
GRiD OPERATING SYSTEM CGRiD-OS> REFERENCE

APRIL 1985

COPYRIGHT (Cl 1984, 1985 GRiD Systems Corporation
2535 Garcia Avenue
Mountain View, CA 94043
(4151 961-4800

Manual Name : GRiD Operating System (GRiD-0S) Reference
Order Number: 29300
Issue date: April 1985

No part of this publication may be reproduced, stored in a retrieval system, □ r

transmitted, in any form or by any means, electronic, mechanical, phJtocopy 1 recording,
or otherwise, without the prior written permission of GRiD Systews Corporation.

The information in this document is subject to change without notice.

NEITHER GRiD SYSTEMS CORPORATION NOR THIS DOCUMENT MAKES ANY EXPRESSED OR IMPLIED
WARRANTY, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY,
QUALITY, OR FITNESS FOR A PARTICULAR PURPOSE. GRiD Systems Corporation makes n~
representation as to the accuracy or adequat1/ of this dac11ment. GRiD Systems
Corporation has no obligation to update or keep current the information cortained 1r

this document.

GRiD System Corporation's software products are copyrighted by and shall remain tb~
property of GRiD Systems Corporation.

The following are trademarks of GRiD Systems Corporation: GRiD 1 Compass Computer,

The following is a trademark of Intel Corporation: Intel.

TABLE OF CONTENTS

CHAPTER 1: AN INTRODUCTION TO THE GRID OPERATING SYSTEM (GRID-OS)

Features of GRID-OS 1-1
Data Types 1-5

Short Strings 1-5
The Bytes Type 1-6

CHAPTER 2: PROCESSOR AND MEMORY MANAGEMENT FACILITIES

Processor M~nagement
What Is a Process ..
Process Scheduling -- an Overview
Creating Deleting and Executing Processes

Messages -- Sending and Receiving

2-·1
2-1
2-2

2-4
Messc:1ge Cl asses, 2-4
Message Transfer Example 2-4
Passing Notes 2-5
Message Format 2-5

Creating and Using Semaphores 2-6
Semaphore Note Passi. ng 2-7

Memory Management Facilities 2-7

CHAPTER 3: DEVICE AND FILE MANAGEMENT FACILITIES

Pathnames

iii.

Devices
Subjects and Titles
File Kinds
An Overview of File Management Calls

Operating on Files

3-4
3-A

Current File Position Marker 3-6
Operating on File Directories

CHAPTER 4. WINDOW GRAPHICS

Setting Up Windows
Alternate Windows.
Clipping Rectangles
Te>:t Graphics .
Character Fonts ..

3-6

4-1
4-2
4-3
4-3
4-5

Line Graphics 4-5
Pixel Graphics 4-5
Coordinate System 4-5
Data Structures 4-5

CHAPTER 5. CONSOLE ROUTINES

CHAPTER 6.GENERAL UTILITY CALLS

CHAPTER 7. GRiD-OS PROCEDURES AND FUNCTIONS

Baseline .
CharHei ght .
Char\lJi dth .
ConCharin
ConCharOut .
ConDefCsr . . .
Con He>: Dut . . .

7-3

7-4
7-4

ConKeyPressed 7-4
Conli nein . . 7-5
Conline□ut 7-6
ConMoveCsr , 7-6
ConPeekChar . . . 7-7
ConResetDisplay 7-7
GetConsoleState 7-8
Li neHei ght ,. 7·-8
OsAddDevice 7-9
DsAllocate. . 7-11
0 sAt. tac h . 7 --12
OsCallDriver 7-14
OsChangeExtension
OsClose
OsCreateProcess.
OsCreateSemaphore
OsDecodeException.

:i V

7-15
7-16
7-17
7-18
7-19

UsDe lay .
[\,;..Delete "
OsDeleteProcess
OsDeleteSemaphore
DsDet. ac h .

7-20
7-21
-,_,,,~.~
.r ~.

7-22
7-23

OsE>: it . 7-24
OsFlushAllBuffers 7-24
OsForkProcess 7-25
OsFree . 7-26
OsGetArgument 7-27
OsGetMemStatus 7-29
□=-Get Pref i >: .
OsGet.Pr-opet-tv
D'::.GetSi ze N ..

llsGetStatus.
O::GetSystemID
O:c.!3et. Ti me· . .
Cl!:::-1::ieUlor k ., . .
DsLookUpName .
OsHandleCancel
OsMatchWildcard
DsOpen . . , .
Ds[!·,/er-1 a y :
OsPutProperty
DsF:ead ,
DsReceive
OsF:egisterName
DsF:E•moveDevi ce

7-30
7-31

7-34
7-36
7-37
7-38
7-::m
7--39
7-40
7-41
7-42
7-43
7-45
7-47
7-49
7-50

DsF:ename
Os.Seek

. . 7-51
. 7-52

DsSend 7-5:3
OsSet Pr- i er it y 7-54
Di3SE?t.Etatus . -, c·c­, -...i-J

OsSi gnal . . .
OsS,•,1i tchBuffer .
OsTnmcate
Osv!ai t
CJsvlhoAmI . . .
OsWrite

. . 7-56
7-58

. . 7-59

.. 7-60

.. 7-62
7-62

WinAllocateWindowMemory 7-63
WinCli ne 7-65
!.1JinClipF:ectangle 7-·66
WinC□pyRectangle 7-66
WinC□pyRemoteRectangle 7-67
WinDrawChar 7-68
WinDrawChars 7-69
WinDrawline 7-70
WinDr-awF'ixel .. 7-70
WinEraseChar 7-71
WinEraseLine 7-71
WinErasePixel . . 7-72
WinEraseRectangle 7-72

WjnEraseWindoN .
WinFrameWindow .
WinGetWindowExtent
WininitDefau]tWindow
~lininvertC:h2\r- , , , , . , ... , , , , , . , , , , , , , ,
l1JininvertL:::1P:? ~ II :I :i Ii /I :.- : " ;- :; " !i = II .. :, ., ~- = ::: = :"

t~ in In \/f.?t t Pl}: el ._ .:; i: .~ = .r; i; : ,: ;;: :;, :;- •• s :; = " " .r -r :: " =

~JininvertEectang!.e :: = :I :'I "' = •• r: i • = = r :r !:I ~ = ~ = ~

Ni nLoadFont ,: ., ::: JI ;; , £: :; :: I:: r: ., ~ = ;: = :: = !;" :: ., :; ~ =

i~i nF:e~-etC1 i p :I ::, :: " ,, ~ ;, = = i: =- :: r. = ~ !: :-: :i :: ... ~ , ,

?Ji n [; c r- u 11 F; e ct an i] l e !1 r. = ~ ,: = :: = = ., = :: = ,, :r :: " ~ :. = t

~} i n s C ~~ 0- 1 1 i,J i fl d O rJ ~ t = r: ;: :: n :r = jJ 7 .,. r: :: ;; :. :.- :; r :: ' ::

WinS~tAlternatel~indo;~ ~' ~ l ,-; :, :: l(" :I:,~"'~" •• r r ~

\•Jin::ietClip ,
~Ji nSetFont i:

Wi nSetHi ndo~~,

APPENDIX A. Compass Computer Keyboard Codes

APPENDIX B. Include Files

DsFet=-Procs. Inc:
01::PasTypes, Inc

INDEX

7 74

7-75
7-75
7-76

7-77
7-77
-: -:,,--,
.' - i c.1

B--3

Cr!Af'TER 1. AN INTRODUCTWN TO THE BRiD OPERATING SYSTEM <GFhD-OS>

The GRiD Operating System !GRiD-05) has been designed to support GRiD's
application programs, such as GRiDPLAN, GRiDPLOT, GRiDWRITE, and GRiDFILE, and
to simplify the development of other application programs using any of the
available languages !Pascal, PL/M, Assembly, FORTRAN, and CJ.

FE~TURES OF GRiD-OS

GRiD-OS is essentially a resource management tool that simplifies memory
, and device and file management. Additionally, GRiD-OS supports

multitasking and des a variety of system utility services.

Table 1-1 summarizes the calls provided by GRiD-OS and indicates the
where an overview of the calls is provided. Detailed descriptions of

calls are provided in the alphabetically-ordered Chapter 6.

Introduction 1-1

Table 1-1. A Summary of GRiD-0S Calls

PROCESSOR AND MEMORY MANAGEMENT (Chapter 2)

OsCreateProcess

OsForkPr-ocess
OsDelay

OsSetPr-ior-ity
Os!.tJhoAmI

OsDeleteProcess
OsE>:i t

OsReceive

OsSend
OsCreateSemaphore
OsWait

DsSignal

DsDeleteSemaphore
OsAllocate

OsFr-ee
OsGetSize
DsGetMemStatus

Creates a process by loading a program fr-om mass
storage.
Creates a process from a parameterless procedure.
Suspends execution of a process for a specified delay
interval.
Changes the priority of a process.
Returns the identification number assigned to a
process.
Deletes another process from the system.
Deletes the current process from the system and frees
its resources.
Suspends execution of a process while it awaits a
message.
Sends a message to another process.
Creates a semaphore for use with OsSignal and OsWait.
Suspends execution of a process while it waits at a
semaphore for an OsSignal.
Signals a semaphore to allow a waiting process to
proceed.
Deletes a semaphore.
Allocates from 1 to 64k bytes of memory to the
requesting process.
Deallocates a previously assigned block of memory.
Returns the size of a particular block of memory.
Provides information about memory allocation.

DEVICE AND FILE MANAGEMENT (Chapter 3}

OsAttach
OsOpen
OsRead
OsWrite
OsSeek

DsTr·uncate
OsFlushAllBuffers

OsRename
OsChangeExtension
DsClose
OsDelete
OsDetach
OsGetStatus
OsSetStatus

Makes a device or file ava~lable to a program.
Allocates buffers for an attached file.
Reads data from an open file.
Writes data to an open file.
Changes the point at which a subsequent access of an
open file will begin.
Deletes data from the end of an open file.
Writes the contents of memory buffers to all open
files.
Changes the name of an attached file.
Changes only the extension portion of a file's name.
Closes and deallocates memory assigned to a file.
Deletes an open file from the system.
Makes a file unavailable to programs.
Provides summary information about an attached file.
Establishes device specific status information
associated with an attached file.

WINDOW GRAPHICS CALLS (Chapter 4)
Baseline Returns the baseline position of the current font.

1-2 GRiD-0S Reference

Char·Hei qht
Char-Width
LineHeight

WinlnitDefaultWindow

liJi nSetWi ndo1t1

tiJi nFr ameWi ndow

liJi nEr aseWi ndow
Wi nScr-ol l l>Ji ndow

WinGetWindowExtent

!IJi nSetCl i p

WinResetClip
WinEr-aseRectangle
Winlnver-tRectangle

l.Ji nCopyRectangl e

WinScr-ollRectangle

WinSetAlternateWindow

WinCopyRemoteRectangle
WinAllocateWindowMemory
!,,Ji nDr awChatF

WinEr-aseChar
!,,Jin Inver-tChar

l>Ji nloadFont

lihnSetFont

WinDrawline
WinEraseline
WininvertLine
WinDrawPi>:el
lih nErasePi >:el
Win I nvertPi >: el

Returns the height of characters in the current font.
Returns the width of character-sin the current font.
Returns the height of a character line in the current
font.
Clears the window, resets the clipping rectangle, and
(if specified) draws a one-pixel frame surrounding the
screen.
Sets the window size to the r-ectangle it receives as
an argument.
Draws a one-pixel frame outside the current window
bounds.
Erases the contents of the current window.
Scrolls the entire window in the given direction by
the distance given in pixels.
Returns the dimensions of the application"s current
windo1P1.
Sets a clipping rectangle within the window
boundaries.
Resets the clipping r-ectangle to the entire window.
Erases a rectangle in the window.
Inverts the bit-map area inside a rectangle in the
wi ndovJ.
Copies one rectangle into another rectangular area of
the window.
Scrolls a rectangle in the given direction by the
distance given in pixels.
Forces all subsequent window calls to be performed on
the alternate window specified.
Copies a rectangle from one window to another.
Allocates memory for an alternate window.
Draws a character in the window at a specified pixel
location.
Erases a character position.
Performs an inversion of all the pixels of a character
position.
Outputs a character string of a specified length from
a text buffer to the screen.
Loads a font file into memory and returns a pointer to
the font.
Sets the designated (previously loaded) font as the
current font.
Draws a line within the window.
Erases a line within the current window.
Inverts all the pixels on the given line.
Draws a single pixel at the given window coordinate.
Erases a single pixel at the given window coordinate.
Inverts a single pixel at the given window coordinate.

CONSOLE CALLS (Chapter 5)
ConKeyPressed Tells you if any key on the keyboard has been pressed.
ConCharln Waits for one character to be typed on the keyboard

Introduction 1-3

ConDefCsr­
ConResetDisplay

ConMoveCsr

ConCharOut

Con Li neOut

ConLi nein

Con Peek Char
Con Hex Out

GENERAL UTILITY CALLS

OsGetArgument

OsSwi tchBuffer
Os□verlay

OsGetSystemID
OsGetTime
OsGeUJork

DsRegisterName

OslookUpName

OsDecodeException

OsHandleCancel

OsMatchWildcard

OsCallDriver

OsAddDevice
OsRemoveDevice

OsPutProperty

OsGetProper-ty

and then returns that char-acter.
Turns the small cursor char-acter ''_" on or off.
Clears the screen and displays the cursor character at
the top, left hand position of the window.
Moves the cursor to the specified x,y character
posit~on on the screen.
Outputs the supplied character to the screen at the
current cursor position.
Outputs the number of characters specified by length
to the screen.
Inputs the number of character~ specified by length
from the keyboard.
Returns the first character in the keyboard queue.
Outputs the supplied hexadecimal value to the screen
at the current cursor position.

Scans and parses the contents of the command line or
other designated buffer.
Changes the buffer that OsGetArgument operates on.
Brings a subprogram into memory.
Returns system identification information.
Returns all information from the system clock.
Returns a pointer to the cu1prent "i,mrk" device used bv
compilers and the link program.
Registers a name and a small amount of associated
information.
Looks for a name that has been previously register-ed
and returns some information associated with that
name.
Translates an exception number into an exception
message.
Specifies whether the system or application program
will handle CODE-ESC.
Compares a target string, for example a file name~
against a string containing wildcard characters.
Used by device drivers to pass device-specific
requests.
Adds a device to the system's table of active devices.
Removes a device from the system's table of active
devices.
Sets a system property such as screen frame or t:i me in
the User~Profile~ file.
Examines a system property such as screen frame or
time in the User~Profile~ file.

DATA TYPES

The descriptions of the system calls in this book use the data types defined
by Pascal-86 lwhich include some extensions beyond those of standard Pascal).
Your calls must supply parameters meeting the specifications of these data
types as defined in Table 1-2.

Table 1-2. Data Types for GRiD-0S Calls

Type Description

Boolean

Byte

Integer

Char-

*Longint

Pointer-

Simple ordinal with predefined values of False (0) and
True (1).

An enumer-ated type defined (0 .. 255).

Simple ordinal of two bytes in the range -32767 through
+:32767.

A simple ordinal defined on the ASCII character set.

Simple ordinal of two bytes. Integers in the range 0
through 65535. Unsigned.

Simple or-dinal of four bytes in the range -2,147,483,647
through +2,147,483,647.

In Pascal, must be declar-ed by the programmer as a
pointer to some defined type.

I Indicates a Pascal-86 extension of standard Pascal data types.

ShortStrings

The ShortString type is simply a collection of bytes, the first of which tells
you how many data bytes follow. It is used to describe any sequence of bytes
where the first byte (also known as the "length'' byte) represents the number
of bytes (0 - 255) in the sequence (excluding the length byte). Thus, this
type is often used to interface to operating system routines that require
ASCII names (such as filenames) which don't have a standard length.
ShortStrings are different from (and should not be confused with) strings
found in the Common Code routines and in some versions of Pascal or C.
ShortStrings can be defined as:

ShortString = RECORD
length: Byte;
Chars: [0 .. 2551 OF Char;
END

Introduction 1-5

When you call a GRiD-0S routine that expects a parameter formatted as a
ShortString, you must pass the parameter by reference rather than by value.
That is, you pass a pointer to the shortstring rather than passing the
structure itself. Since many routines accept ShortStrings shorter than the
maximum length of 255 bytes, you can often declare shorter versions of this
type to save memory space.

Bytes

Pascal-86 defines one special data type to override standard Pascal's rigorous
type-checking. It is the Bytes type. Note that this is not the Byte
(singular) type. The Bytes type is not part of standard Pascal.

A parameter of a procedure or function outside of any module (such as a system
call) can be defined to be of type Bytes. This lets you pass any type of
variable as a parameter and bypass Pascal's normal type-checking. Regardless
of the parameter type actually passed, it will always be passed by reference,
not by value.

Some of the operating system routines require the Bytes type because it is not
known ahead of time exactly which type will be used. Use great caution when
passing a pointer variable as a parameter which is of the Bytes type. The
Bytes parameter is thus acting as an untyped pointer. For example, OsFree and
OsSend use Bytes parameters so that they can accept a pointer of any type.
The pointer must be dereferenced (use A at the end) to ensure that the correct
value is passed. The program example below illustrates the right (and wrong>
way to pass a pointer to a VAR BYTES parameter.

NOTE: The Bytes identifier can appear only in an external module's PUBLIC
section: see the Pascal-86 manual for a detailed discussion of the Bytes type.

MODULE BytesExample;

{ When passing a pointer to a "VAR BYTES" parameter }
{ such as "VAR ch: BYTES" below, remember to dereference}
{ the pointer, or the wrong code will be generated }

{ From WindowProcs.lnc}

PUBLIC Common;
PROCEDURE WinDrawChars (VAR ch: BYTES; count,x,y: Integer);

PROGRAM BytesExample;

CONST someletters = 'abcedfghij';

TYPE 5omeTextType = PACKED ARRAY [1 .. 10] OF CHAR;
SomeTextTypePtr = ASomeTextType;

VAR someText : SomeTextType;

1-6 GRiD-0S Reference

smmeTextPtr SomeTe>:tTypePtr;

BEGHJ
someText := someletters;
NEW(someTextPtr>;
someTextPtrA := someletters;

{ correct }

WinDrawCharslsomeText, 10, 100, 100);
WinDrawChars(someTextPtrA, 10, 100, 150);

{ i ncor-rect }

{ WinDrawChars(someTextPtr, 10, 100, 100);}

END.

Introduction 1-7

CHAPTER 2: PROCESSOR AND HEHORY MANAGEMENT FACILITIES

Two critical resources of the GRiD Compass are the central processing unit and
system memory (RAM>. Ultimately, the efficiency of the entire system depends
on how efficiently you utilize the power of the central processor and how you
manage the available memory.

PROCESSOR MANAGEMENT

GRiD-0S maximizes the power, or throughput, of the central processor by using
a multi-tasking technique -- the various activities that the system must
accomplish are broken into individual tasks or processes. You assign each
process a priority which determines when it will be given the use of the
central processor. This technique ensures that the central processor is never
idle and is ahiays 1,mrking on the "ready" process with the highest priority.
(We' 11 describe th!;' precise meaning of "r-eady" in a few paragraphs.)

Typically, many of the processes in the system must interact with one another.
They may have a need to share data, pass information back and forth, check on
the availability of information fr-om another process, wait for the occurrence
of some external event, and so on. Therefore, in addition to scheduling
process access to the central processor, GRiD-0S provides the synchronization
mechanisms of message passing and semaphore signalling.

In this chapter, we will describe how processes are scheduled, how they are
created, executed, and deleted, and how information is passed between
processes.

WHAT IS A PROCESS?

A process is an executable entity consisting of some data and some executable
code, and requiring its own set of registers and its own stack area. Since
the GRiD Compass is a single processor system, only one process can be

Processor and Memory Management 2-1

executing at any instant in time. However, many processes can be created and
exist simultaneously within the system: GRiD-0S controls the scheduling and
execution sequencing of multiple processes.

Process Scheduling -- An Overview

GRiD-0S performs process scheduling whenever any process issues any svstem
call or when an event which a process has been 'waiting' for occurs. The
scheduling technique used by GRiD-0S can be defined as priority-based,
preemptive scheduling. It is called priority based since each process has a
priority rating assigned to it when it is created. GRiD-0S examines this
priority whenever it does process scheduling to determine which process should
be the current, running process. The scheduling algorithm is called
preemptive because GRiD-0S can preempt the current process whenever
rescheduling occurs.

There are many system calls that affect process scheduling. We will give a
brief overview here of the technique used by GRiD-0S to handle multiple
processes. Details of the calls that affect scheduling are provided with the
description of each call in Chapter 6.

The following illustration is a simplified state diagram showing the three
possible states in which processes can exist. It also shows all possible
transition paths that a process can traverse as it goes from one state to
another:

[I)
IREAOYI

1

..
' A

~ p

Q]

'I,

I ,JAIT I
w ,, RUr·-i ..

FIGURE 2-1. Process State Diagram

Since there is but one central processor in the GRID Compass system, only one
process can actually be executing at any given moment. This process is
sometimes referred to as the "current" process and its state is referred to as
the "run" state. All other processes e>: i sting in the system are either in the

2-2 GRiD-0S Reference

"r-eady" state or the "wait" state.

Nnte in the precedinq 1llu~tration that the run state im indicated by• ■ingle
square, while the ready and wait states are indicated by several concentric
squares. This convention indicates that there can be but one process in the
run state, while there can be any number of processes in the ready and wait
states.

All processes begin their existence in the ready state. Transition 11 to the
run state occurs when the process becomes the ready process with the highest
priority. The process remains in the run state until (transition #2) a
process with higher priority enters the ready state, or (transition #3) the
process must wait for some event to occur.

Note that GRiD-OS does its process schedulinq whenever an event occurs that
causes a waiting process to enter the ready state. Examples of these events
are hardware interrupts, reception by waiting processes of messages or
signals, or completion of timed waits by processes. Whenever any of these
events occur, GRiD-0S examines the priorities of the ready processes and, if
any of them is of a higher priority than the running process, the ready
process will preempt the current process.

