A GUIDE TO WRITING DEVICE DRIVERS

MARCH 1985

COPYRIGHT (C) GRiD Systems Corporation
2535 Barcia Avenue

Mountain View, CA 94043

(415) 961-4800

Hanual HName: & GUIDE 70 WRITING DEVICE DRIVERS
Issue Date: MARCH {985

Mo part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means,
electronic, photocopy, recording, or otherwise without the prior
written consent of GRiD Systems Corporation.

The information in this document is subject to change without‘
notice.

NEITHER GRiD SYSTEMS CORFORATION NOR THIS DOCUMENT MAKE ANMY
EXPRESSED OR IMPLIED WARRANTY, INCLUDING, BUT MWOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHAMTABILITY, GQUALITY, OR FITNESS FOR A
PARTICULAR PURPOSE. GRiD Systems Corporation has no obligation to
update or keep current the information contained in this document.

BRiD Systems Corporation’'s software products are copyrighted by
and shall remain the property of GRiD Systems Corporation.

UNDER NO CIRCUMSTANCES MILL BRiD BYSTEMS CORPORATION BE LIABLE FOR
AMY LDS5 OR DAMAGES ARISING OUT OF THE USE OF THIS MANUAL.

The following are trademarke of GRiD Bystems Corporation: GRiD,
Compass Computer.

The following is a trademark of Intel Corporation: Intel.

TABLE OF CONTENTS

ABOUT THIS BOOK cecesseassescsscasnnsessesnussnassnnsans Vil
CHAPTER 1: INTRODUCTION TO DEVICES ceresssecns eseess we 1-1
How Do FPrograms Communicate With Devices? cesasen -1
Steps for Writing Device Programs ceeans D
Frintersccv0evncccnans cresasaans tereeeacaaas veeesees 1=3

The Internal Modem cesnsessannansons seesscssansene 1-3

Other Serial Devices caenaes crsenan ceessssssaesas 1-3

1-3

Other GPIB Devicesovevconcncovonnnnons cewseeesscsvesnaa

CHAPTER 23 ADDING AND REMOVING DEVICEScccccvevssccananas 2-1
The Active Device Tablecc0vceuven seesssavenescecannnnas 2-1
Activating and Deactivating Gateway Drivers and Shells 2-2

The ActivateDevice Procedure Callcicevvuvenoonosanns 2-2
The DeactivateDevice Procedure Callccevvenvenneneaas 2-4
Coding Examples cesssesesssersaan e crecacsesasas seeeseee 2-4
Activating the Internal Modemcccvcevevecennannes eee 2-5
Activating an Extra Portable Floppy ..cievceevvssn cesessss 2-3
Deactivating the Modemcccveuveencsccncnsnnsns sesses 2-6
Activating a Linked Driver ..c..eeeesescencnscscnrnnsssess 2-b

CHAPTER 3: WRITING A SHELLcovvvevnvennanns 1 |
Why Use a Shell?ceveeeceoscocovanoosannoasosossassasase 3-1
Types of Shells theenessansena sesssesessusesaennas e 3-2

Contents iii

Frinterscceeveonnnvas e escesessssasesane e eseseae e
Other GPIR Devicesccnccronnns ccesmsesesssaso e s ec o ane
Other Serial Devices ...cevcoos s e s s eesecsecssaas e s ac e e as
Writing or Modifying a Shell Pereceannee tasesserseeons
Shell Interfaceco0000 o s 8 o e s s c a6 s as e o0 s aeeceaoseasa
Procedure NamM@ ..ceoceecoocssacoonsosaassanasocansnaocencasss
Parameter BloCk ccuoesococasoocsnossassnsscocnosaoscensss
Overflow Block ...ceocoovcccanncnnocavesacascsasccascssans
Gateway Driver Interface ceecssessansa secsseascacensss
Processing I/0 Reguestsccc0cosoone crecereranaanrasas
DsBetStatus ..cvecovocccosonccans ceseoseenna ceecsenes e
OsbetStatus .oceeconsccsasccoconnoascocsoancossasanscss .
Example Generic Serial Printer Shell seenescsasesaes
CHAPTER 4: PROGRAMMING THE MODEM GATEWAY DRIVERccvcocansss
Communication with the Modem Driver - Program Overview
The OsSetStatus Call cesocasececsasacansaaceseacasnaes
OsSetStatus Modes ..coovevvococsocossne tseseesnbans Peeneess .
Mode 0 - Return to Default Settings ..cecceevncvconnoosans
Mode 1 - Set Operating Valuescccecsconsocccananoscns
Mode 2 - Set Timeout Values ...ccocvcooscnascsss ceseeasesss
Mode 3 - Flush Receive FIFD Buffercccovsooacvoncsccns
Mode 4 - Set User Defined Receive FIFD Bufferco00004
Mode 5 - Disestablish Data Connection ...ccceovvcce ceasuas
Mode 6 - Establish Data Connectionscecececnccoanscssnns
Mode 7 - Bet Bits/Secondccceecnneace ceasecanssssannns
Mode 41 - Take Phone Off Hook .ccencccocsccerococnccooscnns
Mode 42 - Put Phone On Hook ..ceesvcvcocnconcs ceessessaans
Mode 43 - Set Originate or ANSWEr ..cceccenes tesresenrens .
Mode 44 - Dial Phone Number s rescesencscasensaeaanss
Mode 45 - Enable Voice Mode ..c.cccccevacncncosone ceescecas .
Mode 46 - Dicsable Voice Mode seeass veassesas ceas e
MHode 49 - Set Timeout Valuesccvesvcccocsnscse ceessesons
Mode 50 - Set Speaker Volume ceesenns ceecsaana
The OsGetStatus Callccce0ccen cmescesessesneane e cesssnnn
PRogramming the Modem Examplecccocecevcencosccocasnnsans
Develop File for Modem Example ceecsscnoas cesErcetscenns
CHAPTER S5: PROGRAMMING THE SERIAL GATEWAY DRIVER...... hesenans .
Serial Communications OVerview ..ceescecocosscssns cessseacsse
The GRiD Serial Interface ceasaes cresanesnasssas cesena
Serial Connector .c.cosescsovcncososassasssns cesssescesanass
R5-423 and RS-422 Compatibility ...cccccccceanoccnconns .
Serial Ring Semaphore caasesmssasasrsacenavaranaane
Programming the Serial Gateway Driver From an Application ...
.Programming the Serial Gateway Driver from a Shell seens
The OsSetStatus Callcc0ccransne chesesccaancee seeesas cee

