay, 7-42
Multi-tasking, 2-1
Hultiple rectangles, 4-3

i

Names,
deleting, 7-49
looking up, 7-38
registering, 7-38, 7-49
Note parameter, 7-24
Notes,
passing with signals, 7-60
passing with OsSend, 2-5
pessing with 0sSignal, 2-7

o

OpenDirectory, Common Code routine, 3-é
Dpening files, 3-5, 7-41
Operating on files, 3-5
Qrganization of file system, 3-2
O=AddDevice, 3-6, 7-9
0=Allocate, 7-11

OsAttach, 3-8, 7-12
0=CallDriver, 7-14
Qs=ChangeExtension, 3-6, 7-13
0sClose, 3-6, 7-16, 7-23
OsCreateFrocess, 7-47
0sCreatel3emaphore, 7-18
OsDecodeException, 7-19

OsDelay, 7-20

OsDelete, 7-21

DsDeleteProcess, 7-22
OsDeleteSemaphore, 7-22

BRiD-DS Reference

OsDhetach, 3-6, 7-21, 7-23 Plotter device, 3-4
DSEXit' 7-24 P]otter'
OsFlushAHEuHers, 3-6 current, 7-31
OsFlushAllBuffers, 7-24
OsForkProcess, 7-2%
OsFree, 7-26
OsGetArgument, 7-27,
switching buffers, 7-58
OsGetMemStatus, 7-29
QsGetPrefix, 7-30

setting, 7-43
Point data structure, 4-5
Pointer data type, (-5
Portable floppy device, 3-4
Position marker, 3-4, 7-52
Position, current file, 7-59, 7-62
Preemptive scheduling, 2-2

OsGetFroperty, 7-31 Prefix, getting, 7-30
OsGetSize, 7-33 Printer device, 3-4
OsGetStatus, 3I-6, 7-34) Printer,
OsGetSystemID, 7-36 current, 7-31

OsGetTime, 7-37
Os6etWork, 7-38
OsHandleCancel, 7-39,

setting, 7-43
Priority scheduling, 2-2
Prierity, process, 7-54

OsLookUpName, 7-38 Frocess 1D, 7-17, 7-25
DsMatchWildcard, 7-40 determining, 7-62
0sOpen, 3-5, 7-41 Process priorities, setting, 7-54
OsOverlay, 7-42 Process scheduling, 2-2
OsPutProperty, 7-43 Process state diagram, 2-2
OsRead, 3-6, 7-45 Process,
OsReceive, 7-47 current, 2-Z2
DsRegisterName, 7-49 definition of, 2-1
OskemoveDevice, 3-5, 7-50 delaying, 7-20
OsRename, 3-4, 7-51 forked, 7-22
0sSeek, 3-6, 7-52 ready, 2-2
OsSend, 7-53 receiving, 7-47

passing notes with, 2-5 running, 2-3
OsSetFriority, 7-54 waiting 2-3
DsSetStatus, 3-6, 7-55 Processes,
0sSignal, 2-7, 7-56 creating, 2-3, 7-17

passing notes with, 2-7 deleting, 2-3, deleting, 7-22
0sSwitchBuffer, 7-58 executing, 2-3
OsTruncate, 3-6, 7-59 exiting froem, 7-24
OsWait, 2-7., 7-40 forking, 7-2%
OsWhoAml, 7-6Z waiting, 7-&0
OsWrite, 3-6, 7-6Z Procescor management, 2-1
Qverlays, 7-42 Frofile, User, 7-31
Overriding type checking, 1-6 : Froperties,
Overview of file calls, 3-95 examining. 7-31

setting, 7-43

P
Q
Parameter passing with Rytes data type, 1-6
Fartial directory entry mode, 3-7, 7-4% Queue, keyboard, 7-7
Passing notes, Queue, message, 2-4
with OsSend, 2-%5
with O0sSignal, z-7
Passwords, 7-13 (=
changing, 7-15
in file pathnames, 3-3 Reading directories, 7-45
Fathnames, 3-2 Reading files, 3-6, 7-45
maximum length of, 3-3 Ready process, 2-2
pid, 7-17, 7-25 Ready state, 2-3, 7-17, 7-2%, 7-60
FPixel graphics, 4-5 Receiving messages, 2-4, 7-47