When the current process leaves the run state, via either transition path 12
or 13, the next ready process with the highest priority makes transition 11
and becomes the current process in the run state. If there are multiple ready
processes with the same priority, they will be served (that is, become the
current process) in a first-in, first-out fashion. Each time a system call is
issued, the current process returns to the ready queue and the next ready
process with an equally high priority becomes the current process.

Processes in the wait state remain there until the required event (for
example, reception of a message) occurs. When the required event occurs, the
process makes transition 14 to the ready state. If it happens to be of higher
priori than the cur-rent process, and than any other ready process, it would
proceed to the run state immediately. Otherwise, it would just take its
appropriate prioritized position among the other ready processes.

Creating, Deleting, and Executing Processes

The GRiD-OS calls listed below are the basic ones needed to bring a process
into existence (Create, Fork) 1 terminate a process (Delete, Exit), and
directly affect the execution or running of a process (Delay, Set Priority).

o OsCreateProcess - creates a new process by loading a program from a
mass storage device.

o OsForkProcess - creates a process whose code is already in memory
o OsExit - terminates the current process
o OsDeleteProcess - terminates a "forked" process
o OsDelay - suspends execution of the current process
o OsSetPriority - assigns new priority level to the current process

Processor and Memory Management 2-3

Each of these calls is described in detail in the alphabeticallv-ordered
reference chapter (Chapter 6) of this manual.

MESSAGES -- SENDING AND RECEIVING

GRiD-0S provides two calls that let processes transfer messages between one
another. The DsReceive call suspends a process while it awaits a message.
The OsSend call delivers a message to a waiting process.

GRiD-OS delivers messages on a first-come, first-served basis. However, each
message is addressed or sent to a specific receiving process. If the
specified process is not currently waiting to receive a message, GRiD-0S hold~
al 1 messages sent to that process and delivers them (one bv ';,le in the order
received) when the process is receiving. Note that onl'.' one message can be
received per each OsReceive call.

You can specify that a receiving prr~ess accept a message sent only by one
specified sending proce~s or that it accept a message sent to it by any other
process.

Each message sent in the system also is of a user-specified class. The class
parameter is a Word; therefore, you can have up to 65,536 different message
classes. You can specify that a receiving process accept a message of only
one specified class or that it accept a message regardless of class.

The following figure illustrates the various options you have when
transferring messages between processes:

Pn:,cess 7
~1e:s:sa9e G!1...1e1_,e

1 7 11

Pt-ocess 9
Mes:s.::;•~e C!ueue

~· 9 10 .::.
'.3 9 11

~1 6 1t1
,:, 4 11 ,:._

4 5 1 3 7 " ·-·

Messaqe c 1-:llSS t t j
l'lessa•:iJe soi.wee -------'-~
(sending process 1.0.) I

• Arrival order-------

This figure is a conceptualization of me&aaqe queues maintained by GRiD-0S.
The sy5tem maintains a separate message queue for each process that has a
message sent to it. In this figure, GRiD-0S is holding seven messages that

2-4 GRiD-□S Reference

have been sent but which have not vet been received by the addressed
processes: four messages for process 7 and three messages for process 9.
Let's assume that process 7 issues an OsReceive call specifying that it will
receive a message of class 1 from any process. When process 7 issues an
OsReceive. GRiD-OS would immediately deliver message 4 from its queue that
was sent by process 5, and move process 7 to the ready state. Messages 1, 2 1

and 3 would not be delivered at this paint because they are not of class 1.

After process 7 resumes execution, it issues an OsReceive specifying that it
will accept a message of any class but only if sent by process 9. GRiD-OS
will deliver message 2.

The send and receive calls can be issued in any sequence. That is, a process
can issue OsReceive first and then go and wait for another process to send a
message, or a process can issue OsSend to leave a message for a subsequent
process to pick up using DsReceive.

The message sent by the OsSend call is passed by reference rather than
directly. The receiving process is given a pointer to the buffer where the
actual message is contained. You can, however, deliver a short message more
simply by directly sending a "note" vi a the OsSend cal 1. One of parameters
fm- OsSend is "note"', a Word that is passed by value rather than by reference.
If you have information to pass between processes that is 16 bits or less in
length, you can use this note passing mechanism to send the information.

GRiD-0S reserves the first 16 bytes for system use. These bytes are used for
the Inter-Process Communications (IPCl record which is defined as follows:

IPCMessageType =
RECORD

functi onCode:
deleteSource:
spai'"e1:
spar-e2:
sourcePID:
destPID:
msgClass:
msgi'Jote:
msglength:

END;

BYTE;
BOOLEAN;
l>!ORD;
WORD;
!IJORD~
l>IDFW;
IIJORD;
!llORD;
!PJORD;

IPCMessagePtr = AIPCMessageType;

The sender should simply allocate these 16 bytes: GRiD-0S will fill in the
values when the message is sent. The receiving process can examine the IPC
record when it receives the message. The first six bytes of the record are
used only when ng messages to remote processes (for example, via

Processor and Memory Management 2-5

GRiDLink) and will be discussed in a separate document. The sourcePID can be
examined by the receiving process to determine who sent the message. This may
be necessary if the receiving process has specified that it will receive
messages sent by any other process (rather than from a single specified
process). The destPID, msgClass, and msgNote entries are filled in by GRiD-0S
using the parameters supplied by the sending process via DsSend.

Beyond these first 16 bytes, the system makes no other assumptions about the
format of messages, nor does it place any restrictions on the message format.
Since messages are passed by reference, their format and interpretation (after
the 16-byte header> are left entirely up to the application.

CREATING AND USING SEMAPHORES

Semaphores let you synchronize the activities of multiple processes. They can
be used to sequence the execution of a number of processes, to implement rapid
responses to asynchronous events, and to provide a mechanism for mutual
exclusion of processes.

In railroad terminology, a semaphore is a traffic signal that determines
whether a train can enter a particular section of track. The semaphores
provided by GRiD-OS perform an analogous function: they can cause processes to
wait for a signal before proceeding to execute a section of code.

There are four system calls related to semaphores.

o OsCreateSemaphore - creates a semaphore
o OsDeleteSemaphore - deletes a semaphore
o OsWait - causes a process to wait for a signal
o OsSignal - lets a waiting process proceed

There can be as many semaphores in the system as you want: you re limited only
by memory availability. Each semaphore you create is assigned a number
(called the semaphore ID~ or "sid"} by GRiD-0S.

You cause a process to stop at a semaphore by issuing an OsWait specifying the
semaphore number to wait at. The process will wait at that semaphore until
the semaphore is "not busy" (or until a specified period of time has
elapsed). The OsSignal call is used to set a semaphor·e to the "not busy"
condition. As soon as ths semaphore is not busy, a process waiting at the
semaphore can proceed.

When a waiting process is given the signal to proceed past a semaphore, its
passage sets the semaphore to the busy condition. This prevents any other
process that might be waiting at the semaphore from proceeding.

Any number of processes can be queued up waiting for the same semaphore. Each
time the semaphore becomes not busy 1 another process is allowed to proceed.
They are granted passage in order of their process priority. Alternatively,
you can simultaneously signal all processes that are waiting at a semaphore
and allow them all to proceed to the ready state.

2-6 GRiD-0S Reference

The functions that semaphores are used to accomplish could also be performed
using the message passing facililties of GRiD-OS. Semaphores, however,
execute much faster than message passing and are therefore a more efficient
way of accomplishing process synchronization.

In addition to signalling or waiting at a semaphore, the GRiD-05 semaphore
calls let you pass a short message or "note" bett-Jeen signalling processes and
waiting processes. One of the parameters for OsSignal is "note", a Word that
is passed by value to the semaphore. The note will be given to the next
process waiting at the semaphore. Interpretation of the contents of the note
is application dependent.

MEMORY MANAGEMENT FACILITIES

The memory management facilities provided by GRiD-05 provide rapid allocation
of memory while minimizing fragmentation which can produce small, essentially
useless, blocks of memory. The technique used by GRiD-OS to accomplish these
goals is a "first fit" approach.

Whenever GRiD-05 receives a to allocate a block of memory, it starts
at the beginning of its unallocated memory list and searches until it finds a
free block of sufficient size to meet the request. The first block that it
comes to that will fit the request is the one allocated to the process.

When a block of memory is freed, it is removed from the allocated list and
added to the free list, which is stored in order of increasing addresses. A
freed block of memory is automatically combined, or coalesced, with any
adjacent free memory to form the largest contiguous block possible.

The GRiD-05 calls listed below are the ones related to memory management.

□ DsAllocate - allocates from memory to a process
a OsFree - deallocates a block of memory
o OsGetSize - returns the size of a block of memory
o OsGetMemStatus - provides information about memory usage

Each of these calls is described in detail in the alphabetically-ordered
reference er (Chapter 6} of this manual.

Processor and Memory Management 2-7

CHAPTER 3. DEVICE AND FILE MANAGEMENT FACILITIES

The GRID-OS file manaqement system provides a uniform and straightforward
interface to all system files regardless of the type of device that a file is
associated with. Thus, you can access files throughout the system without
concerning yourself with the characteristics and idiosyncracies of devices.

Additionally~ GRiD-OS provides a "virtual" file system. The system can not
only access local devices such as bubble memory and hard disks, it can also
access remote devices such as GRiD Server (via GRiDLink or PhoneLink) and GRiD
Central (via Phonelinkl. The application programmer doesn"t have to write any
special code to use these devices; GRiD-05 handles them transparently.

The organization of the file system is illustrated in Figure 3-1. A
hierarchical, three-level structure is utilized. System devices comprise the
uppermost level. Within each device are any number of directories or
"subjects.", and within each subject are any number- of "titles".

Device and File Management 3-1

H.:Etrd
Disk

GPiD-Ot:
FI LE :::Yf:TEM

DEUICE

Pot"·t.=1ble Bubble
F I oppy Memi:on:1

TITLE

LEI...IEL.

LEUEL

LEUEL

GRiDWrite GRiOPlan Addresses
--·----·-- ------------ ,--·- ----- --------- ------------ --------
Run Text Run Worksheet Database

Moder,1 GP i D
Set-1 . ..ierM•

Checkbook

KIND ---·-1_• ----~1'
Figure 3-1. GRID-OS File System Organization

PATHNAMES

A file is fully identified by specifiying its "pathname". A pathname defines
the route to take when accessing a file; that is, it specifies the device and
subject where a title is located. To a programmer, the complete pathname
schema is as follows:

'device'subject'title~kind~:password

Three delimiter characters are used in pathname specifications. The left
single quote or "tick'' (') -- ASCII code 60 hex -- must precede device,
subject, and title names. This character is generated on the Compass keyboard
by pressing CODE-•. The tilde ,~, -- ASCII code 7E hex -- must precede and
follow the kind. This character is generated on the keyboard by pressing
CODE-;. The vertical bar (I) -- ASCII code 7C hex -- must precede the
password. This character is generated on the keyboard by pressing
CODE -SHIFT - ; .

NOTE: These delimiter characters were purposely chosen for their obscurity so
that end-users could have most commonly used characters available when naminq
their files.

3-2 GRiD-0S Reference

If a kind is not supplied as part of the pathname, the system uses a default
kind of ~untyped~. The password portion of the pathname is optional. If a
file was created with a password, then the password must be included as part
of the pathname.

If you specify a pathname that does not begin with the tick, the system
assumes that the first name it encounters is the title and that you have left
off the device and subject names. The search for the title will then be
limited to the current directory, that is, to the current "device'subject•.

If you provide the complete pathname including device, subject, and title, the
search for the file will begin at the top of the virtual device tree (see
Figure 3-1) if the title is anywhere in the system, it will be located.

The maximum length of subject and title names is 80 characters each. Subject
and title names can consist of any printing characters (including spaces)
except the following:

left single quotation mark ("tick")

tilde

vertical bar

The maximum length of a title includes its two optional extensions of kind and
password.

DEVICES

The devices currently included in the file system are identified as follows:

Bubble Memory

bb

ci

co

The nonvolatile, mass storage built into the GRiD
Compass.

Bit-Bucket (or ~byte-bucket") is a null device used
primarily as a dummy device for testing. Data written to
the bit-bucket is accepted and then simply disappears.
Read operations directed to the bit-bucket return an
end-of-file.

Console Input. The keyboard of the GRiD Compass.

Console Output. The screen of the GRiD Compass.

Extra Floppy Disk The floppy disk in a system's second 2101 disk drive.

Extra Hard Disk A system's second 2101 disk drive.

Floppy Disk The floppy disk drive in a 2101 disk unit.

GPIB General Purpose Interface Bus. The IEEE-488 connector

Device and File Management

Hard Disk

Modem

Plotter

Por-tabl e Floppy

Printer

Serial

Work

on the GRi D Compass. This device provide'=:- access to al 1
devices that attach to the GPIB connector.

2101 hard disk (Winchester) mass storage device.

The 212/103 modem built into the GRiD Compass.

The plotter currently attached to the system.

2102 portable floppy disk drive.

The printer currently being used with the system.

The serial input/output port of the GRiD Compass.

A temporary file used by many programs (for example
language translators, and the linker) to store
intermediate results.

Not all of the devices participate fully in the hierarchical structure of the
file system. Only mass storage devices (Bubble Memory, Hard Disks, Floppy
Disks) can hold subjects and titles. Devices such as the printer or the GRiD
Compass screen, can have files sent to them, but the files can obviouslv not
be retrieved from such devices. Devices can also be remote, such as disks and
printers provided by GRiD Server.

SUBJECTS AND TITLES

A title (or file name, as it is sometimes called) is a name given to a file
which might consist of a program, pure data, or some combination of code and
data. Subjects (or directories, as they are sometimes called) are also
considered to be files -- but a subject is a file whose contents always
consist of a collection of titles"

All subject names on a particular device are unique and all title names within
a particular subject are unique. That is, you can have multiple occurrences
of the same title (identical title name) so long as each occurrence is
associated with a different subject and you can use the same subject on
different devices. Thus, for example 1 a file titled DataFileA could exist on
both Bubble Memory and Hard Disk. Dr DataFileA could reside on the Hard Disk
under Subjectl and Subject2.

FILE KINDS

The file kind (sometimes
you give several related
"kind" characteristics.
the application.

referred to as file "type") e>:tension to titles lets
files the same title while assigning them different
Interpretation of the kind extension is left up to

You can directly examine and change the kind extensions of files using the
DsChangeE>:tension call described in Chapter 6.

3-4 GRiD-0S Reference

AN OVERVIEW OF FILE MANAGEMENT CALLS

All of the GRID-OS calls that are related to the file management system are
described in detail in Chapter 6. In this chapter we will provide an overview
of the interactions and usage of these system calls.

Figure 3-2 illustrates the relationship of the various activities performed in
the file management system.

Add

Open
,J_.

Flush All
Buffet·::-

!

~;t,.:,itus

I
·;i:!t

Sl: .. ~tu:.;:

Figure 3-2. An Overview cf File Management Calls

Operating on Files

In order for a file to exist in the file system, it must be associated with a
device. Most files are associated with, and reside on disk or bubble.
However, you can also send files to printers, plotters, or the screen. Before
performing a transaction such as attach, open, read or write on a file, the
operating system must have the approprate device included in its table of
active devices. l>lhen the system is po1-Jer-ed on, GRi D-0S goes around the system
and adds all devices currently connected to the active device table. If a
device is subsequently added, you inform GRiD-0S of this event using the
OsAddDevice call. You can remove a device from the active device table, in
ord~r to free the memory used by its driver, using the DsRemoveDevice call.

Once the appropriate device is in the system, a file is connected to the
system with the OsAttach call. If the file does not already exist, it is
created by OsAttach. After a file is attached, you must open the file (using
OsOpenl before you can perform any activity on the file.

Device and File Management

GRiD-0S uses the two-step sequence of attach/open to increase efficiency. The
attach locates the file in the system but allocates no buffer space.
Allocation of buffer space occurs only when a file is opened. Attaching a
file is a relatively time consuming process but uses little memory space.
Opening a file is quite fast but consumes more memory. Thus, a program can
keep many files attached but, by having only one file at a time open, wastes
no buffer space. When the program needs to access a file, that single file
can then be quickly opened.

After a file is open, you can access the contents of the file using the
OsRead, OsWrite, OsSeek, and DsTruncate calls. These calls are the ones that
actually access the contents of files. They let you read the contents of a
file (OsRead), alter the contents of a file (OsWritel, change the point of
access within a file (OsSeek), and delete a portion of a file.

You can terminate file access using OsClose and then reopen the file without
reattaching it. You can sever the connection to a file with OsDetach or you
can detach and delete the file from a device with OsDelete.

You can change the title of a file using the OsRename call and you can examine
and alter the system characteristics of a file using the OsGetStatus and
OsSetStatus calls. The OsFlushAllBuffers call writes the contents of
temporary system buffers in memory out to the device where the file is
permanently stored.

Note that the OsChangeExtension call does not actually operate within the file
system. It is really just a string function that changes a string which
contains the pathname of the file; the extension of the file in the file
system remains unaltered.

Current File Position Marker

Each open file has a "current file position'' marker associated with it. When
a file is first opened, this marker is at the first byte (byte zero) of the
file. Whenever you access a file, you specify the number of bytes that are to
be accessed. As part of that access, the current file position marker is
moved so that it is just beyond the last byte accessed and thus indicates the
first byte available to a subsequent access. You can directly move the
current file position marker with OsSeek which does not read or write any data
in the file. Note, however, that you can not insert data in the middle of a
file. If you move the current file position marker to somewhere within a file
and then perform a write, data will be written over pre-existing data.

Operating on File Directories

GRiD-0S lets you read the contents of directories just as you do with any
other file. The only difference is that instead of reading a byte at a time,
one directory entry at a time is read.

To prepare a file to be read in "directory mode'', use the Common Code call
OpenDirectory (refer to the Common Code Reference manual, Chapter 12) which

3-6 GRiD-0S Reference

attaches and opens the directory file.

Now, OsRead operations or □sSeek operations performed on the file, instead of
treating bytes as their object, treat each directory entry as the object.
Thus, a read with a length of three would return three directory entries
(either partial or complete entries) instead of three bytes of data.

You can read either a partial directory entry containing just the name of the
directory file, or the complete directory entry giving all the information
about the characteristics of a file. The format for partial directory entries
is as follows:

PartialDirEntryType = RECORD
dummy : ARRAY [1.. BJ OF Char;
length : Byte;
name: ARRAY [1 .. 1) OF Char;

END;
Note that the size of the name portion of the entry is defined by the length
parameter. The name length is variable and can be up to 80 bytes long. If
information beyond the name of a directory entry is required, you can read
complete directory entries whose format is as follows:

CompleteDirEntryType = RECORD
dummy: ARRAY [1 .. 8] OF Char;
length: Byte;
name: ARRAY [1 .. 80] OF Char;
creationDate: ARRAY [1 .. 111 OF Char;
unused 1 : liJol'"d
lastModDate: ARRAY [1 .. 11] OF Char;
expirationDate: ARRAY [1 .. 11] OF Char;
unused2: ARRAY [1 .. 25] OF Char;
uses8087 Boolean;
version 1 : Byte;
version2: Byte;
unused3: ARRAY [l .. 15] OF Char;
version3: Byte;
propertylength: Longlnt;
unused4: ARRAY [1 .. 28] OF Char;

END;

When you read a complete directory entl'"y, the information returned will be of
a fixed length since all fields in each record are filled out to their maximum
length. For example, the name returned will always be 80 characters in
length. The significant or used portion of the name field will be indicated
by the length parameter; the rest of the name field will be filled out with
blanks to occupy the full 80 characters of the field.

Device and File Management 3-7

CHAPTER 4. WINDOW GRAPHICS

The window graphics routines are a set of procedures that let applications
display text and graphics on the screen.

With these routines, you can

o Create an application that runs completely independent of the physical
screen size or characteristics.

o Draw, erase, or invert text characters, pixels, lines, and rectangles.

o Clip the display within a clipping rectangle so that data outside the
rectangle is not displayed.

o Perform bit-by-bit scrolling within a display window, to change the
display rapidly.

o Establish alternate windows and pass data from one window to another.

SETTING UP WINDOWS

A window defines an area of the screen (often the entire screen) that can
subsequently be referenced by other graphic calls to display information
consisting of rectangles, text, lines, and pixels. GRiD-OS lets you maintain
more than one window at a time. You can have more than one window image in
memory at a time and switch from one window to another.

Once you define a window, only those portions of information sent to that
window that do not extend beyond the window boundaries are displayed on the
screen -- the window "clips" information that 11muld be outside of the defined

Window Graphics 4-1

window.

A window is defined using the calls described below.

o WinlnitDefaultWindow Clears the window and resets the clipping
rectangle.

o WinSetWindow -- Sets the window to a specified size.
o WinFrameWindow -- Draws a frame around the window
o WinEraseWindow -- Erases the contents of the current window.
o WinScrollWindow -- Scrolls the entire window a specified distance and

direction.
o WinGetWindowExtent -- Returns the size of the current window.

ALTERNATE WINDOWS

There can only be one window at a time displayed on the screen. This window
is called the ''current window". GRiD-0S, however provides calls that let you
maintain multiple windows in memory. There are two reasons why you might want
to have alternate windows~ to redirect the contents of one window to another
window or to convert screen image files stored in GRiD's format to the format
needed by a screen other than that of the Compass computer.

The alternate window calls make the window routines compatible with other
computer systems regardless of the screen size or formats of screen image data
as stored in memory. The calls also let you maintain multiple windows in
memory and bring window contents to the screen or dismiss them from the screen
to display other windows.

A window is established in memory with the WinAllocateWindowMemarv call. This
call specifies the characteristics of the window such as format, size,
bits/pixel, and so on. Each program has a ''current" window where the
program's calls are directed to perform such operations as drawing lines and
displaying characters.

A program establishes alernate windows with separate WinAllocateWindowMemory
calls for each window and specifies which window is the current window with
the WinSetAlternateWindow call.

You can copy information from one window in memory to another with the
WinCopyRemoteRectangle call. This call can place the entire contents or any
portion of one window into another window.

Applications that use screen image files or that need to manipulate the screen
directly must use alternate windows in order to work with computers having
screen characteristics that differ from those of the Compass computer. For
example, a screen image stored on disk or in bubble memory must first be read
into a window that is specified as being in GRiD format. You can then copy
the contents of that window (with WinCopyRemoteRectangle) to one specified as
being in host screen format so that the image will be properly displayed.