iv

OsSetStatus Modes ...vevvvsvcvcsonaose cesceessecesaesseaesane

Device Drivers

(2]
| !
Lot " * = e B T« B R 4 B O %% B O Y NG I N |

(=]

N
i

(2]
i

BB TN R I T R R
| N I S R N R R R RN B |
00 0 0WNoC-000 WL B 3l R e

£a
[

BB R N
1

w
I

LA R o o
i
O~ Ul 4= 3 0 L4 G N =

W oL un
i i i

w
1

Hode
Mode
Mode
Mode
Mode
Mode
Hode
Mode
Hode
Hode

O~ LA E LR e O

7

61 - Enable/Disable Ring Interrupt

- Return to Default Settings ...

~ Set Operating Yalues ..
- Bet Timeout Values
- Flush Receive FIFO Buffer

- Set User Defined Receive FIFOD Buffer caa
- Disestablish Data Connection

- Establish Data Connection

- Set Bits/Second
60 - Signals Required to Complete a BD To-Data .ccoss

The OsBetStatus Call
PRogramming the Serial Gateway Driver Example

Develop File for Serial Example ...

CHAPTER 63

GPIB Overview
GRiD GPIB Gateway Driver Dverview ...
Data Structures
Parameter Block
Over+low Block for I1/0 Requests ...

PROGRAMMING THE

e e s o B2 E e e e B 8 a0

9 @ ¢ 00 aa

a8 s wswowoao

BPIB GATEWAY DRIVER

OVerflow Block for SetStatus Requests ..ciev0ocose

Service Requests

Frogramming the GBPIB Gateway Driver Examples e

Reset The Device .. .
Notify the Driver To Recngnzze Serv1ce Requests ..

Read from the Device cecssavacsesscasaase

Write to the Device ...cscceceacass seesssenensarns
Generic GPIB Shell Exampleco00vev00e csease .
Generic GPIB Shell with Service Requests Example .
Generic GPIB Develop File ssevosene csessassanas
APPENDIX A: UNIVERSAL PRINTER LANBUAGE ceveannos .o

APPENDIX B:

ERROR CODES

s s e aas e
° s ae °

® aeae

e o0 eae ®
. e a8 oo
..... eow e

»aw
cesewvon o s
s av s na
° sowean
B @200
. 55 0
88 ae008 e a
....... a e
88 ano
e 0060 s 5 e
®»s b5 eessoao
o e w0
s s ®aa B
.........
. e %asa
. aesao0 0
eaee o)
...... » @

.........

s e oe 8 eanoe

[AU R
i I

(4 4]
[
= = O 0 00NN

LI I
I e

| O T |

o000 o0 O O~ O
|
O & 4 W

[ol B = ol
L |
O W NN O

i

Contents

\

FIGURES

Figqure 1-1. Sample GRiD Computer Systemcccuvnovacecrascncccans 1-1
Figure 1-2. Communicating With Devicesceevoceonvcansna srerenncons 1-2
Figure 3-1. GRiD-0S5 Device I/0 Calls ..vcevocrnnacnsonaonscosasncnasaa 3-3
Figure 3-2. The FParameter Blockcc0c0cecacs ceseesacassasasssass 3-5
Figure 4-1. The Parameter Blockcvesvenovonarocosnocronnnnsonanonnas 4-3
Figure 5-f. The Relationship Between DTE and DCEcccvcncns e 5-2
Figure 5-2 The Parameter Block ...vvueecoonsnsvononenccasooscenunsasas 3-5
Table 3-1. GRiD-06 calls and I1/0 Requestsccoceuvecesvocnasanas 3-4
Table 5-1. Handshaking Bignals ...cocevesencaons Cersesaaasasnsseneua 5-2
Table 5-2. Serial Connector Pinoutccc00000 soesocassosesasn o 3-3

vi Device Drivers

ABOUT THIS BOOK

This manual explains how write to programs to control devxces for computers
running the GRiD Operating System (GRiD-08).