Pirxels, 4-3, 4-4
drawing, 7-70
erasing, 7-72
inverting, 7-76

Index-4 GRiD-05 Reference

Rectangle data structure, 4-95
Rectangle, setting clip size, 7-80
Rectangles, 4-1

clipping, 4-3, 7-66

copying, 7-66

erasing, 7-72

inverting, 7-76

resote, 4-2, 7-67

scrolling, 4-3, 7-78
Region, window, 7-63, 47
Registering names, 7-49
Remote devices, 3-4
Remote rectangles, 4-2, 7-47
Removing devices, 3-5, 7-50
Renaming files, 7-51
Repeated character code, 7-3
Resetting clipping rectangle, 7-77
Koot phase, 7-42
Routines, console, &-1
fun state, 2-3

S

Scheduling processes, Z-2
Screen, 4-1
Screen coordinates, absolute, 7-B2
Screen format, 4-2, 4-é
translating, 7-67
Screen frame, 7-31
setting, 7-43
Screen image files, converting, 4-2
Scrolling rectangles, 4-3, 7-78
Screolling windows, 4-2, 7-79
Seek, 7-35, 7-5Z
Seeking in files, 3-6
Semaptiore, 7-60
Semaphore identification number, 7-18
Semaphores,
creating and using, 2-6
creating, 7-18
deleting, 7-22
signalling, 7-5é
Sending messages, 2-4, 7-53
Serial device, 3-4
Setting alternate windows, 7-80
Setting clipping rectangle size, 7-80
Setting fonts, 4-4, 7-81
Setting process priorities, 7-54
Setting window size, 7-82
Shells, device drivers,7-14
. SHIFT character code, 7-3
Shert Strings data type, 1-8
sid, 7-18
sid (csemaphore 1.D), 2-6
Signalling proceses, 2-7
Signalling semaphores, 7-3é
Size of windows,
determining, 7-74
setting, 7-82
Size, memory, 7-33
Start-up file, 7-31
setting, 7-43

State diagram for processes, 2-2
Status information, 7-34
Status,

memory, 7-29

setting, 7-5%5
Structures, data, 4-5
Subjects, 3-1, 3-4
Summary of system calls, 1-2
Switching buffers, 7-S8
System calls, summary of, 1-2
System error numbers, 7-19
System 1D, 7-364
System properties, setting, 7-43

¥
Table of active devices, 3-5, 7-¢
Terminating file access, 3-6
Terminating processes, 2-3

Text graphics, 4-3
Time, 7-31
getting, 7-37
Time limit, 7-47, 7-60
OsDelay, 7-20
Time offset, setting, 7-43
Titles, 3-1, 3-4
changing, 2-6
Trancfer of messages, example of, 2-4
Truncating files, 3-4, 7-59
Type checking, overriding, 1-6
Types,
Bytes, 1-6
data, 1-S5

u-2z

Update key, window, 7-74
User“FProfile™, 7-31
Using semaphores, 2-6
Utility calls, 6-1
Virtual file system, 3-1
Wait state, 7-20, 7-47, 7-60
Waiting process, 2-2, 7-60
Width of characters, 4-4
Wildcards, matching, 7-40
WinAllocateWindowMemory, 7-63
WinClipLine, 7-65
WinClipRectangle, 7-66
WinCopyRectangle, 7-66
Window,

coordinate system, 4-5

current, 4-2

default, 7-74

extent, determining, 7-74

format data structure, 4-6

graphics, 4-1

image, 4-1

update key, 7-74

Windows,
allocating, 4-2
alternate, 4-2, 7-63
erasing, 7-73
framing, 7-73
6RiD format, 7-63, 47
host screen format, 7-63, 67
scrolling, 4-2, 7-79
setting alternates, 7-80
setting size of, 7-82
setting up, 4-1
WinDrawChar, 7-68
WinDrawlLine, 7-70
WinDrawPixel, 7-70
WinEraseChar, 7-71
WinEraselLine, 7-71
WinErasePixel, 7-72
WinErasefRectangle, 7-72
WinEraseWindow, 7-73

Index-6

GR1Db-03

Reference

WinFrameWindow, 7-73
WinGetWindowExtent, 7-74
WinlnitDefaultWindow, 7-74
WinlnvertChar, 7-75
WinlnvertLine, 7-75
WinlnvertPixel, 7-76
WinInvertRectangle, 7-76
WinLoadFont, 7-77 -
WinkesetClip, 7-77
WinScrollRectangle, 7-78
NinScrollWindow, 7-79
WinSetAlternateWindow, 7-80
WinSetClip, 7-80
WinSetFont, 7-81
WinSetWindow, 7-82

Word data type, 1-9

Work device, 3-4

Work, getting, 7-38

Writing to a file, 3-6, 7-62