The calls used with alternate windows are as follows:

4-2 GRiD-0S Reference

o WinAllocateWindowMemcwy -- Allocates memory for an alternate window
o WinSetAlternateWindow -- Causes all subsequent window calls to operate on

an alternate window.
o WinCopyRemoteRectangle -- Copies a rectangle from one window region to

another and converts display data (if necessary) to the format required by
the destination window.

CLIPPING RECTANGLES

Within each window, you can further define rectangular areas that have
specific characteristics. You can have multiple rectangles within a single
window and can manipulate all of the pixels in each rectangle separately from
other rectangles in the window. A rectangle can also clip information at its
boundaries just as a window does. The calls that operate on rectangles are as
follows:

o WinSetClip -- Sets a clipping rectangle within a window.
o WinResetClip -- Resets the clipping rectangle to the entire window.
o WinEraseRectangle -- Erases the contents of a rectangle.
o WinlnvertRectangle -- Inverts the contents of a rectangle.
o WinCopyRectangle -- Copies one rectangle into another.
o WinScrollRectangle -- Scrolls a rectangle a specified distance and

direction.

TEXT GRAPHICS

These routines complete characters within d~fined window locations. For a
further discussion of character formation, see the discussion of character
fonts that follows.

o WinDrawChar -- Draws a character at a specified location in the window.
o WinEraseChar -- Erases a character at a specified location in the window.
o WinlnvertChar -- Inverts a character at a specified location in the window.
o WinDrawChars -- Outputs a character string to the screen at a specified

location in the window.

CHARACTER FONTS

The character spacing used when displaying text on the screen depends on which
font is the "cur-rent" font. Two calls are used to handle fonts: WinLoadFont
loads a specified font into memory and WinSetFont determines which of the
currently loaded fonts is to be the current font used to display characters on
the screen. You can determine the characteristics (character size, spacing,
and so on) of a font by examining the FontlnfoRecord associated with each font
(see WinSetFont) or by using the functions Baseline, Charheight, Charwidth,
and Li nehei ght.

The standard (built-in) font contained in ROM for the Compass computer has the

Window Graphics 4-3

following characteristics (values listed are in number of pixels):

chadh dth (= 6)
charHeight (= 8)

lineHeight (= 10 l
baseline (= 7)

Figure 4-1 illustrates how the dimensions of font characters are measured.
Note that there are other fonts available besides the built-in font depicted
in this figure.

r
baseline

=7

1111 ■ 11 ■
II
II
■ ,1111 ■

•
•••• II II
■ II

l __ : ■ Ill II II chad-le i ght
=8

■ •---~
=6

lineHeight = 10 pixels
(one pixel above and below

e.,Kh char.::ict.et-)

Figure 4-1. Built-In Character Font Dimensions

Even though each character displays as 5 pixels across 1 the actual font is 6
pixels wide. There is a blank pixel at the right edge of each character thus
leaving a single pixel space between characters. While each character is
eight pixels high, the line height is 10 pixels altogether, which leaves a two
pixel vertical spacing between lines of text.

The value of lineHeight represents the height of capital letters plus one
pixel for descenders plus the two pixel space between lines. Each line has a
one-pixel space above it and below it. The value of baseline represents the
height of capital letters.

o WinloadFont -- Loads a font file into memory.
o WinSetFont -- Sets a previously loaded font as the current font.

4-4 GRiD-05 Reference

LINE GRAPHICS

These routines let you manipulate lines within defined windows. Lines are
defined by defining their two end points (pixel coordinates).

o WinDrawline -- Draws a line within the window.
o WinEraseline -- Erases a line within the current window.
o WinlnvertLine -- Inverts a line within the window.

PIXEL GRAPHICS

These calls let you manipulate a single pixel within a window. Not~: usually,
the Line graphic calls can be used to accomplish detailed graphics. However,
the pixel graphic calls are provided to give you completely detailed control
of the display.

o WinDrawPixel -- Draws a single pixel at a specified coordinate.
o WinErasePixel -- Erases a single pixel at a specified coordinate.
o WininvertPixel -- Inverts a single pixel at a specified coordinate.

COORDINATE SYSTEM

The window calls draw pixels, characters, and lines on the screen within a
window coordinate system. All coordinates are ultimately designated with
absolute pixel locations on the screen by the system. However, almost all
window routines use relative pixel coordinates that are based on the current
window instead of absolute screen locations. Each window has its own
coordinate system with O,O at its top left.

Each coordinate refers to one pixel. Thus, drawing a line from 10, 0) to (0,
11 will cause two pixels to be displayed. Drawing a line from one pixel to
itself causes a single pixel to be displayed.

DATA STRUCTURES

* TYPE Point = RECORD x,y: Integer END;

Point is a record of x 1 y pixel coordinates which are either absolute or
relative to the window. Points can represent two-dimensional positioning
offsets or window dimensions, as well,

* TYPE Rectangle=
RECORD topleft, extent: Point END;

Rectangle is a record of two Points. The variable topleft defines the pixel
coordinates of the upper left corner of a rectangle. The x codrdinate of

Window Graphics 4-5

extent defines the width of the rectangle in pixels; they coordinate of
extent determines the hei~ht of the rectangle.

*TYPE Direction= (up, down, left, right>;

Defines a direction for scrolling rectangles and windows on the screen
display.

• TYPE
WindowFormat = (screenFormat, GRiDFormati;

WindowRegion = RECORD
format : WindowFormat;
width : Word;
height : Word;
buflength : Word;
buf : Pointer;
bitsPerPel : Byte;
bytesPerline : Word;

END;

format -- GRiD format or host screen format.
width -- the width of the window in pixels.
height -- the height of the window in pixels.
buflength -- the size, in bytes, of the buffer allocated by the system far

this window.
buf -- a pointer to the first byte of the buffer allocated for this window.
bitsPerPel -- the number of bits per pixel used for the window. For GRiD

format windows, there is one bit per pixel.
bytesPerline -- the number of bytes used by the system to store one horizontal

line of pixels for the allocated window.

4-6 GRiD-0S Reference

CHAPTER 5. CONSOLE ROUTINES

These routines give you direct access to the screen and keyboard of the
Compass Computer. All of the routines that output information to the screen
operate within the current window (see Chapter 4). They differ from the
related window graphic routines such as WinDrawChar because they treat the
window as a virtual console. Thus, while characters output by WinDrawChar
will be clipped when they reach the window or clipping rectangle boundaries,
characters output by the console routines will wrap to the next line within a
windbw when a boundary is reached. All GRiD application programs display
text on the screen using the window routines.

The following three console routines are useful for obtaining input from the
Compass keyboard:

ConKeyPressed

ConCharln

ConPeekChar

Tells you if any key on the keyboard has been pressed.

Waits for one character to be typed on the keyboard and
then returns that character.

Returns the first character in the keyboard queue without
removing the character from the queue ..

The keyboard provides a 40-character buffer to support the type-ahead feature.
Note that if the ESC key is pressed, all keys in the buffer (keyboard queue)
are cleared and only the ESC key itself remains in the buffer.

The remaining console routines are provided primarily to be compatible with
the interface requirements of the compilers and other Intel development tools.
They are rarely used within GRiD applications but can be handy during
debugging.

Console Routines 5-1

ConDefCsr

ConResetDisplay

ConMoveCsr

ConCharDut

ConUneOut

Conli nein

ConHexOut

GetConsoleState

Turns the small cursor character "_" on or off.

Clears the screen and displays the cursor character at the
top, left hand position of the window.

Moves the cursor to the specified x,y character position on
the scr-een.

Outputs the supplied character to the screen at the curr-ent
cur-sor position.

Outputs the specified number of characters to the screen.

Inputs the s,pecified number of characters fr-om the
keyboard.

Outputs the supplied hexadecimal value to the screen at the
cur-rent cursor position.

Returns information describing the current state of the
console, such as cursor location and last character printed
to the screen.

5-2 GRiD-08 Reference

CHAPTER 6. GENERAL UTILITY CALLS

These calls perform general-purpose, utility functions such as scanning
inputs, obtaining system ID and time, passing names, and decoding exceptions.
Detailed descriptions of these call are provided in the alphabetically-ordered
Chapter 7.

OsGetArgument

O:SwitchBuffer

OsOverl ay

OsGetSystemID

OsGetTime

OsRegisterName

OsLookUpName

OsDecodeException

OsHandleCancel

Scans and parses the contents of the command line or
other designated buffer.

Changes the buffer that OsGetArgument operates on.

Brings a subprogram into memory.

Returns system identification information.

Returns all information from the system clock.

Registers a process-specified name and a small amount
of associated information.

Looks for a name that has been previously registered
and returns some information associated with that
name.

Translates an exception number into an exception
message.

Specifies whether an application or the operating
system should handle the Cancel CCODE-ESC) key.

General Utility Routines 6-1

OsPutProperty

OsGetProperty

6-2 GRiD-0S Reference

Sets a system property such as screen frame or time.

Examiness a system property such as screen frame or
time.

CHAPTER 7. GRiD-OS PROCEDURES AND FUNCTIONS

This chapter lists al 1 of the procedures and functions provided by GF:i D-0S in
alphabetical order. Far discussions of concepts and interactions of these
calls, refer to the appropriate chapter earlier in this manual. This chapter
simply lists the calls in alphabetical order and provides a comprehensive
description of each call for reference purposes.

Procedures and Functions 7-1

BaseL:ine

FUNCTION Baseline: Integer;

Purpose and Operation

This routine returns an integer that is baseline of the current font. The
baseline is the height in pixels of capital letters of the current font.
Baseline is also the line where the tip of the cursor is positioned .

r
baseline

=7

••••• • ■
•••• •

•••• • • • • l __ : •••• ■ ■ ■ ■ ch.:;:it-He i ght.
=:3

=--~l
H1t'---=,--:::-----11H~1

lineHeight = 10 pixels
(one pixel above and below

each char-act.er>

CharHeight

FUNCTION CharHeight

Purpose and Operation

Integer;

This routine returns an integer that is the height (in pixels) of the capital
letters in the current font, plus one for the descenders. See the Baseline
function for a figure illustrating CharHeight.

7-2 GRiD-OS Reference

CharWi.dth

FUNCTION CharWidth: Integer;

Purpose and Operation

This routine returns an integer that is the width 11n pixels) of the
characters in the current font. See the Baseline function for a figure
illustrating CharWidth.

CanChar:In

FUNCTION ConCharin: Char-;

Purpose and Operation

This routine waits for one character to be typed on the keyboard and then
returns that character. ISee Appendix A for a table showing the values
returned by each keystroke.}

This routine actually returns a 16-bit' word. The low order byte contains the
8-bit value representing the key that was pressed. The high-order byte of the
word provides the following additional information from the keyboard:

Bit ,. Interpretation
12 Set to 1 if a F"epeated charactef"'
1, ~· Set to 1 if SHIFT key also depressed
14 Set to 1 if CODE key also depressed
15 Set to 1 if CTRL key also depressed

If you want to receive this additional infoF"mation, you must change the
ConCharin function declaration (in the include file ConPas.Inc) to "FUNCTION
ConCharin : !>lord;" in ordef"' to have the full 16-bit value returned.

ConCha.r□ut

PROCEDURE ConCharOut (ch: Char);

Purpose and Operation

This routine outputs the supplied character to the screen at the cur!'"'ent
cursor position.

Procedures and Functions 7-3

ConDe-FCsr

PROCEDURE ConDefCsr (on: Boolean>;

Purpose and Operation

This routine turns the !::-mall cursor character " __ " on o,~ off. If the parameter
"on" is True, the CLtrs.or i,1il1 be displayed; if False~ the cur-s.or 1•iill not be
displayed.

ConHex □u.t

PROCEDURE ConHexOut (num: Word);

Purpose and Operation

This routine outputs the hexadecimal number specified by num to the current
cursor position.

ConKeyPressed

FUNCTION ConKeyPressed: Boolean;

Purpose and Operation

This routine returns a Boolean True if any key on the keyboard has been
pressed. If you want to determine which key is depressed, rather than just
the fact that a key was depressed, use the function ConCharln or ConPeekChar.

7-4 GRiD-OS Reference

ConL:ineXn

FUNCTION Conlineln (VAR buffer: Bytes;
maxlength: Word): Word

Purpose and Operation

Thls routine inputs characters from the keyboard and places them in the
designated text buffer. The keyboard entry is terminated either when the
number of characters specified by maxlength has been entered or when the
RETURN t:ey is pressed. The function returns a li'JDrd indicating the actual
number of characters returned (including the terminating CR/LF if less than
maxlength characters read!.

NOTE: ~•Jhen passing a pointer to a "VAF: BYTES" parameter such as "VAR buffer:
BYTES", remember to dereference the pointer, or the wrong code will be
generated. See the disc~ssion of the Bytes data type in Chapter 1 for an
e>: ample.

Parameters

buffer -- the text buffer where the characters are to be stored.
maxlength -- the maximum number of characters to input.

MOTE: lilhen passing a pointer to a "VAR BYTES" parameter such as "\JAR ch:
BYTES'', remember to dereference the pointer~ or the wrong code will be
generated. See the discussion of the Bytes data type in Chapter 1 for an
e:-:ample.

Procedures and Functions 7-5

ConLineOut

PROCEDURE Conline□ut (VAR buffer: Bytes;
length: !ilord);

Purpose and Operation

This routine outputs the number of characters specified by length to the
window. If the window or clipping rectangle boundary is reached~ the
characters wrap around to the next line.

NOTE: t>Jhen passing a pointer to a "VAR BYTES" parameter such as "VAF: buffer:
BYTES'', remember to dereference the pointer, or the wrong code will be
generated. See the discussion of the Bytes data type in Chapter 1 for an
e>: ample.

Parameters

buffer
length

the text buffer where the characters are to be output are stored.
the number of characters to output.

NOTE: When passing a pointer to a "VAR BYTES" parameter such as "'·JAR ch:
BYTES", remember to dereference the pointer, or- the vJrong code wi 11 be
generated. See the discussion of the Bytes data type in Chapter 1 for- an
e:-:ampl e.

ConMoveCsr

PROCEDURE ConMoveCsr Ix, y: Byte);

Purpose and Operation

This routine repositions the current cursor location to the specified x,y
character position (not pixel position) in the current window: O,O is the
upper left corner. This new cursor location will be the starting point for
subsequent ConCharOut ConlineOut calls.

Parameters

x,y -- the character row and column position relative to your window (not the
screen) wher-e the cursor is to be positioned.

7-6 GRiD-0S Reference

ConPeekChar

FUNCTION ConPeekChar: Char;

Purpose and Operation

This routine returns the first character in the keyboard que~e. Unlike
ConCharln, however, this function does not remove the key from the keyboard
buffer. If the queue is empty, this routine waits until a key is pressed.
(See Appendix A for a table showing the values returned by each keystroke.)

This routine actually returns a 16-bit word. The low order byte contains the
8-bit value representing the key that was pressed. The high-order byte of the
word provides the following additional information from the keyboard:

Bit#
12
13
14
15

Interpretation
Set to 1 if a repeated character
Set to 1 if SHIFT key also depressed
Set to 1 if CODE key also depressed
Set to 1 if CTRL key also depressed

If you want to receive this additional information, you must change the
ConPeekChar function declaration (in the include file ConPas.Inc) to "FUNCTION
ConPeekChar Word;" in order to have the full 16-bit value returned.

ConResetD:ispl.a.y

PROCEDURE ConResetDisplay;

Purpose and Operation

This routine clears the current window, moves the small cursor character '' "
to the top, left hand position (O,O> of the window, and turns the small cursor
character " "on.

Procedures and Functions 7-7

FUNCTION GetConsoleState

Purpose and Operation

ConsoleStatePtr;

This routine returns a pointer to a record describing the current state of the
console. The organization of the console state record is as follows:

ConsoleStateType = RECORD
xloc Integer;
yloc Integer;
estate: Byte;
scroll : Byte;
curChar: Byte;
upperFlag : Byte;
NMIFlag Byte;

END;

ConsoleStatePtr = AConsoleStateType;

ConsoleStateType Record Fields

xloc, yloc -- the current cursor location (see ConCharOut) indicating where
the last character was drawn on the screen.

estate -- cursor state. This is 1 if cursor is on and O if cursor is off.
scroll -- an internal variable used by the window routines.
curChar -- current character. The character last printed to the screen.
upperFlag -- internal flag indicating whether the upper case keylock

<SHIFT-ESC) is set on.
NMIFlag -- an internal variable used by the window routines.

LineHeight

FUNCTION LineHeight

Purpose and Operation

Integer;

This routine returns an integer that is the height (in pixels) of the
character lines (character height plus the spacing between lines) in the
current font. See the Baseline function for a figure illustrating LineHeight.

7-8 GRiD-0S Reference

OsAddDevice

PROCEDURE OsAddDevice <VAR pathName: Bytes;
VAR name: Bytes;

Purpose and Operation

VAR entryPoint : Bytes;
intAddr : Byte;
mass: Boolean;
mode: Byte;

VAR error : Word);

This call adds a device to the Active Device Table maintained by GRiD-0S. The
device can then be accessed by programs just as though it were another file.
Thus, this call is the equivalent of "activating'' a device from the command
line (see the Program Development Guide for a description of the Activate
program). This call can add a device that is in a file, or that is linked
into a program or can make a second copy of an already activated device. For
a detailed discussion of how to use this call, refer to GRiD documentation on
device drivers.

NOTE: When passing a pointer to a ''VAR BYTES" parameter such as "VAR
pathName: BYTES'', remember to dereference the pointer, or the wrong code will
be generated. See the discussion of the Bytes data type in Chapter 1 for an
example.

Parameters

pathName -- the pathname (formatted as a ShortString) of the file containing
the device driver or the name of device already listed in the Active Device
Table, depending on the setting of bit O of the mode parameter. If the
driver is linked into the currently running program, this parameter should
be a NULL pointer IOFFFFFH>.

name -- the actual name (formatted as a ShortString) of the driver as it will
be listed in the Active Device Table. (Note: the specified name should not
have a backquote (') in front of it.) If this parameter is a NULL pointer
IOFFFFFH>, the title part of the pathName parameter is used as the device
name.

entryPoint -- the name of the device driver main procedure if the driver is
linked into the currently running program. In this case, the pathName
parameter is ignored. If the driver is not linked into the program, the
entryPoint parameter should be a NULL pointer (OFFFFFH).

intAddr -- the interface address (usually, the device's GPIB address. If this
device is not a GPIB device, set intAddr to NULLBYTE IOFFhl.

mass -- a Boolean that, if TRUE, indicates that the device being added is a
mass storage device such as a hard disk, floppy disk, or bubble.

mode -- the bits of this Byte determine various attributes of the device
being added as follows:

Bit#
0 -- driver location. If set to O, the pathNa~e parameter specifies

the device driver location. If set to 1, the pathName parameter is

Procedures and Functions 7-9

the name of a device already in the Active Device Table.
1 -- visible/invisible. If set to O and the mass parameter is TRUE,

the device will appear on active device list and be displayed on
the File form. If set to 1 or if the mass parameter is FALSE, the
device will be invisible.

2 -- local/remote. If set to O, the device is local. If set to 1,
the device is remote, that is, accessed through the serial port or
a modem).

3 -- mass storage. If set too, indicates that the device is not a
mass storage device. If set to l, indicates a mass storage device
such as hard disk.

4 -- server. If set to O, indicates that the device is not a network
server. If set to 1, indicates that device is a network serverm
accessed through GRiDLink or Phonelink.

5 reserved for system use: always set to O.
6 -- reserved for system use: always set to 0.
7 -- search. If set to O and if the mass storage bit (bit 3) is set

to 1, indicates a searchable device. GRiD-0S may search this
device for an appropriate application program, such as
GRiDWrite~Run Text~ to use with a file of Kind ~Text~. If set to
1, the device will never be searched.

7-10 GRiD-0S Reference

OsAJ.l.ocat.e

FUNCTION OsAllocate !length: Word;
VAR error: Word) : Pointer;

Purpose and Operation

This call assigns or allocates a memory block of a specified number of bytes
to the calling program. The memory block can be of any size from one byte to
64k bytes. If more than 64k bytes are needed, additional OsAllocate calls
must be issued. The allocated block will be the lowest addressed segmeMt that
satisfies the request.

NOTE: Since ther-e is no inherent memory pr-otection, the program must ensure
that it does not alter any memory outside of the allocated block. When your
program exits, any memory allocated to the program is freed by the system.

Parameters

length -- a Word specifying the number of bytes of memory to be allocated. A
length of zero implies a request of 64k bytes.

Function Return

block -- a pointer to the first byte of the allocated block of memory. NOTE:
If you call this function from Pascal, you must define Pointer to be a
pointer- to whatever kind of variable you are trying to allocate space for.
For example: Type Pointer= AArray[l .. 2000] OF Word;

Possible Errors

Out of memory (error 2).

Procedures and Functions 7-11

OsAttach

FUNCTION OsAttach (VAR pathName Bytes;
fileMode Byte;

VAR reserved Bytes;
accessMode: Byte;

VAR error: Word) : Word;

Purpose and Operation

This call establishes a connection to the file specified by pathName and
returns a connection number which other calls use to refer to the file.

OsAttach will establish a connection to an existing file and can also create a
new file and connect to that new file.

A connection is always dedicated to a specific type of access: read only,
write only, update (read and write), partial directory read, or complete
directory read. If a connection is for a write or update access, there can be
only one active connection to the file. There can be multiple active
connections to the file, however, if all of the connections are for read only
access.

The maximum number of active connections to all files in the system is limited
only by available memory.

If the access mode is for a partial directory read or complete directory read,
the system not only attaches the file, it also opens the file in preparation
for subsequent read or se~k operations. NOTE: See Chapter 3 for a description
of directory entry formats.

NOTE: When passing a pointer to a ''VAR BYTES" parameter such as "VAR
pathName: BYTES", remember to dereference the pointer, or the wrong code will
be generated. See the discussion of the Bytes data type in Chapter l for an
example.