ASSUMPTIONS ABDUT THE READER

This manual assumes that you are an experienced PASCAL and PL/H
programmer and are familiar with the GRiD-05 development
environment.,

OTHER BOOKS YOU MAY MNEED

If you have not programmed under GRiD-05 before, you may need to
refer to the following publications:

[+]

GRiD-05 Reference manual for detailed information on operating
system calls, semaphores, and file I/0.

Program Development Guide for information on how to run the
compilers and utilies and the GRiDDevelop progras.

Intel FASCAL-B6 User's Guide for information on the Pascal
programming language.

Intel PL/N-84 User's Guide far information on the PL/H
programming language.

About This Hook vii

EXAMPLE PROGRAM SOFTWARE

This book contains example programs and develop files. GSource
code for these is available on GRiD Central under Software

-

Subjects 3.1: Contributed Device Drivers.

Device Drivers wviii

CHAPTER 1: INTRODUCTION TO DEVICES

WHAT IS A DEVICE?

Here is a diagram of devices in a sample GRiD computer system:

' b LRiD t
uuﬂ LR oo =1
*7’ 1 ompAter

=1

h aa 2
Fortable Printer -
Ciystom
Floppy Hidget

Figure 1-1. Sample GRiD Computer System

Printers, plotters, digitizers, video disks, laser printers,
laboratory equipment, hard disks, floppy disks, bubble memory and
modems are all physical devices. These devices and others like thenm
can be controlled by GRiD software.

GRiD-0S supports three types of devices: those that have a serial
interface, those that have a GPIB (IEE-488) interface, and the
internal modem.

- Introduction 1-1

HOW DO PROGRAMS COMMUNICATE WITH DEVICES?

Application programs make I/0 reguests to the BRiD Operating System
(GRiD-05). OGRiD-05 passes the request to a program called a shell
which passes the request on to a program called the gateway driver.
The gateway driver actually communicates with the device at the
hardware level. G5ee Figure 1-2.

AFPLICATION

L

A4 GRID-OS L

A sHELL
,/-" n’f
e ke T
e it e ., - T
%, 3 %, - e
ﬂ,f SERIAL y £ HMODEM v GRIB A
i 1 { b
(GATEMEY | { GHTEMEY } 3\ GATEMEY J
% DRIVER ,;} DRIVER /% DRIVER
* s . o b 5
1-“-'“ "'"-J"f -""t,_-_ -"-’JJ \K--_""—_.w-""_’jd
SERIAL © INTERHEL GFIE
DELICE MDDEM DEUICE

Figure 1-2. Communicating With Devices

GRiD supplies three gateway drivers for device I/0. The serial
gateway driver is in a file called Serial™Device™ and the modem
gateway driver is in a file called MWodem™Device™. The GFIB gateway
driver is built into GRiD-05,

f shell is a program that allows applications to be device
independent. VYou can put all device dependencies in the shell.

Then when a new device is used, the application need not be
modified.

BTEPS FOR WRITIMNG DEVICE PROGRAHE

i-2 Device Drivers

GRiD supplies all the software necessary to use many devices. To
use a device that is not supported by GRiD, or to use the internal
modem differently from GRiD applications, you may have to write some
software to control the device.

PRINTERS

THE INTERNAL

OTHER

i,

8]
®

SERIAL

[

If you don’'t reqguire text formatting commands or graphics, you
can use a generic printer shell. If you do require these
features,; you should write a shell or modify a generic shell.
Writing a shell is covered in Chapter 3 - "Writing A Shell”. VYou
may also need to refer to Chapter 5 or Chapter 6 depending on
which interface your printer requires. If you write a shell, be
sure the final, linked file containing the shell has kind
“Printer™.

Use GriDManager 's CODE-0 command to make the shell your current
printer.

MODEM

Include calls to the modem gateway driver in your application
program as described in Chapter 4 - "Programming The Modenm
Gateway Driver".

Activate Hodem“Device™ from the command line or fram your
program. See Chapter 2 - "Adding And Removing Devices" for more
information on this.

DEVICES

Include calls to the serial gateway driver in your application
program for all devices except printers; you must use a shell for
printers. See Chapter 5 - "Programming the Serial Gateway
Driver"”

Activate Serial™Device™ from the command line or from your
program. See Chapter 2 - "Adding And Removing Devices" for more
information on this,

OTHER GPIB DEVICES

1.