Parameters

pathName -- device-subject-title-kind-password of the file to be attached.
This parameter should be formatted as a shortString.

fileMode -- specifies whether the connection is to an existing file or new
file as follows:

oldFileMode. The file must already exist. If the file does not
exist, a file-not-found error is returned. (The two directory-type
accesses work only with old files.)

updateFileMode. If the file already exists, that file is attached.
If the file does not exist, it is created and then attached.

7-12 GRiD-OS Reference

newFileMode. lf the file does not e>:ist, it is cr-eated and
attached. If the file alr-eady exists, the contents of the existing
ver-sion are deleted and this new empty file is attached.

r-eserved -- r-eser-ved for- futur-e system use. Set to zer-o using a "dummy"
variable. NOTE: See "Special Note" at the end of this descr-iption.

accessMode -- a byte defining the type of access that will be permitted for
this attachment to the file:

r-eadAccess.
i,1ri teAccess.
updateAccess.

Used for read-only access to a file
Used for write-only access to a file

Used for read/write access to a file
systemReservedAccess. Do not use -- reserved for the system.
par-tialDirAccess. Limited read access of directories.
completeDirAccess. Complete read access of director-ies.

Function Return

conn -- connection number (data type Word) that can be used in subsequent
file-related calls to refer to this file.

Possible Errors

Out of memory (error 21.
Password protected (error 27).
File does not exist (error- 33).
Fiie cannot be shar-ed (error 40).
Device full (error 41).
Bad parameter (error 225).
Device not active (error 227).
Any disk errors (errors 101 - 108).

Special Note

The "reserved" par-ameter !PJas former-ly (version 3.0.0 and earlier-) used to
specify the file password. In ver-sion 3.1.0 and later, the password must be
specified as part of the pathName parameter. Programs using the old format of
this call must put the password in the pathname using the OsChangeExtension
call. Programs wr-itten prior to version 3.1.0 do not have to be modified if
they do not explicitly manipulate passwords.

Procedures and Functions 7-13

OsCal.l.Dri.ver

PROCEDURE OsCallDriver <VAR pathName: Bytes;
level : Byte;
request : Word;

Purpose and Operation

VAR paramlist : ParamlistType;
VAR error : Word;

This procedure is used from within device driver shells. Application programs
would not normally call this procedure. A descripton of how to write device
drivers and how to use this call within drivers is beyond the scope of this
document. Refer to GRiD documents describing device drivers for details on
the use of this call.

NOTE: t,.Jhen passing a pointer to a "VAR BYTES" par-ameter such as "IJAF:
pathName: BYTES'', remember- to dereference the pointer, or the wrong code will
be generated. See the discussion of the Bytes data type in Chapter 1 for an
e):ample.

Parameters

pathName -- the pathname (formatted as a ShortStringl of the device to which a
request is being sent (typically, 'serial or 'gpib).

level -- a value of 1 specifies that this is a low-level driver (for a mass
storage device such as bubble memory, hard disk, or floppy disk), a value
of O specifies that it is a file level driver (for devices such as
printers, PhoneLink, or serial port}. NOTE: if the high-order bit of this
byte is set (value= 80 or 81), it specifies that the device driver (rather
than the OS) will supply the interface address.

request -- a word defining the specific activity (such as open, read, write)
that the device driver is to perform on the device. Refer to the "Guide to
GRiD Devices and Device Drivers" for details.

paramlist -- a list specifying device characteristics in the following format:

ParamlistType = RECORD

7-14 GRiD-0S Reference

conn : t•Jord;
buffer- : Pointer;
position: Longlnt;
length: Ward;
mode: Byte;
numBuf : Byte;
intAddr: Byte;
overflow

END;
Pointer;

OsChangeExtension

PROCEDURE OsChangeExtension CVAR pathName: Bytes;
e>:tNum : Byte;

Purpose and Operation

VAR extension: Bytes;
VAR error : t>lord);

This call lets you examine or change the filename extension (kind or password)
on a pathname short string while leaving the rest of the pathname unchanged.
This call is just a string function. You pass it a string representing a
pathname and it returns a portion of this string or modifies the string
<depending on what you request with the e>:tNum parameter). Note that this
call has no effect whatsoever on the file system or the actual titles of
files.

If the pathname already has an extension, then it will be changed to the new
one that you specify. If there is currently no extension~ the new one will be
appended to the file name.

The maximum length of a file name is 80 characters, including any extensions.
Since a new extension can increase the length of the file name, you must make
sure the pathname buffer is large enough to hold the new name and also ensure
that the maximum length is not exceeded.

NOTE: IIJhen passing a pointer to a "VAR BYTES" parameter such as "VAR
pathName: BYTES", remember to dereference the pointer, or the wrong code will
be gener-ated. See the discussion of the Bytes data type in Chapter 1 for an
e:-: ample.

Parameters

pathName -- references the file whose extension is to be changed. This
parameter should be formatted•• a short string,

extNum -- specifies which extension (kind or password) is to be examined or
changed as follows:

changeType. Change the Kind extension.
changeSubtype. Reserved for system use.

Change the extension.
returnType. Query current Kind extension.
returnSubType. Reserved for system use.
returnPassword. Query currant password extension.
changelfNoType. Change Kind only if none currently appended.
changeifNoSubtype. Reserved for system use.
changelfNoPassword. Change only if none is currently appended.

extension -- the actual ■xtension to be appended or the current extension
returned by a query. This parameter should be formatted as a short string.

Possible Errors

Bad

Procedures and Functions 7-15

OsC1ose

PROCEDURE OsClose !conn: Word;
VAR error: Word>;

Purpose and Operation

This call closes a file that was previously opened. The contents of all
buffers assigned to the file are written to the file and all memory allocated
to the file released to the system.

The file remains attached and can be re-opened without doing another OsAttach.

Parameters

conn -- connection number (data type Word) that specifies the file that is to
be closed.

Possible Errors

File not open (error 205).
Bad connection (error 221).
All disk errors (101 - 108).

7-16 GRiD-OS Reference

OsCreat.eProc:ess

FUNCTION OsCreateProcess (VAR commandline: Bytes;
priority : Byte;
uses8087: Boolean;

VAR error : Word) : Word;

Purpose and Operation

This call creates a new process with the parameters specified. The process
being created is loaded into memory from mass storage -- bubble, disk~ etc.
(as contrasted with a forked process, which must already be in memory) and is
created in the ready state. Thus, if the created process happens to be the
highest priority ready process, it would begin executing immediately. NOTE:
After a process has been created, it can only be terminated by issuing an
OsExit call -- itself. It can not be deleted by another process.

N□T.E: When passing a pointer to a "VAF: BYTES" parameter such as "VAR
commandLine: BYTES", remember to dereference the pointer, or the wrong code
will be generated. See the discussion of the Bytes data type in Chapter 1 for
an e:-:ampl e.

Parameters

commandline the buffer containing the command to run and any parameters
required for that command. This parameter is NOT formatted as a
shortString. The buffer contents should be just as though you entered a
command via a command line. For e>:ample, "GRiD~Jrite pathName". You must
end the command line with a carriage return. NOTE: the file that is to be
created as a process is expected to have a Kind of ~Run~ or ~Run fileKind~
(for example, ~Run Database~,. If no kind is specified in the commandline,
the system supplies a kind of ~Run~. If no device or subject is specified,
the system will first look in the currently prefixed subject and then in
the Programs subject of the currently prefixed device.

priority -- a value in the range of Oto 255 indicating the priority of this
process. The highest priority is o, the lowest is 255.

uses8087 -- if this Boolean value is true, it indicates that the 8087
numerical data processor is used by this process. This informs GRiD-05
that the contents of the 8087 registers must be saved i,,ihenever the process
leaves the run state.

Fune ti on Return

pid -- process identification number (data type Word) that can be used by
other system calls to refer to this process.

Procedures and Functions 7-17

Possible Errors

Out of Memory (error 2) if insufficient memory is available to load this
process.
All file system errors.
All disk errors 1101 - 108).
All GPIB errors.

OsCreateSemaphore

FUNCTION OsCreateSemaphore !VAR error

Purpose and Operation

Word) Word;

This call creates a semaphore for use by system processes. This function
returns a word that is the semaphore number or semaphore ID. Processes use
this ID number (sid) to refer to the semaphore when issuing OsWait and
OsSignal calls.

When a semaphore is created, it is initially set to the busy state. If you
want the semaphore to initially be in the not busy state (for example, if
you're using it for mutual exclusion), you must issue an OsSignal to the
semaphore.

Function Return

sid -- the semaphore ID assigned to the semaphore created.

Possible Errors

Out of Memory (error 2) if there is insufficient memory available for storage
of the semaphore.

7-18 GRiD-0S Reference

OsDecodeExcepti~n

PROCEDUF:E OsDecodE>E>: cept ion (code : Word;
VAR execption: Bytes);

Purpose and Operation

This call converts a numerical error code generated by the system to a more
meaningful string of up to 80 ASCII characters. (NOTE: the text comprising
the character string associated with each error code is in the file named
@SystemErrors~text~. Thfs file must be under the programs directory of the
currently prefixed device.). The resultant string can provide a more useful
error message to users and operators of the Compass.

MOTE: 1,,Jhen passing a pointer to a "VAR BYTES" parameter such as "\JAR
exception: BYTES'', remember to dereference the pointer, or the wrong code will
be generated. See the,discussion of the Bytes data type in Chapter 1 for an
e>:ample.
Parameters

code -- the system error number that is to be decoded. See the
@SystemErrors~Text~ file for a numerical listing of the error numbers and
the message strings that will be returned.

exception -- a buffer (which should be formatted as a shortstring) where the
error message will be returned.

Procedures and Functions 7-19

OsDe1ay

PROCEDURE DsDelay (timelimit

Purpose and Operation

Word);

This call suspends execution of the current process by placing it in the wait
state for a specified time limit. The process will remain in the wait state
until the specified time limit has expired. It will then proceed to the ready
state where it assumes its prioritized position among the other ready
processes.

If you specify a time limit of zero, the process will leave the run state, go
to the wait state, and then proceed immediately to the ready state. Thus,
processes of equal priority could use this mechanism to ensure that they all
get their turn as the current process.

Note that a process can only delay itself (there is no process ID parameter to
let you specify another process).

Parameters

timelimit -- a word specifying the number of milliseconds (rounded up to a
multiple of 10 milliseconds) to suspend the current process. Thus, you can
specify delays ranging from zero to 65,540 milliseconds.

7-20 GRiD-0S Reference

DsDe1ete

PROCEDURE OsDelete (conn: Word;
VAR error : Word>;

Purpose and Operation

This call deletes the specified file from the file system. The file must
currently be attached for either a write access or update access and it must
also be open.

An OsDetach is performed automatically after the file is deleted since the
connection is meaningless after the file is deleted.

Parameters

conn -- connection number (data type Word) that specifies the file that is to
be deleted.

Possible Errors

File does not exist (error 33).
All disk errors (101 - 108).

Procedures and Functions 7-21

OsDel.etePrc,c:ess

PROCEDURE OsDeleteProcess (pid: Word;
VAR error : Word);

Purpose and Operation

This call deletes the specified forked process from the system. A process can
be deleted regardless of which state it is in. (NOTE: OsDeleteProcess cannot
be used to terminate a process that was created with OsCreate: OsExit call
must be used for that purpose.}

Parameters

pid -- process ID, a word identifying the forked process to be deleted.

Possible Errors

Process does not e>:ist (error 251).

OsDe1eteSemaphore

PROCEDURE OsDeleteSemaphore (sid Word;
VAR error Word);

This call deletes the specified semaphore from the system. Any process that
issues an OsSignal or OsWait to this semaphore will receive a Semaphore does
not exist error. Any processes that are actually waiting at this semaphore
when it is deleted, will proceed to the ready state and have a Semaphore does
not exist {error 252} error returned.

Parameters

sid -- semaphore identification number that was returned by GRiD-0S when the
semaphore was created.

Possible Errors

Semaphore does not exist (error 252).

7-22 GRiD-OS Reference

OsDetach

PROCEDURE OsDetach (conn: Word;
VAR error : Word);

Purpose and Operation

This call severs a file connection that was established previously by
DsAttach. All system resources being utilized for the connection are released
and the relationship between this connection and a pathname is severed.

If the file has not been closed, an OsClose will automatically be performed by
the system.

Parameters

conn -- connection number (data type Word) that specifies the file connection
that is to be severed. CAUTION: Passing an uninitialized value to conn
can result in the OS trying to access memory-mapped I/0 space -- this could
hang the system.

Possible Errors

Bad connection (error 221) if the specified connection number does not exist.

All disk errors 1101 - 108)

Procedures and Functions

Os.Exit

PROCEDURE OsExit (code

Purpose and Operation

This call is used to exit a program by causing the current process to delete
itself. When a process exits or is deleted, all of its resources, such as
memory or active file and device connections are returned to the system.

Any processes waiting for a message from this process will receive the
contents of the code parameter (as the "note" parameter of OsF:ecei ve) and i,Ji 11
al so get a "Process does not e>: i st" error. Any r;.emaphor-es created by this
process are also deleted. Therefore, any processes that subsequently wait on
these semaphores ~.,ii 11 get a "Semaphore does not e:-: i st" error.

Parameters

code -- the contents of this word are put into th1=: "note" parameter (see
OsReceive> of any process waiting for a message from the exiting process.

OsF1ushA11Bu~~ers

PROCEDURE OsFlushAllBuffers (conn: Word;
VAR error : Word);

Purpose and Operation

This call writes the contents of all of a file's buffers in memory (allocated
with OsOpen) out to the file in its storage device. It can thus be thought of
as a precautionary call that lets you save the contents of file buffers
without going through an OsClose-Os□pen sequence.

Parameters

conn -- connection number (data type Word) that specifies the file whose
buffer(sl is to be saved.

Possible Errors

File not open !error 205).
Bad connection (error 221).
All disk errors (101 -108).

7-24 GRiD-0S Reference

OsForkProcess

FUNCTION DsForkProcess !VAR entryPoint : Bytes;
priority: Byte;
uses8087: Boolean;
stackSize: Word;

VAR error : Word) : Word;

Purpose and Operation

This call forks a new process with the parameters specified. "Forking" a
process is similar to creating a process with the following exceptions and
limitations:

o The code for the process being forked must already be present in memory.
o The process being forked must be a parameterless procedure. No parameters

can be passed to it or returned.
o The forked process cannot be terminated using an OsExit call: it must be

terminated using OsDeleteProcess.

When a process is first forked, it will be in the ready state. Thus~ if it
happens to be the highest priority ready process, it could begin executing
:immediately.

NOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR
entryPoint: BYTES", remember to dereference the pointer, or the wrong code
will be generated. See the discussion of the Bytes data type in Chapter 1 for
an e:-:ample.

Parameters

entryPoint -- the address of a LARGE parameterless procedure. (In Pascal, you
can just specify the name of the procedure.)

priority -- a value in the range of Oto 255 indicating the priority of this
process. The highest priority is O, the lowest is 255.

uses8087 -- if this Boolean value is true, it indicates that the 8087
numerical data processor is used by this process. This informs GRiD-0S
that the contents of the 8087 registers must be saved whenever this process
leaves the run state.

stackSize -- specifies the number of bytes to be reserved as stack for the
process (typically in the range of 500-1000 bytes>. Note: an insufficient
stack size will cause seemingly random failures.

Function Return

pid -- process identification number (data type l,aJord) that can be used by
other system calls to refer to this process.

Possible Errors

Out of Memory (error 2) if insufficient memory is available to fork this
process.

Procedures and Functions 7-25

Os.Free

PROCEDURE OsFree !block
VAR error

Purpose and Operation

Pointer;
I.ford};

This call frees or deallocates a block of memory that was previously allocated
to the calling process.

Parameters

block -- points to the first byte of the block of memory to be freed. This
should be the same as the pointer- r-ehtrned fr-om OsAllocate t-J_hen the block
t-ias allocated. See the "block" parameter for the DsAllocate function for- a
discussion.

Possible Errors

Invalid memory block (er-r-or 11).

7-26 GRiD-0S Reference

Os.Get.Argument

FUNCTION DsGetArgument (partial : Boolean;
VAR argument: Bytes) : Char;

Purpose and Operation

This call returns arguments from the command line in the form of a string of
characters up to 255 characters in l~ngth. Each argument must be separated by
a delimiting character (described below} and each call to OsGetArgument
returns one argument. Therefore, yoJ would use this call repeatedly until you
have obtained all of the arguments contained in the command line.

The argument record returned by this call is a short string that may be up to
255 bytes in length excluding the length byte. Since you cannot know the
length of the argument until it is returned, you must ensure that the buffer
you provide can accommodate the maximum length of the argument.

Delimiter Characters

In addition to r-eturning an argument~ this function also returns the character
that was used as the delimiter to mark the end of each argument. The ASCII
codes recognized as delimiters are as follows:

character

space

<

(

\
]

DEL

ASCII he>: value

20
21

24
25
26
27
28
29
2B
2D
3A
3C
3D
3E
5B
5C
5D
7C
7F

Additionally, any byte with a value from 00 to 20 hex or with a value of 80
hex or greater will be recognized as a delimiter character and returned by
OsGetArgument. These delimiter characters can be used within an argument (for
example, within a file name) but the argument must then be enclosed in single
quotation marks !').

Procedures and Functions 7-27

NOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR
argument: BYTES'', remember to dereference the pointer, or the wronq code will
be generated. See the discussion of the Bytes data t~pe in Chapte~ 1 for an
e:-:ampl e.

Parameters

partial -- a Boolean indicating whether the argument to be returned is partial
(true) or complete (false). A partial argument can be up to 80 characters
in length and all alphabetic characters will be shifted to upper case. A
complete argument can be up to 255 tharacters in length and no shifting of
alphabetic characters is performed.

argument -- the buffer where the returned argument (formatted as a short
string} is to be placed.

Function Return

' delim -- the character used as the trailing delimiter for the argument.

Possible Errors

None.

Examples

The following example illustrates the short string records and delimiters
returned by successive calls to OsGetArgument from the following argument.

CAT 'list Directory' <RETURN>

length argument delimiter
1st call ..,.

~' CAT
'

20 he:-: (space)
2nd call 14 List Directory OD he>: (F:ETURN)

Notice that a string enclosed in single quotation marks (") is cons~dered a
literal and characters within such a siring that would normally be considered
to be delimiters are simply returned as part of the argument. Thus, the space
separating "List"' and "Directory" is not treated as a delimiter. Note also
that the enclosing quotes are not returned as part of the argument.

Another e>:ample of the OsGetArgument is when a file of !<ind "Te>:t" is selected
from the File form. The system invokei GRiDWRite and when that application
program begins e>:ecuting, it obtains the pathname of the selected file by
calling OsGetArgument to parse the command line passed to it by the Executive
prc,g1pam.

7-28 GRiD-0S Reference

OsGet:.MemSt:.a.tus

PROCEDURE OsGetMemStatus (pid: Word;

Purpose and Operation

VAR memStatus: MemStatusType;
VAR error :Word);

This call returns information concerning the amount of memory that has been
allocated and how much is still available. Most of the information returned
is a summary of system-wide information but, if you supply a process ID (pid)
with the call, you will be given some specific information about memory
allocation for that process. The organization of the memory status record
returned by this call is as follows:

MemStatusType = RECORD

Parameters

freeBytes: Longint;
freeBlocks: Word;
largestFree: Word;
allocBytes: Longint;
allocBlocks: Word;
1 argestAl 1 oc : !,,lord;

END;

pid -- process ID. A word identifying the process whose memory status
information is to be returned. If this word is null COFFFF hex), then the
memory status information returned will be a summary of memory usage by all
processes.

memStatus -- the location where the memory status record should be returned.

MemStatusType Record Fields

freeBytes -- the number of unallocated bytes remaining in the system.
freeBlocks -- the total number of unallocated blocks, regardless of size,

remaining in the system.
largestFree -- the size, in bytes, of the largest unallocated block remaining

in the system.
allocBytes -- the number of bytes allocated to the calling process or, if a

null WFFFFH) pid is specified, the total number of bytes allocated to all
processes in the system.

allocBlocks -- the number of blocks, regardless of size, allocated to the
calling process or, if a null IOFFFFH> pid is specified, the total number
of blocks allocated to all processes in the system.

largestAlloc -- the size, in bytes, of the largest block of memory allocated
to the calling process or, if no pid is specified, the largest block of
memory allocated to any process in the system.

Possible Errors

Process does not exist (error 251).

Procedures and Functions 7-29

FUNCTION OsGetPrefix ShortStringPtr;

Purpose and Operation

This routine returns a pointer to a short string containing the current
device-subject prefix and can be used to read the current prefix. Note: the
pointer that is returned points to a string that is in the system data space.
This string should not be updated. You can use a Common Code call, if it is
necessary to change the prefix.

7-30 GRiD-08 Reference

Os.Ge-tPrc:,pe-rt.y

PROCEDURE OsGetProperty !tag: Word;

Purpose and Operation

VAR length: Word;
VAR buffer: Bytes;
VAR error: Word);

This routine lets you examine some of the system-wide properties that apply to
a specific Compass computer. These properties are normally examined and set
using GRiDManager and the settings of the properties are recorded in the file
User~Profile~ under the Programs subject.

See OsPutProperty for additional information on the User~Profile~ file.

NOTE: When passing a pointer to a "VAR BYTES" parameter such as "VAR buffer:
BYTES"~ remember to dereference the pointer, or the wrong code will be
generated. See the discussion of the Bytes data type in Chapter 1 for an
e>: ample.

Parameters

tag specifies which system property is to be examined as follows:

length
buffer

tag

\Jalue Property
1 ti me off set
2 screen frame on/off
5 system-wide font
9 current printer
10 current plotter
11 start-up file
the number of bytes returned in the buffer by the call.

a sequence of bytes defining the characteristics of the designated
as follows: <Note: the user must allocate this buffer.)

Tag Data
1 timeOffset record (described below)
2 data= 1, frame is on; 2 = frame is off
5 system-wide font name
9 current printer name
10 current plotter name
11 start-up (boot) file name

The data associated with font, printer, plotter, and start-up file is the
name of the device/file as it would appear in the Options form of
GRiDManager: a complete pathname is not required.

error -- if the tag specified does not exist, an error 225 (Bad parameter) is
returned.

TimeOffsetType Record Fields

TimeOffsetType = RECORD
year Word;

Procedures and Functions 7-31

dayOffset : Ward;
hour: Byte;
minute: Byte;
second: Byte;
dayOfWeek Byte;

E~;

Each of the fields in this record specify an offset from the time as
maintained by the built-in clock in the Compass computer. The built-in clock
maintains Greenwich Mean Time (GMT). The offset values in this record provide
the information needed to ''localize'' the time displayed by applications to the
time where the Compass is currently located.

7-32 GRiD-0S Reference

DsGetSi.ze

FUNCTION OsGetSize (block: Pointer;
VAR error : Word)

Pt1rpose and Operation

Word;

This call returns the size of a memory block that was previously allocated to
the calling process.

Parameters

block -- points to the first byte of the block whose size is to be returned.
This should be the same as the pointer returned from OsAllocate when the
block was allocated.

Function Return

length -- a word specifying the length, in bytes, of the specified memory
block allocated to this process. A length of zero indicates 64k bytes.

Possible Errors

Invalid memory block (error 11).

Procedures and Functions 7-33

Os.Get.Status

PROCEDURE OsGetStatus Cconn: Word;
VAR status: Bytes~

length : ~Jord;
VAR error: Word};

Purpose and Operation

This call is a rather special-purpose call that would normally be used only by
system level maintenance or trouble-shooting programs. It lets you examine
the status information associated with each file or device. This call returns
status information about a file that is currently attached. The status
information includes such things as whether the file is open, what type of
access it is open for, permissible seek directions, current file position,
current size of the file, and total space allocated for the file. The
organization of the status record returned for files and mass storage devices
by this call is as follows:

StatusType = RECORD
open Boolean;

END;

access: Byte;
seek: Byte;
filePosition: Longint;
filelength: Longint;
numPages : vlord;
numPagesAllocated: Word;

Note: The status record returned for non-mass-storage devices (such as
printers) is uniquely defined and different for each device.

Parameters

conn -- connection number (data type Word) that specifies the file whose
status is to be examined.

status -- the location where the status information
is to be returned. NOTE: lllhen passing a pointer to a "VAR BYTES"
parameter such as "VAR status: BYTES'', remember to dereference the pointer,
or the wrong code will be generated. See the discussion of the Bytes data
type in Chapter 1 for an example.

length -- the number of status bytes to get from the StatusType record.

StatusType Record Fields (for fi 1 es or mass storage devices)

open -- a Boolean that, if true, indicates that the file is currently open.
If False, then no other values in the record are valid.

access -- a byte indicating the access rights for this file (specified at
OsAttach time). If the appropriate bit listed below is on (1), then the
indicated access is allowed:

7-34 GRiD-0S Reference

bit I access

0 delete access
1 read access
2 write access
3 update access

seek -- a byte indicating the types of seeking which can be performed on this
connection. The types of seeks pe~mitted are device depend511t. If the
appropriate bit listed below is on (1), then t:,e indicated access is
allowed:

bit I access

0 seek forward
1 seek backward

filePosition -- a lrng integer indicating the byte number that is the current
file position location.

fi!elength -- a long integer indicating the total number of bytes in the file.
numPages -- a word indicating the total number of pages this connection

currently occupies on the device. Page size (sector size) is 256 bytes on
bubble memory and 512 bytes for all other mass storage devices.

numPagesAllocated -- a word indicating th~ total number of pages (sectors)
allocated for this connection on the device.

Possible Errors

Bad connection (error 221).

Procedures and Functions 7-35

OsGetSyst.emID

PROCEDURE OsGetSystemID <VAR systemlD Bytes};

Purpose and Operation

This call returns the identification string for the system in the form
"Version#.#.# of GRiD-0S". The identifier is in the format of a ShortString.

Parameters

systemID -- the location to store the returned system ID record. This should
be formatted as a short string.
NOTE: When passing a pointe1~ to a "VAR BYTES" pa1~ameter such as "\JAR
systemID: BYTES'', remember to dereference the pointer, or the wrong code
will be generated. See the discussion of the Bytes data type in Chapter 1
for an e>:ample.

7-36 GRiD-05 Reference

Os.Get Time

PROCEDURE OsGetTime <mode
w,R time

Purpose and Operation

Byte,
TimeType);

This call returns all available information from the Compass' real time clock.
The organization of the time record returned is as follows:

TimeType = RECORD

END;

Parameters

year- : !IJord;
month: Byte;
day: Byte;
hour : Byte;
minute: Byte;
second: Byte;
tenthOfSec: Byte;
dayOfWeek Byte;
dayOfYear Word;

mode -- if this parameter is "Gr-eenwichMeanTime", then time is based on
Greenwich Mean Time (GMT>. If this parameter is "CompassRelativeTime",
then all times are based on the local, or Compass-relative time.

time -- the location where the time information is to be returned.

TimeType Record Fields

year -- a Word specifying the current year.
month -- a Byte specifying the number of the current month (1-12).
day -- a Byte specifying the current day 11-31).
hour -- a Byte specifying the curr-ent hour (0-23).
minute -- a Byte specifying the curr-ent minute (0-59).
second -- a Byte specifying the current second 10-59).
tenthOfSec -- a Byt~ specifying the current 1/10 second !0-9).
dayOfWeek a Byte specifying the cur-rent day of week (Sunday= 1, Satur-day

= 7).

day□fYear a Word specifying the curr-ent day of year (1-366).

Procedur-es and Functions 7-37

FUNCTION OsGetWork

Purpose and Operation

This routine returns a pointer to the short string containing the current
device designated as the 'work' device used by compilers and the link program.
Note: the pointer that is returned points to a string in the system data
space. This string should not be updated.

OsLool-a::UpName

FUNCTION OslookupName <VAR name: Bytes;
VAR error : Word)

Purpose and Operation

Longint;

This call looks up a specified name and returns the token that w2s stored with
it by an OsRegisterName call.

Parameters

name -- the location of the name to look up. The name should be formatted as
a ShortString up to 255 characters in length. NOTE: When passing a
pointer to a "\JAR BYTES" parameter !:',uch as "\JAR name: BYTES", remember to
dereference the pointer, or the wrong code will be generated. See the
discussion of the Bytes data type in Chapter 1 for an example.

Function Return

token -- the Longlnt that accompanied the specified name.

Possible Errors

File (Name) does not exist (error 33).

7-38 GRiD-OS Reference

DsHand1eCance1

PROCEDURE OsHandleCancel (mode

Purpose and Operation

Boolean);

This call lets you specify whether GRiD-0S or your application is responsible
for taking action when CODE-ESC (Cancel) is pressed on the keyboard. If you
specify that the system has this responsibility, GRiD-0S will terminate the
current process if CODE-ESC is pressed. If you specify that your application
has this responsibility, the CDDE-ESC character is passed to the application
for processing through the normal stream of keyboard characters. If an
application does not issue this call, the default mode is for GRiD-OS to
handle the CODE-ESC.

IMPORTANT: All applications should call OsHandleCancel and should set mode to
False. Otherwise, it is possible under certain conditions for the system to
terminate the application's process if the user happEns to press CODDE-ESC
while certain system activities (such as allocating memory) are being
performed.

Parameters

mode -- a Boolean. If true, GRiD-0S has responsibility for handling CODE-ESC.
If false, the application must handle CODE-ESC.

Procedures and Functions 7-39

OsMatchW:il.dca.rd

PROCEDURE OsMatchWildCard (VAR testStr : Bytes;
strlen : !,,lord;

Purpose and Operation

VAR matchStr: Bytes;
matchlen: Word;
idepOfCase: Boolean;
fullMatch: Boolean;

VAR length: Word);

This routine compares a specified string (testStr) to a wildcard string
(matchStr) and is typically used for comparing pathnames. The wildcard
string can contain the wild card character (OF7 hex> which will match with
any character or string of characters. For example, if the matchStr is
"G ... n" (1,o1her-e " ... " r-epresents the 1,iildcarcl character OF7 he>:), this
string would match fully with GRiDPlan and Gover-n, and would match through
the first si>: characters with the string "'Goldenrod".

You can specify that upper case and lower case be ignored and whether the
two strings must match completely. Upon completion, the variable length
indicates how many characters of the two strings are the same. If length is
zero, then there was no match.

MOTE: When passing a pointer to a "\/AR BYTES" parameter such as "VAR
testStr: BYTES'', remember to dereference the pointer, or the wrong code
will be generated. See the discussion of the Bytes data type in Chapter 1
for an e>:ample.

Parameters

testStr -- the sequence of bytes that are to be compared against the
i,iil de ard !:,tri ng.

strlen -- the length of the string that is to be compared against the
wi l dcard string.

matchStr -- the wildcard byte string against which the comparison is to be
made. This string can contain the wildcard character (7F hex) that will
match with any character(s) in the target string.

matchlen -- the length of the wildcard string.
idepDfCase -- ignore case. If true, the comparison is made without regard

to upper or lower case. If false, the case of characters in the strings
must match exactly.

fullMatch -- If true, the two strings must match in their entirety. If
they do not, a length of zero is returned. If false, the length will
indicate how many bytes of the two strings matched.

length -- i ndi cat es how many bytes of the two std ngs matched. The call is
terminated as soon as a non-matching byte is encountered.

7-40 GRiD-0S Reference

Os.Open

PROCEDURE OsOpen (conn: Word;
numBuf : Byte;

VAR error : Word);

Purpose and Operation

This call opens a file by allocating memory for the file buffer and file
pointers that will be used during subsequent accesses. The file must have
previously been attached using OsAttach.

Each opening of a file requires the allocation of at a buffer in memory.
Currently~ one buffer is allocated by the system f0r each file. NOTE: the
buffer length for hard disks and floppy disks is 512 bytes, and for bubble
memory is 256 bytes.

When a file is first opened, the current fil~ pgsition marker is set to
zero. See "Operating on Files" in Chapter 3 for i!I di&cwn,ion of the
current file position marker.

Parameters

conn -- connection number (data type Word) that specifies the file that is
to be opened.

numBuf -- the number of buffers to use for this file. Currently, the
system supports only Dne buffer per file and ignorlfs this par-ameter.
You should, however, specify a value of one to en!liurw future
compatibility.

Possible Errors

Out of memory (error 2).
Bad connection (error 221}.
File already open (error 222).
All disk errors 1101 - 108).

Procedures and Functions 7-41

OsOverl.ay

PROCEDURE Os□verlay (VAR name: Bytes;
pid : !ilord;

VAR error : Word);

Purpose and Operation

This call loads a specified overlay program into memory. Only one level of
overlays is allowed: a program that has been brought into memory as an
overlay cannot then issue an OsOverlay call. This routine can be called
only from the root (non-overlaid) phase.

IMPORTANT: When an overlay module is loaded into memory, the previous
overlay's code and data segments are overwritten. Therefore, you cannot
have any static variables in the data segment of an overlay: they must be
in the root module. For a thorough discussion of overlays, see the GRiD
Program Development Guide.

Parameters

name -- a record, formatted as a ShortString, containing the name of the
overlay. The overlay name is defined using the linker overlay control.
Refer to the Program Development Guide for details. NOTE: When passing
a pointer to a "VAR BYTES" parameter such as "VAR name: BYTES", remember
to dereference the pointer, or the wrong code will be generated. See
the discussion of the Bytes data type in Chapter 1 for an example.

pid -- the process ID of the overlay. Usually, this will be the same as
the pid returned by OsWhoAmI; that is, the overlay is part of the same
process that is issuing the OsOverlay call.

Possible Errors

File not found (error 33).
All disk errors (101 - 108).
All loader errors (300 - 304}.

7-42 GRiD-0S Reference

Os.Put.Property

PROCEDURE OsPutProperty (tag: Word;
length: Word;

VAR buffer : Bytes;
VAR error : Word>;

Purpose and Operation

This routine lets you alter some of the system-wide properties that apply
to a specific Compass computer. These properties are usually set using
GRiDManager and the current settings are recorded in the file User~Profile~
under the Programs subject.

WARNING: Tag values 1 through 1000 (decimal) are reserved for use by GRiD.
Never specify a tag value in the range 1 - 1000 other than those listed
below. Other tag values in this range are associated with system internal
information and altering the data associated with these other tags can have
unpredictable results. Yau can, however, use tags beyond this range ta
record user-specific information in the file User~Profile~.

Parameters

tag specifies which svstem property is to be altered as follows:
Value Property

1 ti me offset
2 screen frame on/off
5 system-wide font
9 current printer
10 current plotter
11 start-up file

length -- the number of bytes to be "put".
buffer -- a sequence of bytes defining the characteristics of the

designated tag as follows:
Tag Data

1 time□ffset record (described below)
2 data= 1, turn frame on; 2 = turn frame off
5 system-wide font name
9 current printer name
10 current plotter name
11 start-up (boot) file name

The data associated with font, printer~ plotter, and start-up file is
the name of the device/file as it would appear in the Options form of
GRiDManager-: a complete pathname is not requir"ed. NOTE: When passing
a pointer- to a "VAR BYTES" parameter Sllch as "VAR buffer: BYTES",
remember to dereference the pointer, or the wrong code will be
generated. See the discussion of the Bytes data type in Chapter 1 for
an e>:ampl e.

err-or -- if the tag specified does not e>:ist, an error 225 <Bad parameter)
is r-eturned.

Procedures and Functions 7-43

TimeOffsetType Record Fields

Time□ffsetType = RECORD
year : Word;
day□ffset : Word;
hour : Byte;
minute: Byte;
second : Byte;
dayOtWeek Byte;

END;

Each of the fields in this record specify an offset from the time as
maintained by the built-in clock in the Compass computer. The built-in
clock maintains Greenwich Mean Time (GMT). The offset values in this
record provide the information needed to "localize" the time displayed by
applications to the time where the Compass is currently located.

7-44 GRiD-0S Reference

Os.Read

FUNCTION OsRead (conn: Word;
VAR buffer : Bytes;

1 Pnqth : Wrn~d;
VAR error: Word} : Word;

Purpose and Operation

This call reads a specified number of bytes from a file and places them in
a specified buffer. The read operation begins at the current file
position. If the end of the file is reached before the specified number of
bytes are read, the read is terminated and the current file position is
left at the first byte beyond the end of the file. This function returns a
word specifying the number of bytes actually read from the file. The
number of bytes read can be less than the number specified by length only
if the end of file is reached or if an error occurs.

If the file was attached in the partial directory mode or complete
directory mode, this call treats directory entries, rather than bytes, as
the objects that are read. The read operation begins at the current
directory entry. If the end of the directory is reached before the
specified number of entries are read, the read is terminated and the
current file position is left at one entry beyond the end of the directory.
In directory mode, this function returns a word specifying the number of
entries actually read from the file. The number of entries read will be
less than the number specified by length only if the end of the directory
is reached or if an error occurs.

Parameters

conn -- connection number (data type Word) that specifies the file to be
read.

buffer -- references the buffer where the data read from the file is to be
placed. It is the programmer's responsibility to provide a buffer large
enough to accommodate the data that is read. The operating system does
not check the size of the buffer. NOTE: When passing a pointer to a
"\IAR BYTES" par·ameter such as "VAR buffer: BYTES", 1~emember to
dereference the pointer, or the wrong code will be generated. See the
discussion of the Bytes data type in Chapter 1 for an example.

length -- the number of bytes (or directory entries) to be read from the
file. The maximum length is 65,535 bytes.

Function Return

amountRead -- a word specifying the number of bytes (or entries) actually
read from the file.

Possible Errors

File access denied (error 38).

Procedures and Functions 7-45

File not open (error 205).
Bad connection (error 221).
All disk errors (101 - 108).

7-46 GRiD-0S Reference

FUNCTION □sReceive (sourcePid: Ward;
claS'S : Wrnrcl
timelimit : Word;

1JAF{ nohi : 111!::ir·d;
VAR error : Word) : Pointer;

Purpose and Operation

This call places the current process in the wait state where it remains
until it receives a message sent by another process, or until a specified
time limit has expired~ or until it receives an appropriate error message
fr-om the system.

If an appropriate message is already available when the process issues an
OsReceive, the process immediately proceeds to the ready state. If you
specify that the message must be sent by a particular process, and if that
process does not exist, GRiD-0S will give the waiting process a Process
Does Not Exist error and move the process to the ready state.

If a message of the specified class and from the specified sending process
is not available when this process enters the wait state, the process will
remain there. The process will stay in the wait state until an appropriate
message is received or until the specified time limit expires. You can
specify a time limit 1,iith a null (OffffH) value. In this case, the process
will wait forever to receive the appropriate message. !NOTE: if the
specified sending process is deleted, the waiting process would be given an
appropriate error indication and moyed to the ready state.)

The sending process does not make a separate copy of the message for the
receiving process: there is but a single instance of the message.
Therefore, when the receiving process gets back to the run state, it should
immediately make its own copy of the message and inform the sending process
that it is finished with the message. The receiving process could
accomplish this by passing a note back to the sending process.

Parameters

sourcePid -- the process from which the message is to be received. If null
(OFFFFHl, then a message sent by any other process can be received.

class-- the class of message that can be received. If this is
null IOFFFFH>, a message of any class can be received.

timelimit -- the amount of time, in milliseconds (rounded up to a multiple
of 10 milliseconds), that the process will wait for an appropriate
message. If the time limit expires before a message is received, the
process goes to the ready state and a Time Out error is returned. If
you specify a null IOFFFFH> timelimit, the process will wait forever for
a message. If you specify a timelimit of zero, the process will proceed
immediately to the ready state.

Procedures and Functions 7-47

note -- the 2-byte note
the sending process.
dependent.

Function Return

(data type Word} that can be passed by value from
Interpretation of the note contents is application

This procedure returns a pointer to the buffer holding the actual message
sent. If you are issuing this call in Pascal, you must provide an
appropriate data type to obtain the returned pointer.

Possible Errors

Process does not exist (error 251) if the specified message-sourcing
process does not currently exist in the system.

Timeout (error 253) if a message is not received before the specified time
limit expires.

7-48 GRiD-0S Reference

OsReg:isterNamie

PROCEDURE OsReqisterName (VAR name: Bytes;
token: Longlnt;
mode: Byte;

VAR error : Word>=

Purpose and Operation

This call records or registers a ShortString containing a name that other
processes or programs can examine or look up (using OslookupName). A token
(data type Longlnt) is stored along with the name and this token can thus
be accessed by any process or program that knows the appropriate name.

This same call can delete or unregi~ter a name so that it is no longer
available to other processes or programs in the system.

The OsRegisterName and OslookupName calls provide a very simple mechanism
for exchanging information between processes. This capabilily is most
often used to establish initial contact between processes before they know
the process IDs required to use the message passing or semaphore calls to
communicate with other processes.

Parameters

name -- the location of the name to be registered or unregistered. The
format of the actual name at this location is a short string up to 255
characters in length. NOTE: t•Jhen passing a pointer to a "VAR BYTES"
parameter such as "VAR name: BYTES", remember to dereference the
pointer, or the wrong code will be generated. See the discussion of the
Bvtes data type in Chapter 1 for an example.

token -- a Longlnt that is stored along with the name. Interpretation of
the token is entirely up to the user.

mode -- if the value of this byte is "registerName'', it means that the
indicated name is to be registered. If the value of this byte is
"unRegi sted•lame", it means that the indicated name is to be unregi st.ered
Dir deleted.

Possible Errors

Out of memory (error 2).
File (name) already exists (error 32).

Procedures and Functions 7-49

Os.RemoveDevi.ce

PROCEDURE OsRemoveDevice (VAR name: Bytes;
'.JAR error : l.>Jord) ;

Purpose and Operation

This call removes the specified device from the system's Active Device
Table. Thus, this call is the equivalent of "deactivating" a devicP from
the command line (see the Program Development Guide for a description of
the Deactivate program). For a detailed discussion of how to use this
call, refer to GRiD documentation on device drivers.

Parameters

name -- the device name (formatted as a Short.String) assigned during the
OsAddDevice call to the device driver. NOTE: When passing a pointer
to a "VAF: BYTES" parameter such as "VAR name: BYTES"~ remember to
dereference the pointer, or the wrong code will be generated. See the
discussion of the Bytes data type in Chapter 1 for an e>:ample.

7-50 GRiD-OS Reference

PROCEDURE OsRename !conn : Word;
VAR newName: Bytes;
VAR error : Word);

Purpose and OpeFation

This call changes the name of an existing, attached file. The file must
have been attached with a write access or update access specified and the
file must also be open.

Parameters

conn -- connection number (data type Word) that sp•cifies the file that is
to be renamed.

newName -- the new file name to be given to this file. Note that the
device~subject part of the pathname remain unchanged. It is only the
fileName !or title) portion that is altered. If you supply a full
pathname with this parameter, the device-subject are ignored. If you do
not specify a kind, it is given a kind of Untyped. NOTE: When passing
a pointer to a "VAR BYTES" parameter such as "VAR newMame: BYTES",
remember to dereference the pointer, or the wrong code will be
generated. See the discussion of the Bytes data type in Chapter l for
an e::ample.

Possible Error-:;

File already exists (error 32).
All disk errors 1101 - 1081.

Procedures and Functions 7-51

OsSeek

PROCEDURE OsSeek (conn: Word;
mode: Byte;
length: Longint;

VAR error: Word);

Purpose and Operation

This call alters the current file position by moving the marker a specified
number of bytes. The first byte of a file is byte zero. You can move the
marker forward or backward in the file, move it to a specific byte location
in the file, or move to a position a specific number of bytes in from the
end of the file.

A seek does not actually access a file on a device -- it simply changes the
current file position.

If a seek is made beyond the end of the file, the current file position is
changed but the file is not actually extended until a subsequent write is
performed at that position.

Parameters

conn -- connection number (data type Word) that specifies the file on which
the seek is to be performed.

mode -- a byte specifying the type of seek to perform as follows:
seekBackwards. Move marker back by length bytes
seekToHere. Set marker at byte specified by length
seekForward. Move marker forward by length bytes
seekFromEnd. Move marker to end of file minus length bytes

length -- the number of bytes to seek or the location that the marker
should be positioned to.

Possible Errors

File not open (error 205).
Bad connection (error 221).
Bad parameter (error 225).