I+ it is acceptable to send all device dependent commands from
your application, then you can use a generic GPIB shell. If you
want your application to be device independent, then you can

Introduction 1-3

write or modify a shell. Refer to Chapter 3 - "Writing A Shell"
and Chapter 4 - "Programming The BPIB Gateway Driver".

2. Activate your shell from the command line or from your program.

See Chapter 2 - "Adding And Removing Devices" for more
infarmation on activating shells.

1-4 Device Drivers

CHAPTER 2:

ADDING AND REMOVING DEVICES

This chapter provides information on how to add and remove devices from within
your program. VYou could also use the Activate and Deactivate command line

utilities

to achieve the same results. These utilities are described in the

Program Development Guide.

THE ACTIVE DEVICE TABLE

The Active Device Table, maintained by BGRiD-05, iz a table of
gateway drivers and device driver shells currently residing in
memory and avaiiable to be used by an application.

The table associates an ASCII string with the device or shell code;
this allows an application to attach to the driver by name instead
of by memory address.

You can add or remove {(also referred to as activate and deactivate)
gateway drivers and driver shells from this table dynamically. This
allows you to save memory by keeping memory resident only those
drivers necessary at a given time.

You must activate the modem and serial gateway drivers before using
them. Because the GPIB gateway driver is in GRiD-0S5, it is not
necessary to activate it. However, you must activate a GPIB shell
before using it.

The active device table also allows you to associate a GPIB address
with a shell when it is added to the table. Because driver shells
are re-entrant, you can associate the same driver code with devices
that have different GPIB addresses. This allows you to avoid

Adding and Removing Devices 2-1

duplicating code. For example, the same driver code can be used for
a Portable Floppy and an Extra Portable Floppy; only the GPIEH
address need change.

ACTIVATING AND DEACTIVATING GATEWAY DRIVERS AND SHELLS FROM YOUR PROGRAM

You can activate a pateway driver or shell from your program by
calling a procedure named ActivateDevice. Versions of the procedure
exist for both the Compact and Large models of compilation; they can
be found in files named Activate Compact™0BJ™ and Activate
Large™0BJ™ on GRiD Central: Socftware Subjects 3.1 under Contributed
Device Drivers. The appropriate object file should be linked to the
program making the call.

These procedures use the GRiD~05 call OsAddDevice. Applications can
use OsAddDevice directly, but the interface to ActivateDevice is
simpler and easier to use.

f similar procedure named DeactivateDevice exists in each of the
object modules and can be used to remove a driver or shell from the
active device table.

THE ActivateDevice PROCEDURE CALL

You must provide information about the attributes of the driver or
shell code and its location, which can be one of the following:

o The driver or shell is in a file on secondary storage.

o The shell code has been linked to the program making the
ActivateDevice call.

o The shell has already been activated and you want to use the same
code for another device.

The ActivateDevice procedure has the following PASCAL declaration.

NOTE: This definition is not in an include file. You must type the
declaration yourself in the interface specification of your PASCAL
program.

PUBLIC DeviceProcs;
PROCEDURE ActivateDevice (path: StringPtr;
names StringPtr;
VAR entryPoint: BYTES;
intAddr: BYTE;
attributes: WORD;
VAR errors: WORD);

path path is a string used to indicate the location of the

2-2 Device Drivers

name

entryPoint

intAddr

attributes

Bit

Q

3

gateway driver or shell to be activated. If you set
bit 0 of attributes (described below) to 0, set path
to the pathname of the driver or shell file. If you
set bit 0 to 1, then set path to the device name
including back quote (‘). If the driver or shell
code is linked to program (case two), then set path
to NIL. If path is not NIL, then the ActivateDevice
procedure automatically frees the path StringPtr.

name is a string that indicates the name that is to
be put into the active device table. Name should NOT
have a back quote (') in front of it. If you want
the title part of the path parameter to be the name,
then set name to NIL. 1If this parameter is not NIL,
then it is automatically freed.

If the shell is linked to the program, then set
entryPoint to the shell main procedure name. If not,
then this parameter should be a de-referenced NIL
Pointer. 1If entrypoint has any value other than NIL,
then path is ignored.

intAddr is the interface address (GPIB address) of
the device. If the device is not a GPIBR device, then
set intAddr to NULLBYTE (OFFh).

Individual bits in this word represent attributes of
the device. The following bits are defined (bit 0 is
the least significant bit):

Description

Driver location bit.

IF 0, then path is the pathname where
the driver or shell is located.

It 1, then path is the

name of an already activated device.

Visible bit.

0 - visibley 1 - invisible.

Invisible devices don’'t appear on the file

form's device list. For a device to appear on the
device list it must be visible and a mass storage
device.

This bit should be set to zero.
Mass storage bit.
0 - the device is a non mass storage device.

1 - the device is a mass storage device.

This bit should be set to zero.

Adding and Removing Devices 2-3

[}

This bit should be set to zero.

This hit should be set to rfero.

SearchMe bit.