7-52 GRiD-0S Reference

PROCEDURE OsSend (destPid : Word;
cl ass : vlord
note : IIJor-d;

VAR message: Bytes;
VAR err-or: Word);

Purpose and Operation

This call sends a message to another process. The OsSend call does not
make a separate copy of the message. Therefore, you must ensure that you
do not alter the message until after the intended receiving process is done
with the message. There is no automatic mechanism for verifying reception
of a message. You can accomplish this verification yourself by, for
example, having the receiving process send a note back to the originator
when it has finished with the message.

Parameters

destPid -- the process that is to receive the message.

class -- the user specified class that will be associated with this message
and examined to determine if it can be delivered to a receiving process.
If you specify a null (OFFFFHl class, the message can only be received
by a process that has specified a null class as part of its OsReceive
call.

note -- the 2-byte note (data type Word) that can be passed by value to the
receiving process. Interpretation of the note contents is application
dependent.

message -- the buffer containing the actual message. IMPORTANT: GRiD-OS
requires that the first 16 bytes of the message contain all zeros. The
length and format of the rest of the message is application dependent.
NOTE: !>Jhen passing a pointer to a "\JAR BYTES" parameter such as "'VAR
message: BYTES'', remember to dereference the pointer, or the wrong code
will be generated. See the discussion of the Bytes data type in Chapter
1 for an example.

Possible Errors

Process does not exist (error 251) if the process that the message is
addressed to does not exist in the system.

Out of memory (error 2) if there is insufficient memory to send the
message.

Procedures and Functions

PROCEDURE OsSetPriority (pid: Word;
priority: Byte;

VAR error : Word);

Purpose and Operation

This call assigns a new priority to a specified process. Thus, you can
dynamically change process priorities from the initial values assigned when
each process is created. A process can change the priority of any other
process, and can also change its own priority.

Parameters

pid -- process identification number. A word identifying the process whose
priority is to be changed.

priority -- the new priority, in the range of Oto 255, for the specified
process. Zero is the highest priority, 255 the lowest.

Possible Errors

Process does not exist !error 251>.

7-54 GRiD-0S Reference

Os.Set Status

PROCEDURE OsSetStatus !conn: Word;
VAR status: Bytes;

length: Wor-d;
VAR error: Word>;

Purpose and Operation

This call sets up status informati6n about a file that is currently
attached. It will typically be used only on special devices, such as the
modem or serial port, that require very specific operating parameters. For
example, you would use the OsSetStatus procedure to set the baud rate 1

parity and other operating parameters for the modem. The use of
OsSetStatus is device dependent and is de~cribed in the documentation for
each specific device.

Note that the 'status' parameter used here is not the same StatusType
record that is used with the OsGetStatus call. Instead, it simply points
to a buffer containing application or device-dependent bytes.

Parameters

conn -- connection number (data type Word) that specifies the file whose
status is to be set.

status -- the status information to be sent. NOTE: When passing a pointer
to a "VAR BYTES" parameter such as "VAR status: BYTES", remember to
dereference the pointer, or the wrong code will be generated. See the
discussion of the Bytes data type in Chapter 1 for an example.

length -- the number of status bytes to send.

Possible Errors

Bad connection (error 221).

Procedures and Functions 7-55

OsSi.gna.l.

PROCEDURE OsSignal (!:.id !IJord;
mode Byte;
note t•Jord;

\JAR err-or Word);

Purpose and Operation

A semaphore is always created in the busy state. This call sets the
specified semaphore to the not busy state. If another process is waiting
at this semaphore when the OsSignal call is issued, that waiting process
proceeds to the ready state. If more than one process is waiting at this
semaphore, the process with the highest priority proceeds to the ready
state (except for mode 3, explained below, which allows all waiting
processes to pr-oceed).

Parameters

sid -- semaphore identification number that was returned by GRiD-05 when
the semaphore was created.

mode -- a byte specifying one of three signalling modes:

signalNormal. This mode always lets one, and only one, process pass. If
no process is currently waiting at the semaphore, the signal is
retained (the semaphore is held not busy) until an OsWait is issued
to this semaphore. The process issuing the OsWait proceeds to the
ready state and sets the semaphore busy. If a process is already
waiting at the semaphore, it proceeds to the ready state and the
semaphore returns to busy. This mode can be used to ensure that
only one process can proceed through a critical section of code at
a ti me. '

signalEvent. This mode lets one process pass if there is currently a
process waiting, but the signal is not retained. If a process is
currently waiting at the semaphore, it is signalled and proceeds to
the ready state. Otherwise, the semaphore remains busy and a
process arriving subsequently must wait for another OsSignal. This
mode is useful for informing any waiting process that a particular
event has occurred.

signalAllWaiters. This mode lets all currently waiting processes pass.
All processes waiting at the semaphore are signalled and proceed to
the ready state. This mod~ is useful for synchronizing the
initiation of several processes. The signal is not retained; if no
processes are currently waiting at the semaphore, the semaphore
remains busy and processes arriving subsequently must wait for
another OsSignal.

7-56 GRiD-0S Reference

note -- the 2-byte note !data type Word) that can be passed by value from
the signalling process. Interpretation of the note contents is
application dependent.

Possible Errors

Semaphore does not exist (error 252) if the specified semaphore (sid) does
not exist in the system.

Procedures and Functions 7-57

OsSwi.tchBu-F-Fer

FUNCTION OsSwitchBuffer (VAR buffer Bytes} 1,,Jord;

Purpose and Operation

This call lets you specify an alternate buffer to be used for the
OsGetArgument call and thus obtain arguments from places other than the
command line. You should not use this call until the commmand line has been
completely processed since there is no way to switch back.

Parameters

buffer -- the new buffer that a subsequent OsGetArgument call should scan
for arguments. The end of the data in the buffer is indicated by a
Carri age Return character. NOTE: l•Jhen passing a pointer to a "1)AF:
BYTES" parameter such as "1JAR buffer-: BYTES", r-emember to dE,refer-ence
the pointer, or the wrong code will be generated. See the discussion of
the Bytes data type in Chapter 1 for an example.

Function Return

length -- a word indicating how far scanning had proceeded in the previous
buffer; that is. the first byte beyond the last delimiter character
encountered on the previous OsGetArgum?nt call.

Possible Errors

None.

7-58 GRiD-OS Reference

Os Truncate

PROCEDURE OsTruncate (conn: Word;
VAR error : Word);

Purpose and Operation

This call deletes the contents of a file from the current file position to
the end of the file. Upon completion of the truncation, the current file
position is one byte beyond the new end of file.

Parameters

conn -- connection number (data type Word) that specifies the file that is
to be truncated.

Possible Errors

File not open (error 205).
Bad connection (error 221).
All disk errors (101 - 108).

Procedures and Functions 7-59

OsWait

FUNCTION OsWait lsid
timelimit
VAR error

Purpose and Operation

Word;
Word;
Word) Word;

This call suspends the current process by placing it in the wait state
where it remains until the specified semaphore is not busy or until a
specified time limit has expired.

If the semaphore is not busy when the process issues this call, the process
immediately proceeds to the ready state and the semaphore is set to busv.
The semaphore remains busy until an OsSignal call is directed to it
(typically, by the process that most recently proceeded past the
semaphore).

If the semaphore is busy when the process issues this call, the process
stays in the wait state until the semaphore is signalled (set not busy) or
until the specified time limit expires. You can specify a time limit with
a null IOFFFFH) value. In this case, the process will wait forever for the
semaphore to become not busy. (NOTE: if the specified semaphore is
deleted, the waiting process would be given an appropriate error indication
and moved to the ready state.)

If other processes had previously issued OsWait calls to this semaphore and
are still waiting for their turn to proceed, this process is placed in a
queue according to its process priority. It cannot proceed until all of
the waiting processes of a higher priority have passed the semaphore.

Parameters

sid -- semaphore identification number that was returned by GRiD-0S when
the semaphore was created.

timelimit -- the amount of time, in milliseconds (rounded up to a multiple
of 10 milliseconds>, that the process will wait for a signal. If the
time limit expires before a signal is received, the process goes to the
ready state and a Time Out error is returned. If you specify a null
IOFFFFH> timelimit, the process will wait forever for a signal. If you
specify a timelimit of zero, the process will proceed immediately to the
ready state: if there was no signal for the semaphore, a timeout error
will be returned.

Function Return

note -- the 2-byte note (data type Word) that can be passed by value from
the signalling process. Interpretation of the note contents is application
dependent.

7-60 GRiD-0S Reference

Possible Errors

Timeout (error 253) if a signal is not received before the specified time
limit expires.
Semaphore does not exist (error 252) if the specified semaphore (sid} does
not exist in the system.

Procedures and Functions 7-61

OsWhCJ1Am:I

FUNCTION OsWhoAml : Word;

Purpose and Operation

This call returns the process identification number lpid) assigned to this
process when it was created.

Function Return

pid -- a word that is the process identification number assigned to the
requesting process.

OsWr:ite

PROCEDURE OsWrite (conn: Word;
VAR buffer : Bytes;

length : liJord;
VAR error Word);

Purpose and Operation

This call writes a specified number of bytes to a file. The write
operation begins at the current file position. If the end of the file is
reached, the additional data is appended to the file and the end of file
marker is moved to a position one byte beyond the last byte written. If
the current file position where the write begins is already beyond the end
of the file, the file is extended to that point and the writing begins
there.

If the current file position is not beyond the end of the file, the new
data is written over the previously existing data.

Parameters

conn -- connection number (data type Word) that specifies the file to be
written to.

buffer -- a pointer to the buffer containing the data to be written to the
file.

length -- the number of bytes to be written to the file.

Possible Errors

File access denied (error 38}.
Device full (err·or 41).
File not open (error 205).
Bad connection (error 2211.
All disk errors 1101 - 108).

7-62 GRiD-0S Reference

WinA11ocateWindowMemory

FU~~TION WinAllocateWindowMemory (width: Integer;

Purpose and Operation

height : Integer;
format: WindowFormat;

VAR error : Word): WindowRegionPtr;

This call allocates memory for an alternate window. It frees an
application from concerning itself with the number of bits per pixel
required by the screen. The application must specify whether the window
region is to be used as a GRiD format window or a host (non-GRiD} screen
format window. If the alternate window is to be used to load screenimage
files, then it should be in GRiD format. If the alternate window is only
going to be used to redirect the output so that the user doesn't see it,
then it should be in the screen format. In screen format, transfers
between windows will be accomplished more quickly.

A pointer is returned to the WindowRegion record for this window. The
organization of the WindowRegion record is as follows:

TYPE
WindowFormat = (screenFormat, GRiDFormatl;

WindowRegion = RECORD
format: WindowFormat;
width: Integer;
height : Integer;
buflength: Word;
buf : Pointer;
bitsPerPel : Byte;
bytesPerline Word;

END;

WindowRegionPtr = AWindowRegion;

Note: To deallocate memory for a window, you must use two OsFree calls
one to free the WindowRegi □nPtr and one to free the "buf" pointer.

Parameters

width -- the width of the window in pixels.
height the height of the window in pixels.
format -- GRiD format or host screen format.

WindowRegion Record Fields

format -- GRiD format or host screen format.
width -- the width of the window in pixels.
height the height of the window in pixels.

Procedures and Functions 7-63

bufLength -- the size, in bytes, of the buffer allocated by the svstem for
this window.

buf -- a pointer to the first byte of the buffer allocated for this window.
bitsPerPel -- the number of bits-per-pixel used for the window. For GRiD

format windows, there is one bit per pixel.
bytesPerline -- the number of bytes used by the system to store one

horizontal line of pixels for the allocated window.

Function Return

WindowRegionPtr -- a pointer to the WindowRegion record for this window.

7-64 GRiD-0S Reference

Wi.nCl.i.pL:ine

FUNCTION WinClipline (VAR xl, yl,

Purpose and Operation

y2: Integer} Boolean;

This function tells you if any portion of a line (defined by xl,yl and
x2,y2) extends outside of the current clipping rectangle. If clipping
would occur, the variables xl, yl, x2, y2 contain the coordinates of the
line as it will be clipped and the function returns a True Boolean value.
If the line lies completely inside the window, this function returns FALSE
and the unchanged coordinates of the line are returned. Note: This
function neither draws nor clips the line; use WinDrawline to draw the line
-- it will be clipped as necessary by the clipping rectangle. You can use
WinClipline to determine if a line would be drawn completely outside of a
clipping rectangle and thus skip the WinDrawline if the line would not be
displayed within the rectangle.

Par- amet er s

x1,y1, x2,y2 -- the two window relative pixel coordinates defining the
line. On entry, they define the line that is to be checked for
clipping. On return, they define the line as it would be clipped.

Procedures and Functions 7-65

W:inC1:ipRec:t.angl.e

PROCEDURE WinClipRectangle (VAR r

Purpose and Operation

F:ectangle);

This function tells you if any portion of a rectangle (r) extends outside
of the current clipping rectangle. If clipping would occur, the variable r
contains the coordinates of the rectangle as it will be clipped. If the
rectangle lies completely inside the window, the unchanged coordinates of
the rectangle are returned. Note: This function does not draw the
recbmgl e.

Paramters

r -- the rectangle that is to be clipped. On return, contains the clipped
dimensions of the rectangle.

Wi.nCopyRect.angl.e

PROCEDURE WinCopyRectangle (VAR r: Rectangle;
newTopleft: Point);

Purpose and Operation

This procedure copies an area defined by the rectangle r into another
rectangular area of the window. The new rectangular area is the same size
as the original, but its top left corner is at the pixel position
newTopleft in the window. The new rectangle will be clipped as necessary
to be displayed within the clipping rectangle of the window.
WinCopyRectangle copies the areas point by point and overwrites all pixels
in the copy location.

Parameters

r -- the source rectangle whose contents are to be copied. On return, this
variable indicates the size of the resultant destination rectangle
(possibly clipped).

newTopleft -- the upperleft corner position where the rectangle is to be
copied.

7-66 GRiD-0S Reference

U1nCopyRemo~eRectangJe

PROCEDURE WinCopyRemoteRectangle (source : WindowRegionPtr;
dest: WindowRegianPtr;

VAR r : Rectanglei
newTopleft : Point;
mode : WORD>;

Purpose and Operation

This routine lets you copy a rectangle from one window region to another.
If either the source or destination window regions are NIL, then the screen
is assumed to be the source or destination, If either source or
destination window are in GRiD format, then the data is not only copied,
but is also translated to the different format required by the destination
window. If both window regions are in GRiD format, then this routine will
keep the data in GRiD format, The mode parameter is currently reserved for
future use and its value must be zero in order for the routine to function
properly.

Parameters

source -- a painter to the window from where the rectangle is being copied.
dest -- a pointer to window to which the rectangle is being copied.
r -- on entry, specifies the size of the source rectangle that is ta be

copied; on return, the size of the source rectangle as it was clipped to
fit in the destination window. Note: the source and destination
rectangles are both clipped to the window bounds -- not the clipping
rectangle bounds.

newTopleft -- the pixel coordinates of the top left corner of the
destination rectangle.

mode -- reserved for future use. Must be set to zero.

Procedures and Functions 7-67

W:i.nDra~Char

PROCEDURE WinDrawChar(ch: Char;

Purpose and Operation

Integer);

This procedure draws a character in the window 1 given the window relative
pixel coordinates where the top left corner of the character is to appear.
Nothing is drawn if any part of the character would be clipped because it
lies outside the window. The size of the character drawn is dependent on
which font is currently loaded.

Parameters

ch -- the 8-bit ASCII value for the character to be displayed. Note:
Because of internal requirements and for historical reasons, two ASCII
codes draw characters other than the characters you would expect. If ch
is OCDh the font character represented by 80h is drawn and if ch is OF7h
the font character represented by 86h is drawn.

x,y -- the window-relative pixel location where the upper left corner of
the character is to be drawn.

7-68 GRiD-OS Reference

PROCEDURE WinDrawChars(VAR ch: Bytes;
count, x, y: Integer);

Purpose and Operation

Beginning with character ch in a text buffer, the procedure outputs a
character string that is "count" characters long. It positions the upper
left pixel of the first character at the window-relative pixel coordinate
(:.: ,y).

E>:ample

The following procedure call draws a character string in the window. The
top left pi>:el of the first character appears at pi>:el (20, 20} of the
~•ii ndo1r1.

WinDrawChars(strA.chars[l], str.len, 20, 20);

Parameters

ch a pointer to the first character in a text buffer that is to be
output. MOTE: l>Jhen passing a pointer to a "VAR BYTES" parameter such
as '"JAF: ch: BYTES", remember to dereference the pointer~ or the wrong
code will be generated. See the discussion of the Bytes data type in
Chapter 1 for an example.

count -- the number of characters to be drawn.
x,y -- the window-relative pixel location where the upper left corner of

the first character is to be drawn.

Procedures and Functions 7-69

WinDrawLine

PROCEDURE WinDrawLine <x1,y1, x2,y2: Integer>;

Purpose and Operation

This procedure draws a line within the window. Any portions of the line
lying outside the window are clipped.

Parameters

x1,y1, x2,y2 -- the window-relative pixel coordinates defining the two end
points of the line to be drawn.

WinDrawPixel.

PROCEDURE WinDrawPixel (x,y: Integer>;

Purpose and Operation

This procedure draws a single pixel at the given window coordinate. If the
pixel lies outside the window bounds, it will be clipped (not drawn).

Parameters

x, y -- the window-relative pixel coordinate where the pixel is to be
drawn.

7-70 GRiD-0S Reference

Wi. nEraseChar

PROCEDURE WinEraseChar lx,y: Integer>;

Purpose and Operation

This procedure will erase a character position (of dimensions charHeight by
charWidth) even if portions of it extend out of the window bound.

Parameters

x, y -- the window-relative pixel coordinate where the top left pixel of
the character to be erased is located.

PROCEDURE WinEraseline (x1,y1, x2,y2: Integer);

Purpose and Operation

A line within the current window is erased. Any portion of the line lying
outside the current window boundaries will not be affected.

Parameters

x1,y1, x2,y2 -- the window-relative pixel coordinates defining the two end
points of the line to be erased.

Procedures and Functions 7-71

W:i nEr ase-P:i x el.

PROCEDURE l>JinErasePi>:el b:~y: Integed;

Purpose and Operation

This procedure erases a single pixel at the given window-relative
coordinate. If the pixel lies outside the window bounds, no action is
taken.

Parameters

x, y -- the window-relative pixel coordinate of the pixel is to be erased.

WinEraseRectang1e

PROCEDURE WinEraseRectangle !VAR r: Rectangle>;

Purpose and Operation

This procedure erases a rectangle in the window. If two rectangles overlap
and one is erased, the other one will not be restored: the procedure
changes the display's bit map directly. Any portion of the rectangle lying
outside the current window is not affected.

Pair amet er s

r -- the rectangle that is to be erased. On return, this variable
indicates the rectangle that was actually eras~d since portions outside
the window are not affected.

7-72 GRiD-0S Reference

WinEraseWindow

PROCEDURE WinEraseWindow;

Purpose and Operation

This procedure erases the contents of the current window, but not the
surrounding frame.

WinFrameWindow

PROCEDURE WinFrameWindow;

Purpose and Operation

This procedure draws a one-pixel (thin) frame outside the current window
bounds. The frame will not be drawn if it has been disabled in the user
profile via GRiDManager's Option command.

Procedures and Functions 7-73

WinGetWindowExtent

PROCEDURE WinGetWindowE>:tent (VAR e>:tent

Purpose and Operation

Point>;

This procedure tells you the size of your window by returning the variable
e>:tent. E>:tent only tells you how big your current windoi,J is; it does not
indicate where the window is on the screen. Because windows can be placed
anywhere on the screen, only the size of the window (and not its location)
is important.

Typically an application will use this call during initialization to
determine how big a window it has to work with. Since GRiD-0S reserves the
right to change your window size at any time, applications should be

'designed to run independent of the window size and screen characteristics.

If GRiD-0S does change your window size, it places a special character, the
windowUpdateKey (OC3 hex), in the keyboard queue. When an application
receives this character, it should assume that the dimensions of the window
have been altered and must recalculate the window size (using
WinGetWindowE>:tent) and redisplay the window using the new boundaries.

WininitDe~au1tWindow

PROCEDURE WininitDefaultWindow;

Purpose and Operation

This procedure resets the window to the clipping rectangle, erases it, and
draws a one-pixel frame surrounding the screen. The frame will not be
drawn if it has been disabled in the user profile via GRiDManager's Option
command.

7-74 GRiD-0S Reference

W:in:InvertChar

PROCEDURE WinlnvertChar

Purpose and Operation

Integer);

The procedure performs a logical NOT operation on all the pixels of a
character position (charHeight by charllhdth} .. Any portion of the character
outside of the window bounds is not affected.

Parameters

:-:,y -- the windoi,1-relative pi>:el location of the upper left-hand corner of
the character.

Wi.ninvertLi.ne

PROCEDURE Winlnvertline(x1,y1, x2,y2: Integer>;

Purpose and Operation

This procedure performs a logical NOT operation on the given line,
inverting it within the window. Any portion of the line outside of the
window bounds is not affected.

Parameters

x1,y1 x2,y2 -- the window-relative pixel locations defining the two end
points of the line to be inverted.

Procedures and Functions 7-75

Win :I nver-tPi x el.

PROCEDURE WininvertPixel Cx,y: Integer>;

Purpose and Operation

The procedure performs a logical NOT operation on the single pixel position
specified. If the pixel lies outside the current window, no action is
taken.

x,y -- the window-relative coordinate defining the pixel to be inverted.

Win:tnver-tRectangl.e

PROCEDURE WininvertRectangle (VAR r: Rectangle>;

Purpose and Operation

This procedure inverts the bit-map area insid~ a rectangle in the window.
Any portion of the rectangle lying 01.•tsi de the current i.-ii ndow is not
affected.

Parameters

r -- the rectangle th~t is to be inverted. On return, this variable
j~uicates the rectangle that was actually inverted since portions
c>:..itside the windoi,i are not affected.

7-76 GRiD-O8 Reference

Wi.nLoadFont

FUNCTION WinloadFont (conn: Word;
VAR error : Word): FontPointer;

Purpose and Operation

This routine loads a font file into memory and returns a pointer to the
font that can subsequently be used by the WinSetFont function. Before the
font can be loaded, you must first attach (OsAttach) and open (OsOpen) the
file. WinloadFont also does not detach the file; you must close and detach
the file when finished with it.