0 - the device is searchable
i - the device is not software searchable

{(For this to be valid the mass steorage bit

must be 1) Sometimes GRiD-05 searches for files.
For example, if you select a text file from a file
form, BRiD-05 will search for a file with a kind
"Rum Text". It will only search in software
searchable mass storage devices.

All other bits in this word are reserved and should be set to

Zero.

Error

The Activatelevice routine returns an error code in
this parameter,

THE DeactivateDevice PROCEDURE CALL

To deactivate a gateway driver or shell, call the Deactivatelevice
routine with the name of the device to deactivate; specify the same
name an application would use to attach to the driver.

Here is the PASCAL definition for DeactivateDevice. It should also
be typed in the interface specification.

PROCEDURE DeactivateDevice {(pathName: StringPtr:

VAR error: WORD);

PathName is automatically freed in the procedure.

CODING EXAMPLES

Four examples are shown:

o fctivating the internal modem.

o PActivating the Extra Portable Floppy.

o Deactivating the modem.

o0 Activating a linked driver.

2-4 Device Drivers

ACTIVATING THE INTERNAL MODEM

"It is assumed that that a file named Modem“Device™
programs subject on a secondary storage device.

routine will search each mass storage device until the file is

found.
PROCEDURE ActivateTheModem;

CONST
nullByte = Offh;y
attribute = 80H;

VAR
error: WORD;
nullPtr: “BYTE;

BEGIN

nullPtr := NILj

ActivateDevice (NewStringlLit
NIL,
nullPtr®,
nullByte,
attribute,
error);

END;

ACTIVATING AN EXTRA PORTABLE FLOPPY

('Modem™Device™®’),

This example assumes that the Portable Floppy has already been

activated.

PROCEDURE ActivateExtraFloppy;

CONST
floppyAddr = 7;
attribute = 93

VAR
error: WORD;
nullPtr: “BYTE;

BEGIN

nullPtr := NIL;

ActivateDevice (NewStringLit
NewStringlLit
nullPtr”,
floppyAddr,
attribute,

{ mass storage, visible, already activated

('Portable Floppy®'),
("Extra FloppyR’),

Adding and Rembving Devices

exists in the
The ActivateDevice

}

2-5

error);
END;

DEACTIVATING THE MODEM

FPROCEDURE DeactivateTheModem;

VAR
error: WORD;

BEGIN
DeactivateDevice (NewStringlLit (' 'ModemB'), error);

{ Remember the backquote!'!! ?}
END;

ACTIVATING A LINKED DRIVER

It 1s assumed that a generic GPIB driver has been linked to this
program and that the OsDevice PROCEDURE has been declared PUBLIC in
the interface specification of this program.

'PROCEDURE ActivateGenericGFIE;

CONST
attribute = BOH;
Address = 28;
VAR

error: WORD;
nullPtr: “BYTE;

BEGIN
nullPtr := NIL;
ActivateDevice (NIL,
NewStringLit ('GenericGPIBE"),
OsDevice,
Address,
attribute,
error);
END;

2-6 Device Drivers

CHAPTER 3:

WRITING A SHELL

A shell is a program that BRiD-05 calls after an application program requests
device 1/0. Shells are usually written in the PL/M programming language.
Shells process the I/0 reguest and then pass the request to a gateway driver
which actually communicates with the device.

WHY USE A

SHELL?

Shells provide device independence by standardizing the interface to
the gateway drivers. Device independence is important because it
takes the burden of communicating to different devices away from the
applications programmer.

Shells translate generic commands from applications into
device-specific commands. For example, GRiDWRite includes commands
for formatting printed text. One such command is the boldface
command. However, different printers use different control
characters for boldface. Rather than requiring GRiDWrite to know
the boldface control characters for every printer, GRiDWrite uses a
generic printer language which is passed to the shell. The shell
then translates the generic boldface command into a printer specific
boldface command. In this way GRiDWrite can be used with a new
printer by simply creating a new shell rather than changing
GRiDWrite.

Writing a Shell 3-1

TYPES DF SHELLS

PRINTERS

For users not interested in text formatting commands or graphics,
generic printer shells are available for serial and GPIB printers.
They pass text as received from applications to the gateway driver.

If text formatting commands or graphics are desired, you can modify
one of the generic shells. OGBRiD uses a Universal Printer Language
that the shell must interpret and translate into printer specific
commands. Gee fAppendix & for a description of the Universal Printer
Language.

Here are the generic printer shells aviilable on BRiD Central under
Software Subjects 3.0 in the Contributed Programs subject:

HinimumSerial:

Protocol: None

Baud: 300

fissumes printer has at least a 128 byte internal buffer
GenericSerialETX/ACK:

Protocol: ETX/ACK

Baud: 1200

Assumes printer has at least a 128 byte internal buffer
GenericSerial XON/XOFF:

Protocol: XON/XOFF

Baud: 1200
Assumes printer has at least a 12B byte internal buffer

GenericBGPIB:

Default GPIB address: 21

OTHER GPIB DEVICES

If the device doesn't require data translation, and if
device-specific commands can be done in the application, generic
GPIB shells are available for devices that use GPIB Service Requests
and those that don't. These shells simply pass requests from
applications to the BPIB gateway driver without translating the
information into device specific commands.