The font pointer is allocated on behalf.of the systen and is therefore not
automatically freed when the calling program exits. You must therefore
specifically free the pointer before you exit or the pointer remains
allocated. There is no "IIJinUnloadFont" routine; you "unload" a font by
using OsFree to free the FontPointer.

NOTE: There are also font handling pr-ocedures provided in the common code
package. Those are higher level calls and therefore may be easier to use.

Parameters

conn -- connection number (data type Wor-d) obtained from OsAttach that
specifies the font file to be loaded.

Wi.nResetCl.ip

PROCEDURE WinResetClip;

Purpose and Operation

Resets the clipping rectangle to the entire window. Clipping by the window
boundaries and by the clipping rectangle will now be the same.

Procedures and Functions 7-77

WinScro11Rectang1~

PROCEDURE WinScrollRectangle (VAR r: Rectangle;

Purpose and Operation

dir: Direction;
distance: Integer);

The procedure scrolls a rectangle in the given direction by the distance
given in pixels. Portions of the rectangle scrolled out of the display
window are clipped. An open area is left when the rectangle scrolls away
from its original location. WinScrollRectangle returns the coordinates of
the open space as the rectangle r, without modifying the space. The
application must update the open area.

Parameters

r -- on entry, defines the rectangular area to be scrolled. On return,
defines the rectangular open area freed by the scrolling that can now be
updated by the application.

dir -- the direction (up, down, left, right) in which the rectangle is to
be scrolled.

distance -- the number of pixels that the rectangle is to be scrolled.

7-78 GRiD-0S Reference

W:i nScrC31 l. W:i ndcn,.,

PROCEDURE WinScrollWindow (VAR r: Rectangle;
dir-: Dir-ection;
distance: Integer);

Purpose and Operation

The procedure scrolls the entire window in the given direction by the
distance given in pixels. The window will leave an empty area when it
scrolls away from its location. WinScrollWindow returns the coordinates of
the empty ar-ea as the rectangle r, without modifying the area, so that the
application can update the area. Anything scrolled beyond the window
bounds will be clipped.

Note: The rectangle r, which you specify in window-relative pixel
coordinates, acts as an output parameter only. It returns the rectangular
coordinates of an ar-ea that the application should update. The pr-ocedure
needs no input parameter- for the window bounds because it obtains them
dir-ectly.

Parameters

r -- On retur-n, defines the rectangular- open area fr-eed by the scrolling
that can now be updated by the application.

dir -- the direction (up, down, left, r-ight) in which the window is to be
scr-olled.

distance -- the number of pixels that the window is to be scrolled.

Pr-ocedures and Functions 7-79

WinSetA1ternateWind~w

PROCEDURE WinSetAlternateWindow !alt

Purpose and Operation

WindowRegionPtr);

This call forces all subsequent window calls to be performed on the
alternate window specified. The alternate window must be in the host
screen format. If not, then this routine does nothing. If the
WindowRegionPtr is NIL, then the screen is assumed.

Parameters

alt -- specifies the pointer for the alternate window.

PROCEDURE WinSetClip (VAR r

Purpose and Operation

Rectangle};

Sets a clipping rectangle within the window boundaries. This clipping is
in addition to the clipping performed automatically at the window
boundaries. Note that the clipping rectangle is defined in pixel
coordinates -- it is independent of the visible and constraint parameters
defined by common code routines for tables, menus, and forms.

This procedure makes displaying multiple views quite easy. For example, in
displaying two different views from the same application, each view would
draw an entire window full~ just as if it were the only view. But the
clipping window would be set to different parts of the screen for each
view. You only modify the clipping to display different views; you need
not modify your window display code.

Parameters

r -- on entry, the coordinates defining the boundaries of the clipping
rectangle being established. On return, the coordinates of the actual
clipping rectangle established; the actual rectangle may differ from
the specified rectangle since any portion of the rectangle lying outside
the window boundaries is clipped.

7-80 GRiD-0S Reference

WinSetFC3nt

FUNCTION !>JinSetFont (font
\JAR info

count

FontPointer;
FontinfoRecord;
Word): FontPointer;

Purpose and Operation

This function sets the designated font as the new font. The variable
info can be examined upon return to check the characteristics of the
current font. The function returns a pointer to the font that was
loaded prior to this call; that is, a pointer to the previous font. The
format of the FontlnfoRecord is as follows:

FontinfoRecord = RECORD
charWidth: Byte;
charHeight : Byte;
lineHeight : Byte;
baseline Byte;

END;

FontPointer = AByte;

NOTE: The four bytes in this record can be examined directly using the
function calls charWidth~ charHeight, lineHeight, and baseline described
earlier in this chapter.

Parameters

font -- a pointer (obtained from the function WinLoadFont) to the font
that is to be set as the current font. If font has a value of zero,
the system font in PROM is set. If a Null pointer (OFFFFH) is
specified, the current font is left in place and info on the current
font is returned.

info -- the four byte FontlnfoRecord specifying the dimensions of the
font.

count -- determines how many bytes of the FontlnfoRecord will be
returned in the variable info. For example, if count has a value of
two, only charWidth and charHeight are returned.

Function Return

font -- a pointer to the previous font. You should save this pointer so
that you can later restore the initial font before exiting.

Procedures and Functions 7-81

W i. n Set W :i. ru:::I! c::n,,,,

PROCEDURE WinSetWindow(VAR w: Rectangle);

Purpose and Operation

CAUTION: Most applications should never nee,d to set the size of
their own window. Instead~ they should operate within the window
given to them by the system. See WinGetWindowExtent for details.
If you call th~ WinSetWindow routine, unpredictable results will
occur if you are using any GRiD software. The call is documented
here primarily for the sake of completeness.

This procedure changes the size and location of your current window. It
sets the window size to the rectangle it receives as an argument. The
additional clipping rectangle within this window is reset to this size
too.

WinSetWindow is the only procedure that requires absolute screen
coordinates. The rectangle must be defined in absolute screen
coordinates because no window-relative coordinates are valid for this
window until the procedure has finished. Windows larger than the
display screen boundaries CscreenHeight by screenWidthl will be clipped.
You must leave a single pixel space on all four margins if you want a
frame -- this procedure can claim the outermost absolute pixel positions
if you request it. However, you must call WinFrameWindow to actually
draw the frame.

7-82 GRiD-0S Reference

A-1

APPENDIX A. COMPASS KEYBOARD CODES

Table A-1 on the following page lists all the hexadecimal codes that can be
generated from the Compass keyboard. Since various combinations of the CODE
and SHIFT keys are used in GRiD applications, all of the codes that result
from the key combinations are shown in the table.

Keyboard Codes

Ti:!ble A-1. Compass !<eyboard Codl!?s

C□DE-

Key Unshifted SHIFT CODE CODE-SHIFT CTRL SHIFT~CTRL CODE-CTRL SHIFT-CTRL

27 F> 22 (") 60 1 •) 5C (\) 01 <BEU 02 rnr:o 00 !NUU 1C IFS)
2C (~) 3C (0 519 (U 71B < 0 oc (FF) 1C <FS) 18 (IESC) 119 <ESC!
21) (-) 5F AD 7F DEL OD <CR) ff (US} BD '.lF 1US>
2E (.) 3E 51) n > 7D (}) OE (SO} IE ms, HI ms> 1D WS>

I 2F (/) 3F f?') BF 18F OF <SD ff WS} 9F 9F
0 30 (0) 29 0) BO A9 Hi WLE> 09 OH> 90 89
1 3! (!) 21 (!) !31 A1 11 rnc1 > 01 (SOH> 9 !31
2 32 (2) 40 (;i)) 82 co 12 U>C2) 00 O\!UU n BO
3 33 (3) 23 UH 83 A3 13 <DC3) 03 {EH} 93 83
4 34 (4) 24 un 13!4 M 14 (DC4) 04 (E□n 94 84
5 35 (5) 25 (%) 85 A5 15 (NP,K) 05 (END> <!?5 85
6 36 (6) 5E () B6 DE lb (SYN) 1E 0::5.) 96 9E
7 37 (7) 26 (&) B7 A6 17 <ETBI) 06 !ACK) 97 86
B 38 (B) 2A U) BB AA 18 <CAN) OA ~lF) 98 BA
'9 39 (9) 28 (0 89 AEI 19 (EM) OB CBS) 99 88

3B (;) 3A h) 7E (..,,) 7C < n rn <ESC) rn csmn lE (RS) lC !C'S)

"' 3D (=} 219 (+) 01) AB 1D ~sm OB (VTi 91) SB
A 61 (a) 41 HH El El 01 (SQH) O! (SOH> EU 81
B 62 (b) 42 (B) E2 E2 02 (ST:O 02 (STX) 82 82
C 63 (c:} 43 (C) E3 E3 03 (ETlO 03 IET:O 83 133
D M <id) 44 (D) E4 E4 04 (EIJT) 04 (E□n 84 84
E 65 (e) 45 CE} E5 ES 05 (ENO) 05 CENGD 85 85
F 66 H> 46 (F) E6 E6 Oi::! <ACK) 06 <ACK) 86 86
G 67 (g) 47 (13) E7 E7 07 (BEU 07 <BEU 87 137
H 68 (h) 48 OU EB EB 08 <BS) 08 <BS) 88 88
I 69 (i) 49 <D E9 E9 09 (HT) 09 (HT> 89 09
J 6A (j) 4A (J) EA EA OA (lF) OA (lF) BA BA
K 6B Od 40 o:> EB EB OB (VT> OB (Vn BB BB
L 6C U> 4C (U EC EC oc <FF> oc (FF) BC BC
M 61} (111) 4D U"!) ED ED OD u.::~n OD (Cm EID BO
N 6E (nl 4E u,o EE EE OE mm OE mm BE BE
0 6F (o> 4F (0) EF EF OF <SD OF (SI) BF BF
p 70 (p) 50 (P) FO FO 10 HILE) 10 rnLE} 90 90
ti 11 (q) 51 u;:n F:i. Fl u rncu u rncu 91 91
R 72 (r) 52 ffU F2 F2 i2 (1)(:2) 12 HlC2) 92 92
s 73 (s) 53 (S) F3 F3 13 OOC3) 13 (DC3> 93 93
T 74 (t) 54 (T) F4 F4 14 OJC4> 14 <DC4) 94 94
u 75 (u} 55 (LI) F5 F5 15 <NAK} 15 (NAK) 95 95
V 76 (v) 56 <,n Fb F6 16 <SYN) 16 <SYN) 96 96
w 77 (w) 57 <W> F7 F7 17 (ETB) 17 <EHH 97 97
X 78 h:> 58 (X > FB FB 18 (CAN) 18 (CAN) 98 98
y 79 ly) 59 (V) F9 F9 19 (EM) 19 (El1) 99 99
l 7A (.:) 5A Cl> FA FA 1A <SUB) !A (SUB) 9A 9A

BACKSPACE 08 CB BB BA OB ms> BB 88 BA
RETURN OD CD BD BC OD (CR) f8[l BD BC
Down Arrow C4 CE 1)2 1.)6 04 BE .n 96
ESC 1B 1B 90 '9B 113 (ESC) rn (ESC) 9B 9B
leftArrow C6 1)0 D4 DB 86 '90 94 98
RightArrow C7 D1 D5 09 97 91 95 99
Spacebo1.u· 20 <SP) 20 CSP) 20 <SP) 20 (SP) 00 (NUU 00 <NUU 00 rnuu 00 <NUU
TAB 09 C9 89 Bl':l 09 89 89 EIB
UpArrow C5 CF 03 07 85 BF 93 97

A-2 BRiD-OS Reference

APPENDIX B: INCLUDE FILES

Include files are tools for the development environment. Each include file
contains a PUBLIC section of Pascal (or PLM> code that describes the interface
to a correspondinq Pascal (or PLM) module.

The structure of the include files varies from that of the Pascal module
because of the limited symbol table space provided by some versions of the
compiler. Constants and types are usually included in one file, with
functions and procedures in another. This allows easy reference for types
that are defined in terms of other constants (parameters}.

This structure makes the number of files necessary for successful compilation
larger, but it saves on symbol space if the total number of included symbols
is smaller in the end. This restriction on symbol space in the compiler has
been improved with the latest release of the Intel compiler. The present file
convention, however, will stand.

Lastly, the interface is purely for the use of the Pascal compiler. It should
not be used as an External Reference Specification, or associated
documentation. Writjnq programs that interface with external modules requires
~nowledge of the operations and their effects on the private data structures
□fa module. Much as a programming language is an implementation of a
grammar, so include files are a definition of an interface.

BEFORE COMPILING

To use GRiD-DS routines, your source code must refer to the OS Include Files
listed in Table B-1. This table lists all the include files for GRiD-0S --

Include Files B-1

the files that contain declarations of data types, functions, and procedures.

You include files wjth the $INCLUDE statement, as described in the PASCAL-86
User's Guide. The files must be available on-line during a compilatjon.

YrnJ do not have to include all of the files listed in Table P-1 Your source
program generallv needs to include only the procedures that it calls. For
example, an application that uses onlv standard OS calls (those procedures and
functions that begin ,•,iith "Ds") ~,muld not need to include the t•JindovJ include•
f :i l es ..

The pages that follow list the contents of all the GRiD-0S Include files.
Refer to Common Code Reference manual for a list of Common Code Include files.

{ OsPasProcs.Inc Updated 10/23/84}

PUBLIC Common;

{ Processor manaqement routines}

FUNCTION OsCreateProcess !VAR commandline: BYTES; priority: BYTE;
uses8087: BOOLEAN; VAR error : WORD) : WORD;

PROCEDURE OsDeleteProcess (pid: WORD; VAR error : WORD>;

FUNCTION OsForkProcess (VAR entryPoint : BYTES; priority: BYTE;
uses8087: BOOLEAN; stackSize: WORD;
VAR error : WORD) : WORD;

PROCEDURE OsSend (destPid, class, note: WORD; VAR message
VAR error: WORD>;

FUNCTION OsReceive (sourcePid, class, timelimit: WORD;
VAR note, error: WORD) : Pointer;

FUNCTIOH DsCreateSemaphore (VAF: errm- : ~lOF:D) : l•lOFm;

PROCEDURE OsDeleteSemaphore (sid ~ WORD: VAR error : WORD);

FUNCTION OsWait (sid. timelimit : WORD; VAR error liJORD)

BYTES;

liJORD~

PROCEDURE □sSignal (sid: WORD; mode: BYTE; note

FUHCTION OsWhoAml : WORD;

~JORD; VAR error

PROCEDURE OsDelay (timelimit

liHJRD) ;

PROCEDURE OsSetPriority (pid

PROCEDURE OsExit (code: WORD);

l•JOF:D; priority BYTE; W4F: error ~JORD);

C Memory manaqement routines}

FUNCTION OsAllocate (length: WORD; VAR error: WORDl Point.er;

PROCEDURE OsFree !block: Pointer; VAR error : WORD>;

FUNCTION OsGetSize (block : Pointer; VAR error : WORD) : WORD;

PROCEDURE OsGet.MemStatus lpid : WORD; VAR status: MemStatusType;
VAR error : W□RDl;

{ File system routines}

PROCEDURE OsDelete (conn liJDFW; Vi'.'\F: error WOFW);

Include Files B-3

PROCEDURE OsRename (conn: WORD; VAR newName: BYTES: VAR error

FUNCTION OsAttach (VAR pathName: BYTES; fileMode: BYTE:
VAR reserved: BYTES;
accessMode: BYTE; VAR error : WORD) : WORD:

PROCEDURE OsOpen (conn : WORD; numBuf : BYTE; VAR error : WORD);

PROCEDURE OsClose (conn: WORD; VAR error : WORD>;

PROCEDURE OsDetach !conn: WORD; VAR error: WORD>;

FUNCTION OsRead (conn: WORD= VAR buffer: BYTES; length
VAR error : WORD) WORD;

PROCEDURE OsWrite (conn: WORD; VAR buffer
VAR error : WORD);

BYTES: 1 enc1th

PROCEDURE OsSeek !conn: WORD; mode
WORD);

BYTE; lenqth

PROCEDURE DsTruncate (conn: WORD; VAR error : WORD);

PROCEDURE OsGetStatus !conn: WORD; VAR status
length: WORD; VAR error

PROCEDURE OsSetStatus !conn: WORD; VAR status
length: WORD; VAR error

BYTES;
~JOF:D J ;

BYTES;
~1J[!Fffi) :

ldOVii) ;

PROCEDURE OsChangeExtension !VAR pathName
VAR e>:tension

BYTES; extNum: BYTE;
BYTES= VAR error: WORD);

PF:OCEDUF:E OsFJ.ushAl.lBuffE•rs (conn~ l,1JOFW; VAF: ern:,,: (,J□F:D>;

C Miscellaneous routines}

PROCEDURE OsOverlay !VAR name

FUNCTION OsGetArgument !short

BYTES; pid: WORD; VAR error : WORD>;

BOOLEAN: VAR argument : BYTES) : CHAR;

FUNCTION OsSwitchBuffer (VAR buffer: BYTES) : WORD;

PROCEDURE DsRegisterName (VAR name: BYTES; token: LDNGINT;
mode BYTE; VAR error : WORD);

FUNCTION OslookupNarne (VAR name BYTES; VAR E·rror v!ORD)

PROCEDURE OsDecodeException (code: WORD; VAR name BYTES);

B-4 GRiD-OS Reference

LONGINT;

PROCEDURE OsGetTime (mode: BYTE; VAR time: TimeTvpe);

PROCEDURE OsGetSystemID !VAR svstemID: BYTES);

FUNCTION OsGetPrefix: ShortStringPtr;

FUNCTION OsGetWork: ShortStringPtr;

FUNCTION GetConsoleState: ConsoleStatePtr;

PROCEDURE OsGetProperty !tag: WORD; VAR length: WORD;
VAR buffer : BYTES; VAR error WORD>;

PROCEDURE OsPutProperty (tag, length: WORD; VAR buffer BYTES;
VAR error : WORD);

PROCEDURE OsMatchWildCard !VAR testStr: BYTES; strlen: WORD;
VAR matchStr: BYTES; matchLen: WORD;
indepOfCase: BOOLEAN; fullMatch: BOOLEAN;
VAR length: WORD>;

PROCEDURE OsAddDevice !VAR pathName: BYTES; VAR name: BYTES;
VAR entryPoint: BYTES; intAddr: BYTE;
mass: BOOLEAN; mode: WORD; VAR error: WORD>;

PROCEDURE OsRemoveDevice !VAR name: BYTES; VAR error~ WORD>;

PROCEDURE OsCallDriver (VAR pathName: BYTES; level: BYTE; request: WORD;
VAR paramlist: ParamlistType; VAR error: WORD);

Include Files B-5

{ OsPasTypes.lnc Updated 12/13/84}

PUBLIC Common;

CONST

TYPE

oldFileMode = 1;
updateFileMode = 2;
newFileMode = 3;

readAccess = 1;
writeAccess = 2;
updateAccess = 3;
partialDirAccess = 5:
completeDirAccess = 6;

changeType = 1;
changeSubtype = 2;
changePassword = 3;
returnType = 41h~
returnSubType = 42h;
returnPassword = 43h;
changelfNoType = 81h;
changeifNoSubtype = 82h;
changelfNoPassword = 83h;

seekBackwards = 1;
seekToHere = 2;
seekForward = 3;
seekFromEnd = 4;

GreenwichMeanTime - 1;
CompassRelativeTime = 2;

registerName = 1;
unRegisterName

signalNormal = 1;
signalEvent = 2;
signalAllWaiters = 3;

statusTypelen = 15;
shortStringlen = 255;

MemStatusType =
RECORD

freeBytes LONGINT;
freeBlocks,
largestFree: WORD;
allocBvtes: LONGINT=
allocBlocks,
larqestAlloc : WORD;

B-6 GRiD-□S Reference

EJ\ID:

Stcd:.usType =
F:ECOF:D

open BODLEAN~
access,
seek : BYTE;
filePosition,
filelength : LONGINT;
numPages.,
numAllocatedPages: WORD;

END;

Shrn,·tStri ng -·
RECOF:D

length: BYTE;
chars

END;
ARRAY [O .. shortStringlenl OF CHAR;

ShortStringPtr - AShortString;

ConsoleStateType =
HECOFW

>:Loe : Integer;
vLoc : Integer;
estate: Byte;
sered I : Byte;
c:ur·Char : Bvte;
upperFlag : Byte;
NMIFl ag Bvte;

EMD:.