If the you need a device specific shell, one of the generic GPIB

3-2 Device Drivers

shells can be modified.

OTHER SERIAL DEVICES

It is generally not necessary to write or modify a shell for a new
serial device other than a serial printer. Instead, the serial
gateway driver can be programmed from the application as described

in Chapter 5.

WRITING OR MODIFYING A SHELL

An application performs device I/0 by making calls to GRiD-05. The
sequence of calls is shown in the following figure: v

fittach Detach

+ T

Open Close

N |
Read

!
Wirite
GetStatus
|
SDetotatus

Figure 3-1. GRiD-0S Device I/0 Calls

Writing a Shell

3-3

When GRiD-0S receives an I/0 call, it passes an I/0 request to the
shell. The correspondence between GRiD-05 calls and I/0 requests is as

follows:

GRiD-0S Call I/0 Request
Activate - ddInitialize
0SAttach - ddAttach

050pen - ddOpen
0SRead - ddRead
OSWrite - ddWrite
0S6etStatus - ddGetStatus
05SetStatus - ddSetStatus
DSClose - ddClose
DSDetach - ddDetach
Deactivate - ddDeactivate

Table 3-1. GRiD-08 calls and I/0 Requests

The I/0 requests are actually constant numbers that are defined in the
PrinterDriver.Inc include file.

SHELL INTERFACE

A shell is written as a PROCEDURE in PL/M that accepts three
parameters:

OsDevice: PROCEDURE (request, pParameters, pError) PUBLIC REENTRANT;

DECLARE request WORD,
pParamters POINTER,
pError POINTER;

Here is a discusion of the parameters passed to the shell:
request The I/0 request number passed to the shell by BRiD-0S.

pParameters A POINTER to a parameter block containing information from
the application and GRiD-0S.

pError A PDINTER to a WORD where the shell can return an error
code to the application.

3-4 Device Drivers

Procedure

Parameter

Name

The name of the procedure must be OsDevice. This is because the shell

will be linked to an assembly language module {(JmpDev.Asa™0BJ™) that
expects this name. The assembly language module serves as a main

module for the shell; its only purpose is to provide a start address to

the linker.

Block

The parameter block has this format:

Farameter Block

Connect . ' Data Buffer

pEuFFar

position

lEHch

mode

riumBuf

irdRddr Ouarflow Block

pluerlow
dataiode
EQSchar
sachddr
timelut

Figure 3-2. The Parameter Block
Here is the PL/H declaration for the parameter block:

DECLARE ParambListType LITERALLY °STRUCTURE (

connection SELECTOR,
pBuffer POINTER,
position DWORD,
length WORD,

mode BYTE,
numBuf BYTE,
intAddr BYTE,
plvertlow POINTER)

Do not modify these parameters except as noted belaw.

Writing a Shell

ol

pBuffer A PDINTER to the buffer specified by the application when
. it made the GRiD-0S call. This buffer contains data for
ddRead and ddWrite requests or status information for
ddGetStatus and ddSetStatus requests.

length The length of the buffer as set by GRiD-05 according to
the number of bytes requested by the applicationy it is
updated by the gateway driver to reflect the actual number
of bytes transferred.

intAddr The GFIB address of the device with which the application
wants to communicate. If the device is serial, this
parameter can be ignored.

pOverflow A PUINTER to another STRUCTURE of parameters.
Overflow Block

The overflow block is used only in GPIB shells. The format of the
overflow block depends on the gateway driver called and the request
being passed to it. For all cases except when a ddSetStatus is being
passed to a gateway driver, the overflow block will have the following
format:

DECLARE OverFlowType LITERALLY "STRUCTURE (

dataMode BYTE,
EOSchar BYTE,
secAddr BYTE,
timeOut WORD) "3
dataMode - The data transfer mode used in GFPIB shells. A serial

shell can ignore this parameter.

EDSchar The End Of String character used in GPIB shells. A serial
shell can ignore this parameter.

sechddr Not used.

timeOut timeOut is only used by the GPIB gateway driver. It is

the length of time the gateway driver should wait before
giving up on a request. This number is in milliseconds
i.e., a timeout duration of six seconds would be expressed
as 6000.

When a ddSetS5tatus request is being passed to a gateway driver, the
format of the overflow block varies for GPIB shells. For information
on serial ddSetStatus, see Chapter 5. For information on GPIB
ddSetStatus, see Chapter 6.