C□nsoleStatePtr = ACons□leStateType;

Par-amL.istType =
RECORD

conn: L•Jord;
buffer: Pointer;
position: Longlnt;
1 ength: t•Jord;
mode: Byte;
numBuf: Byte;
i ntPiddr: Byte;
overflow: Pointer;

END;

I PCMes=..aqe Tvpe -·
F:ECDF:D

functionCode: BYTE;
deleteSource: BOOLEAN;
spa.rel:
s.pare2:

\IJOFW,
vJOF:D;

Include Files B-7

sour-cePID:
destPID:
msgClass:
msgNote:
msglength:

END;

IPCMessagePtr-

WORD;
WORD;
\IJORD;
\IJOF:D;
!,,!ORD;

- AJPCMessageType;

B-8 GRiD-OS Reference

{ ConPas.lnc Updated 10/23/84}

PUBLIC Con;

FUNCTION ConKevPressed: BOOLEAN;

FUNCTION ConCharln: CHAR;

PROCEDURE GJnDefCsr Ion: BOOLEAN>;

PROCEDURE ConResetDisplav;

PROCEDURE ConMoveCsr Ix, y: BYTE>;

PROCEDURE ConCharDut (ch: CHAR>;

PROCEDURE ConLine□ut (VAR buffer:. BYTES~ length: WORD>;

FUNCTION ConPeekChar: CHAR;

PROCEDURE ConHexOut (num: WORD);

FUNCTION Conlineln (VAR buffer: BYTES; maxlength: WORD): WORD;

Include Files B-9

/S ConPlm.Inc Updated 10/23/84 *I

ConKeyPressed: PROCEDURE BOOLEAN EXTERNAL;
END;

Con[~arln: PROCEDURE BYTE EXTERNAL;
E~;

ConDefCsr: PROCEDURE (onl EXTERNAL;
DCL on BOOLEAN;
END;

ConResetDisplay: PROCEDURE EXTERNAL;
END;

ConMoveCsr: PROCEDURE Ix, y> EXTERNAL;
DCL (x, y) BYTE;
END;

ConCharOut: PROCEDURE (ch) EXTERNAL;
DCL ch BYTE;
END;

ConLine□ut: PROCEDURE (pBuffer, lengt~l EXTERNAL;
DCL pBuffer PTR;
DCL length WORD;
E~;

ConPeekChar: PROCEDURE BYTE EXTERNAL;
E~;

ConHexOut: PROCEDURE lnuml EXTERNAL;
DCL num WORD;
END;

Conlineln: PROCEDURE (pBuffer, maxlengthl WORD EXTERNAL;
DCL maxlength WORD;
DCL pBuffer PTR;
END;

B-10 GRiD-0S Reference

{ WindowProcs.Inc Updated 10/23/84)

PUBLIC Common~

FUNCTION CharHeight: Integer;

FUNCTION CharWidth: Integer;

FUNCTION LineHeight: Integer;

FUNCTION Baseline: Integer;

FUNCTION WinloadFont (conn: Word; VAR error : WORD}: FontPointer;

FUNCTION WinSetFont(font: FontPointer; VAR info: FontlnfoRecord;
count : Word): FontPointer;

PROCEDURE WinGetWindowExtent(VAR extent: Point>;

PROCEDURE WinDrawline(x1,y1, x2,y2: Integer>;

PROCEDURE WinEraseline(x1,y1, x2,y2: Integer);

PROCEDURE Winlnvertlinelxl,yl, x2,y2: Integer);

PROCEDURE WinlnvertRectanqle(VAR rl: Rectangle);

PROCEDURE WinEraseRectanqle!VAR rl: Rectangle>;

PROCEDURE WinCopyRectanglelVAR r: Rectangle;
newTopleft: Point);

PROCEDURE WinScrollRectangle(VAR r: Rectangle;
dir: Direction;
distance: Integer);

PROCEDURE WinSetWindowCVAR w: Rectangle>;

PROCEDURE WinSetClip(VAR r: Rectangle);

PROCEDURE WinResetClip;

FUNCTION WinClipline(VAR x1, yl, x2, y2: Integer): Boolean;

PROCEDURE WinClipRectangle(VAR r: Rectangle);

PROCEDURE WinFrameWindow;

PROCEDURE WinEraseWindow;

PROCEDURE WininitDefaultWindow;

Include Files B-11

PROCEDURE WinScrollWindow!VAR r: Rectangle;
dir: Direction;
distance: Integer);

PROCEDURE WinDrawChar(ch: Char; x,y: Integer);

PROCEDURE WinDrawChars (VAR ch: BYTES; count,x,y: Integer);

PROCEDURE WinEraseChar(x,y: Integer>;

PROCEDURE WininvertCharlx,y: Integer>;

PROCEDURE WinDrawPixel (x,y: Integer>;

PROCEDURE WininvertPixel (x,y: Integer);

PROCEDURE WinErasePi~el (x,y: Integer>;

FUNCTION WinTestPixel (x, Integer) : Boolean;

PROCEDURE WinHandlePh□ne (newValue: BYTE; VAR oldValue: BYTE;
VAR error: WORD>;

FUNCTION WinAllocateWindowMemory (width: Integer;
height: Integer;
format: WindowFormat;

VAR error: WORD): WindowRegionPtr;

PROCEDURE WinSetAlternateWindow (alt: WindowRegionPtr>;

PROCEDURE WinCopyRemoteRectangle (source,

B-12 GRiD-0S Ref~rence

dest: WindowRegionPtr:
VAR r: Rectangle;

newTopleft: Point;
mode: WORD);

{ WindowTvpes.Inc Updated 10/23/84}

PUBLIC Common;

TYPE Point -- RECORD
>: : Integer-;
y : Integer;
END;

Rectangle= RECORD
topLeft : Point;
e:,: tent : Point;
END;

Direction= (up,down,left,rightl;

FontinfoRecord = RECORD
charWidth ~ Byte;
charHeight : Byte;
lineHeight: Byte;
baseLi ne Byte;
END;

Font.Pointer= ABYTE;

windowFormat - lscreenFormat, GRiDF□rmatl;

WindowRegion = RECORD
format: WindowFormat;
i,iidth: Integer;
height: Integer;
buflength: WORD;
buf: Pointer-;
bitsPerPel: BYTE;
bytesPerline: WORD;

END;

WindowRegionPtr = AWindowRegion;

Include Files B-13

INDEX

A

Absolute screen coordinates, 7-82
Access fflodes, 7-13
Accessing files, 3-b
Activating devices, 7-9
Active device table, 3-5, 7-9
Adding devices, 3-5, 7-9
Allocating 11u!mory, 2-7, 7-11

for windows, 7-b3
Alternate windows, 4-2

allocating memory for, 7-63
setting, 7-BO

Arguments, command line, 7-27
Attaching e file, 7-12
Attaching in directory mode, 7-45
Attaching to files, 3-5

B

Baseline, 4-4, 7-2
bb device, 3-3
Bit-buc~et device,
Boolean data type,
Boot file. 7-31

setting, 7-43

1-5

Bubble ~e~ory dEvice, 3-3
Buffer space for iiles, 3-6
~utfers,

alloccting for files, 7-41
flushing, 3-6, 7-24
switching, 7-58

Built-in font, 4-3
Bvte data type, 1-5

C

Calling device drivers, 7-14
Calls, summary of, 1-2
Cencel ICODE~ESCI, handling, 7-39
Changing extensions, 7-13, 7-15
Changing file extensions, 3-6
Chu,ging file titles, 3-6
Char data type, 1-5
Character fonts, 4-3
Charecter graphics, 4-3
character height, 4-3
Character width, 4-3
Characters, delimeters in pathnames, 3-2, 7-27
Characters,

drawing, 7-1,B
erasing, 4-3, 7-71
inverting, 7-75

ClarHei ght, 7-2
Chari-Ii dth, 7-3
ci (console input) device, 3-3
Classes of messages, 2-4
Clipping, 4-1
Clipping rectangle, 4-3, 7-i,b

resetting, 7-77
setting, 7-80

Closing files, 3-i,, 7-16
co (con~ole output) device, 3-3
CODE character code, 7-3
CODE-ESC (Cancel), handling, 7-39
Codes,

keyboard, A-I
systeffl error, 7-19

Command line, 7-5B
getting arguements froM, 7-27

Complete directory entry mode, 3-i
ConCharln, 7-3
ConCharOut, s~2, 7-3
ConDefCsr, 5-2, 7-4
ConHexHout, 5-2, 7-4
ConKeyPressed, 5-2. 7-4
Conlineln, 5-2, 7-5
ConLineOut, 5-2, 7-6
ConMoveCsr, 5-2, 7-6
Connecting to files, 3-5
Connection, 7-62
Connection~ to files, 7-12

severing, 3-1,

ConPeekChar, 5-2, 7-7
ConResetDisplay, 7-7
Console input (ci) device, 3-3
Console output (col device, 3-3
Console routines, 5-l
Con50Je state, 7-8
Converting screen image files, 4-2
Coordinate system, window, 4-5
Coordin~tes, absolute screen, 7-B2
Copying rectangles, 7-6b
Copying remote rectangles, 7-i,7
Creating processes, 2-3, 7-17
Creating semaphores, 2-6, 7-1B
CTRL chdracter code, 7-3
Current file position, 7-59, 7-62
Current file position marker, 3-6
Current printer, 7-31
Current process, 2-2
Current window, 4-2
Cursor, 5-1, 7-2, 7-4

D

current location, 7-B
11oving, 7-5
turning off, 7-7

Data structures, 4-5
Data type!i', !-5
Deactivoting devices, 7-50

GRiD-0S Reference

Deallocating aemory, 2-7, 7-26
Decoding exceptions, 7-19
Default ~indow, 7-74
Delaying e process, 7-20
Deleting,

files, 3-6, 7-21
proc~sses~ 2-3 9 7-22
suaphores, 7-22

Delimeter characters, 7-27
in pathnames, 3-2

Det~ching fi !es, 3-6, 7-23
Device management, 3-1
Device status, 7-34

Htting, 7-55
Devices,

adding, 3-5, 7-9
deactivating, 7-50
list of, 3-3
re111ote, 3-4
r~Moving, 3-5, 7-50
table of active, 3-5

Direction d6t~ structure, 4-5
Directories, 3-1

oper~ting on, 3-7
re~ding, 7-45

Directory mode, attaching in, ?-45
Dr~l"ing,

characters, 7-68
lines, 7-70
pixels, 7-70

Drivers, device, 7-14

E

Erasing,
characters, 4-3, 7-71
lines, 7-71
pixels, 7-72
rectangles, 7-72
11i ndows, 7-73

Error numbers, syste111, 7-19
E)~mples of message transfers, 2-4
Exception, decoding, 7-19
EKecuting processes, 2-3
Exiting a program, 7-24
Extensions,

changing, 3-6, 7-13, 7-15
of file names, 3-4

Extent, check window, 7-74
Extra floppy disk device, 3-3
Extra hird disk device, 3-3

F

File access, terminating, 3-6
File buffer space, 3-6
File connection, 7-12

severing, 3-6
File direitories, oper~ting on, 3-7
File e~tenstions, changing, 3-6

Inde>:-2 GRiD-0S Reference

File ldnd!ii, 3-4
File management, 3-l
File management calls, ov1,rview, 3-5
File pathnames, 3-2
File position

marker, 3-6, 7-52
current, 7-59, 62

File status, setting, 7-55
File subjects, 3-4
File system, 3-l
File titles, 3-4

changing, 3-6
File, start-up, 7-31
Filename extensions, changing, 7-15
FI! es,

oecessi ng, 3-6
attaching to, 3-5, 7-12
closing, 3-6, 7-16
connecting to, 3-5
deleting, 3-6, 7-21
detaching, 3-6, 7-23
include, B-!
kind, 3-3
opening, 3-5, 7-41
operating on, 3-5
passwords, 3-3
reading, 3-6, 7-45
renaming, 7-51
seeking in, 3-6
trunc1ting, 3-b, 7-59
User~Profile~, 7-31
writing to, 7-62, 3-6

Floppy disk device, 3-3
Flushing buffers, 7-24
Font, 7-2

built-in, 4-4
setting, 7-43
system-wide, 7-3!

Fonts,
charascter, 4-3
loading, 4-4, 7-77
setting, 4-4, 7-81

Forking a process, 7-25
Format of l\lessage5, 2-5
Fon11at,

ho1t screen, 7-80
windo1;, 4-6

Format~, of screens, 4-2
Frame,

dra~ing ~indo~, 7-73
screen, 7-31
setting, 7-43

Freeing memory, 2-7, 7-26

G

GetConsoleState, 5-2, 7-B
Getting arguements from command line, 7-27
Betting current prefix, 7-30

Settino aeaory size, 7-33
Settino •e•ory 5tatu5, 7-29
Setting status information, 7-34
SPIB address, 7-9
BPIB device, 3-3
Graphics,

character, 4-3
line, 4-4
pixel, 4-5
text, 4-3
NindoN, 4-1

GRiD for•at Nindows, 4-2, 7-63

H

Handling Cancel <CODE-ESC), 7-39,
Hard disk device, 3-4
Height,

line, 7-8
of characters, 4-4
of lines, 4-4

Hierarchical file systea, 3-1
Host screen format windows, 4-2, 7-63, 7-67, 7-Bt

I

ID, system, 7-36
Include files, B-1
Initializing windol'ls 1 7-74
Integer data type, 1-5
Inverting,

K

characters, 7-75
lines, 7-75
pixels, 7-76
rectangles, 7-i6

Key, window update, 7-74
Keyboard characters, 7-3

inputting, 7-5
Keyboard codes, 7-7, A-1
Keyboard queue, 7-7, 7-74
Kind, changing filename's, 7-15
Kinds,

file, 3-4
in file pathnames, 3-3

L

Length, aaximu• of pathnimes, 3-3
Line graphics, 4-4
Line height, 4-4
LineHeight, 7-B
Lines,

clipping, 7-65
drawing, 7-70
erasing, 7-71
inverting, 7-75

Loading fonts, 4-4, 7-77
Longint data type, 1-5

M

Managing devices, 3-1
Managing memory, 2~6
Marker, cur~ent file position, 3-6, 7-52
Matching wildcards, 7-40
Maximum length of pathnames, 3-3
Memory,

allocating, 2-7, 7-11
allocating for alternate windows, 4-2
allocating for windows, 7-63
bubble, 3-3
freeing, 2-7, freeing, 7-26

Memory management, 2-7
Meaory size, 7-33
Memory status, 7-29
Message c•asses, 2-4
Message format, 2-5
Message transfer exa•ple, 2-4
Ne~sages,

rl!ceiving, 7-47
sending and recl!iving, 2-4
Sl!nding, 7-53

Node, directory, 3-7, 7-45
Node• device, 3-4
Nodes,

access, 7-13
file connections, 7-12

Nodull!s, overlay, 7-42
Multi-tasking, 2-1
Multiple rectangles, 4-3

N

Na11es,
deleting, 7-49
looking up,. 7-38
registering, 7-38, 7-49

Note parameter, 7-24
Notes,

passing with signals, 7-60
passing with OsSend, 2-5
passing with OsSignal, 2-7

0

OpenDirectory, Common Code routine, 3-6
Opening files, 3-5, 7-41
Operating on files, 3-5
Organization of file system, 3-2
OsAddDevice, 3-6, 7-9
OsAI locate, 7-11
DsAttach, 3-5, 7-12
OsCallDriver, 7-14
OsChangeExtension, 3-6, 7-15
OsClose, 3-6, 7-16, 7-23
OsCreateProcess, 7-17
OsCreateSemaphore, 7-18
OsDecodeException, 7-19
OsDelay, 7-20
OsDelete, 7-21
OsDeleteProcess, 7-22
OsDeleteS~maphore, 7-22

GRiD-0S Reference Index-3

OsDetach, 3-6, 7-21, 7-23
OsE~H, 7-24
OsFJushAl!Buffers, 3-6
OsFlushAIJBuffers, 7-24
OsForkProcess, 7-25
Os Free, 7-26
OsGetArgument, 7-27,

switchino buffers, 7-58
OsGetMemStatus, 7-29
OsGetPrefix, 7-30
DsGetProperty, 7-31
OsGetSi:e, 7-33
OsGetStatus, 3-6, 7-34
OsGetSysteMID, 7-36
OsGetTinie, 7-37
Os6et!,jork, 7-38
OsH1ndleCancel, 7-39,
OslookUpNue, 7-38
OsMatchWildcard, 7-40
OsOpen, 3-5, 7-41
OsOverlay, 7-42
OsPutProperty, 7-43
O~Read, 3-6, 7-45
OsReceive, 7-47
DsRegisterName, 7-49
OsRemoveDevice, 3-5, 7-50
OsRename, 3-6, 7-51
OsSeek, 3-6, 7-52
O~Send, 7-53

passing notes with, 2-5
OsSetPrior1ty, 7-54
05SetStatus, 3-b, 7-55
OsSignill, 2-7, 7-56

pas!ing notes with, 2-7
OsSwitchBuffer, 7-58
OsTruncate, 3-6, 7-59
OsWait, 2-7, 7-60
OsWhoAml, 7-62
O,Write, 3-6, 7-62
Overl~ys, 7-42
O~erriding type checking, 1-6

Overview of file calls, 3-5

p

Parameter p,ssing with Bytes d,ta type, 1-6
Partial directory entry mode, 3-7, 7-45
Passing notes,

with OsSend, 2-5
with Os Signal, 2-7

Passwords, 7-13
changing, 7-15
in file pathnames, 3-3

Pathnames, 3-2
maximum length of, 3-3

pid, 7-17, 7-25
Pixel graphics, 4-5
Pixels, 4-l, 4-4

drawing, 7-Hi
erasing, 7-72
inverting, 7-76

Index-4 GRiD-0S Reference

Plotter device, 3-4
Plottel',

current, 7-31
!:letting, 7-43

Point dats ~tructure, 4-5
Pointer dah type, 1-5
Portable floppy device, 3-4
Position marker, 3-6, 7-52
Position, current file, 7-59, 7-62
Preemptive scheduling, 2-2
Prefix, getting, 7-30
Printer device, 3-4
Printer,

current, 7-3i
setting, 7-'13

Priority scheduling, 2-2
Priority, precess, 7-54
Process Ill, 7-!7, 7-25

determining, 7-62
Process priorities, setting, 7-54
Process scheduling, 2-2
Process state diagram, 2-2
Process,

current, 2-2
definition of, 2-1
delaying, 7-20
forked, 7-22
ready, 2-2
receiving, 7-47
running, 2-3
IH,iting 2-3

Processes,
creating, 2-3, 7-17
deleting, 2-3, deleting, 7-22
e~ecuting, 2-3
exiting from, 7-24
forhng, 7-25
waiting, 7-60

Processor management, 2-1
Profile, User, 7 -31
Properties,

examining, 7-31
setting, 7-113

!lueue, keyboard, 7-7
Queue, message, 2-4

Re~ding directories, 7-45
Reading file!, 3-6, 7-45
Ready process, 2-2
Ready state, 2-3, 7-17, 7-25, 7-60
Receiving messages, 2-4, 7-47

Rect1ngle d&ta structure, 4-5
Rectangle, setting clip 5ize, 7-80
RechnglH, 4-1

clipping, 4-3, 7-bb
copying, 7-66
era!!ing, 7-72
inverting, 7-76
reaote, 4-2, 7-67
scrolling, 4-3, 7-78

Region, window, 7-63, 67
Registering names, 7-49
Remote devices, 3-4
Remote rectangles, 4-2, 7-67
Removing devices, 3-5, 7-50
RenaIDlng files, 7-5!
Repeated character code, 7-3
Resetting clipping rectangle, 7-77
Root phase, 7-42
Routines, console, 5-1
Run state, 2-3

s

Scheduling processes, 2-2
Screen, 4-1
Screen coordinates, absolute, 7-82
Screen format, 4-2, 4-6

translating, 7-67
Screen frame, 7-31

setting, 7-43
Screen i~age files, converting, 4-2
Scrc,Jling rectangles, 4-3, 7-78
Scrolling windows, 4-2, 7-79
Seek~ 7-35, 7-52
Seehng in files, 3-6
Semaphore, 7-60
Semaphore identification number, 7-18
Semaphc,res,

creating and using, 2-6
creating, 7-IB
deleting, 7-22
sign1lling, 7-56

Sending messages, 2-4, 7-53
Serial device, 3-4
Setting alternate windows, 7-80
Setting clipping rectangle size, 7-80
Setting fonts, 4-4, 7-81
Setting process priorities, 7-54
Setting window size, 7-82
Shel ls, device drivers, 7-14
SHIFT character codE, 7-3
Short Strings data type, 1-5
sid, 7-18
1id (semaphore I.DI, 2-6
Signalling proceses, 2-7
Signalling semaphores, 7-56
Size Qf windows,

determining, 7-74
setting, 7-82

Si,e, memory, 7-33
Start-up file, 7-31

setting, 7-43

St1te diagram tor processes, 2-2
Status inforaation, 7-34
Status,

mnory, 7-29
setting, 7-55

Structures, data, 4-5
SubjMts, 3-1, 3-4
Summary of system calls, 1-2
Switching buffers, 7-58
System calls, summary of, 1-2
System error numbers, 7-19
System ID, 7-36
System properties, setting, 7-43

T

Table of active devices, 3-5, 7-9
Terminating file access, 3-6
Terminating processes, 2-3
Text graphics, 4-3
Time, 7-31

getting, 7-37
Time limit, 7-47, 7-60

OsDellly, 7-2<•
Tiffie offset, setting, 7-43
Titles, 3-1, 3-4

changing, 3-6
Transfer of Messages, ex~mple of, 2-4
Trunc~ting files, 3-6, 7-59
Type checking, overriding, 1-6
Types,

Bytes, l-6
data, 1-5

u-z
Update key, window, 7-74
User~Profile~, 7-31
Using semaphores, 2-6
Utility calls, 6-1
Virtual file system, 3-1
Wait state, 7-20, 7-47, 7-60
Waiting process, 2-2, 7-60
~idth of characters, 4-4
Wildcards, matching, 7-40
WinAllocateWindowNemory, 7-63
WinC!ipline, 7-65
WinClipRectangle, 7-66
NinCopyRectangle, 7-66
Window,

coordinate system, 4-5
current, 4-2
default, 7-74
extent, determining, 7-74
foraat data structure, 4-6
t;1raphics, 4-l
ir,~ge, 4-1
update ke;y, 7-74

GRiD-0S Reference

Window!!,
4illoc:aUng, 4-2
alternate, ~-2, 7-63
l!'f"!!Sill!I, 7-73
fruing, 7-73
SRiD format, 7-63, 67
host screen format, 7-63, 67
~trolling, 4-2, 7-79
setting 1lternates, 7-BO
~etting size of, 7-82
setting up, 4-1

WinDrawChar, 7-68
WinDrawline, 7-70
~inDrawPlxel, 7-70
NinEraseChar, 7-7!
WinEraseLine, 7-71
WinErasePiKel, 7-72
NinEraseRectangle, 7-72
HinEraseWindoN, 7-73

NinFrameNindow, 7-73
Nln&etNindoNErt1nt, 7-74
WinlnitDef~ultNindow, 7-74
~inlnvertChar, 7-75
Ninlnvertline, 7-75
WinlnvertPiKel, 7-76
NinlnvertRectangle, 7-76
WinloadFont, 7-77
WinResetClip, 7-77
NinScro!!Rectangle, 7-78
WinScrol!N1ndow, 7-79
NinSetAlternateNindow, 7-80
NinSetCiip, 7-80
WinSetFont, 7-81
NinSetNinciow, 7-82
Nord data type, 1-5
~lork device, 3-4
Nork, getting, 7-38
Writing to a file, 3-6, 7-62