3-46 Device Drivers

GATEWAY DRIVER INTERFACE

A shell communicates with a gateway driver with the 0SCallDriver call.
The OsCallDriver call looks like this:

OsCallDriver (pathName : BYTES;
level : Byte;
request : WORD;
paramList : ParamListType;
error : WORD;

pathName The pathname (formatted as a ShortString) of the gateway
driver. For a serial device, the pathname is 'Serial.
For a GPIB device, the pathname is 'GPIB.

level A value of | specifies that this is a low-level driver
(for a mass storage device such as bubble memory, hard
disk, or floppy disk), a value of 0 specifies that it is a
file level driver (for devices such as printers,
PhonelLink, serial devices, or non-disk GPIB devices). A
value of 81 or 80 indicates that the driver, rather than
the 0S will supply the address.

request A word defining the specific activity (such as open, read,
write) that the gateway driver is to perform on the
device. This is the dd-request passed by the application
to the shell.

paramList The parameter block specifying device characteristics.

PROCESSING I/D REQUESTS

The body of a typical shell, in outline form, looks like this:

Writing a Shell 3-7

IF request = ddinitialize THEN
Initialize any shell variables. If necessary, send initialization
coamands to the device using OsCallDriver and a ddWrite request,

IF request = ddRead THEN
Read from the device through the gateway driver and put data in
the application’s buffer. The shell should also translate data
from the device at this point if necessary.

IF reguest = ddWrite THEN
Write to the device through the gateway driver from the
application’'s buffer. The shell should should translate data into
a device-specific format at this point if necessary.

IF request = ddSetStatus THEN
Set shell characteristics. A typical use of the DsSetStatus call
is to allow the application to adjust the device timeout. This
ddSetS5tatus regquest resulting from 0OsSetStatus is not passed on to
the gateway driver. However, the shell can make separate
ddSetStatus reguests to the gateway driver to set gateway
characteristics as follows:

o Service Reguest Initialization or Selective Device Clear when
using the GPIB gateway as described in Chapter &,

o fA serial printer shell can set operating characteristics of the
serial gateway driver like baud rates, stop bits, etc. In this
case, the shell should set up an overflow block such as the
ones used for DsSetBStatus discussed in Chapter 3 and pass this
block and the ddSet5tatus reguest to the serial gateway driver.

IF request = ddBetStatus THEN
Pass shell status back to the application. This request is not
passed on to the gateway driver.

IF request = ddOpen,ddAttach,ddClose,ddDetach,ddleactivate THEN
Do nothing.

IF reguest = any other request THENM
Return error: ReguestNotSupported

UsSetStatus

You can use [OsSetStatus to pasz infeormation to the shell from an
application. The modem and serial gateway drivers are examples of
sophisticated OsSetStatus implementations. In those drivers, you can
pass a number of parameters, including rate of transmission, stop bits,
etc.

3I-B Device Drivers

fsBetStatus

The shell should meet the GRiD-0S5 minimum specifications for
OsBetStatus but can add user-defined fields. &See the GRiD-0S Reference

Manual for a discussion of OsbGetStatus parameters.

Writing a Shell 3-9

EXAMPLE GENERIC SERIAL PRINTER SHELL

This generic serial printer shell has a simple SetStatus function to
allow an application to adjust the device timeout. This shell uses the
serial defaults for baud rates, stop bits, etc.; the shell could be
modified to make ddSetStatus requests to the serial gateway driver.

$NOLIST LARGE OPTIMIZE(3)

/% Generic Serial Read and Write Shell
Default TimeOut: 5 seconds
*/

GenericSerialDriver: DO;
$INCLUDE ('wO'Incs'PlmLit.Inc“Text™)

/* Include declarations for ParamListType, etc. %/
$INCLUDE (PrinterDriver.Inc“Text™)

OsDevice: PROCEDURE (request, pParams, pError) PUB REENT;
DCL request WORD;
DCL pParams FTR;
DCL pError PTR;

DCL error BASED pError WORD;
DCL params BASED pParams ParamListType;

DCL pSetStatus PTR;

DCL setStatus BASED pSetStatus SetStatusType;
DCL StatusBlock SetStatusType;

DCL getStatus GetStatusType:

DCL getStatuslLength WORD;

error = 03
IF request = ddWrite THEN

IF params.length » 0 THEN
DO;
CALL OSCALLdriver (@(3, 'Serial’), 80, DOUBLE (ddWrite),
@params, @error); :
END;
ELSE
IF request = ddRead THEN
IF params.length > 0 THEN
DO
params.pOverflow = @overflow;

~ '3-10 Device Drivers

CALL OSCALLDriver (@(5,''Berial’),80,DOUBLE (ddRead),
@params,@error);
END;
ELSE
IF request = ddGetStatus THEN
DO;

/% Device is OPEN, update Access allowed, all other 0 ¥/
CALL SETB (0, @getStatus, SIZE (getStatus));
getStatus.open = 0FFH;
getStatus.access = 4
IF params.length { SIZE (getStatus)

THEN getStatusLength = params.length;
ELSE getStatuslLength = SIZE (getStatus);
CALL MOVB (@getStatus, params.pBuffer, getStatuslLength);
END;
ELSE

/% Ignore other valid requests, return error if not valid #*/

IF NOT ((request = ddOpen) oR
(request = ddInitialize) OR
{(request = ddSetStatus) OR
(request = ddClose) OR
{request = ddDetach) OR
(request = ddAttach) OR
{request = ddTruncate) OR
(request = ddDeactivate)) THEN

error = notSupported;

END;

END; /% Module #/

Writing a Shell 3-11

CHAPTER 4:

PROGRAMMING THE MODEM GATEWAY DRIVER

If GRiDTerm, GRiDVT100, GRiD3101, GRiDAccess, or GRiDManager do not satisfy
your communication requirements, you'll need to write a program that sets the
modem options yourself.

GRiD provi

des a modem gateway driver called Modem™Device™, through which you

can control the modem and send and receive data.

The modem

gateway driver supports voice mode, where you can talk through the

GRiD handset and listen on the speaker, and data mode, where the modem
tommunicates with a remote modem.

COMMUNICATION WITH THE MODEM DRIVER - PROGRAM OVERVIEW

To write a program that reads from and writes to the modem gateway
driver:

1. Add Modem™Device™ as an active device.
2. Attach to the modem using OsAttach with pathname = 'Modem.
3. Open the modem using OsOpen.

4, Program desired operating characteristics (bits/sec, stop bits,
etc) using OsSetStatus as described in this chapter.

5. If you are originating the call, use OsSetStatus to dial a phone
number and to establish a connection. If you are answering, use
OsGetStatus to obtain an identification number for the ring

semaphore. The gateway driver signals the ring semaphore when it

Programming the Modem Gateway Driver 4-1

detects an incoming call. You should wait for the signal using
OsWait, then use OsSetStatus to connect with the remote modenm.

6. Read from and write to the modem using OsRead and OsWrite.
7. Close and detach the modem using OsClose and OsDetach.

8. Remove the modem from the active device table.

THE OsSetStatus CALL

The OsSetStatus call has this PASCAL declaration:
PROCEDURE OsSetStatus (conn:WORD; VAR pBuffer:BYTES:
length:WORD; VAR error:WORD):
conn The connection number returned from an OsAttach call.
pBuffer fi pointer to a parameter block. The parameter block has a
mode byte followed by a varying number of parameter bytes.
See Figure 4-1.

length The length of the parameter block including the mode byte.

errar A WORD where an error code is returned. VYou can examine
this word to determine if the call was successful.

4-2 Device Drivers

The parameter block has this format:

pBuffer

&
n
1]
i

]
2
1
ot
14
5

Figure 4-1. The Parameter Block

DsSetStatus MODES

The following section describes the modes that can be used to
program the modem gateway driver. '

MODE O - RETURN 7O DEFAULT BETTIMES

A parameter block with mode byte = 0 and no parameter bytes causes
the modem gateway driver to return to a default state:

Default Value Mode To Change
Bits/Sec 1200 7
Data Bits 8 1
Stop Bits 2 1
Parity None i
Connection Timeout 30 Seconds 2
Character Timeout Forever 2
Receive Bueue Internal 4
Originate/Answer Automatic 43.
Bial Tone Timeout 15 Seconds 49

Programming the Modem Gateway Driver 4-3

Disconnect Timeout 3.3 Seconds 49

MODE 1| - SET OPERATING VALUES

! ' i Bits/ | Stop i i
i i iProtacel! Char i Bits i Parity |
Protocel = 1 fsynchronus
Bits/Char. = & - 3 bits/char.
& - & bits/char.
7 - 7 bits/char.
8 - B bits/char.
Stop Bits = 1 - 1 stop bit
2 - 1.3 steap bits
3 - 2 stop bits
Parity = 0 - Mone
i - Even
2 - 0Odd
3 - Mark
4 - Bpace
MODE 2 - SET TIMEOUT VALUES
i 2 1 CharTimeout | ConnectTimelut |

CharTimeOut and CannectTimeDut are WORD values.

CharTimeOut The number of milliseconds the gateway driver should
wait for a character before issuing a Timelut error.
I¥ vou set CharTimeOut to zero, then the gatway
driver waits until the reguested number of bytes are
available.

ConnectTimeOut The number of milliseconds the gateway driver should

wait for a handshake from the other modem after a
go-to~data (mode six) command.

4-4 Device Drivers

MODE 3 - FLUSH RECEIVE FIFO BUFFER

Mode 3 can be used to remove spurious characters from the receive
FIFO buffer.

MODE 4 - SET USER DEFINED RECEIVE FIFO BUFFER

1 1] 1
i 4 fifoPtr i fifolLength H
fifoPtr A POINTER to an input buffer in the application
program.
fifolength The length of the new buffer.

Use this mode when you want the gateway driver to use a larger input
buffer than the driver’'s internal 32 character FIFO buffer to avoid
overflow and loss of data. You should not access the new buffer
directly; but should use the OsRead call instead.

MODE 5 - DISESTABLISH DATA CONNECTION

Use mode 5 to exit data mode. Voice mode will be entered if it has
been enabled with mode 45; otherwise an idle state will be entered.

Programming the Modem Gateway Driver 4-3

MODE 6 -~ ESTABLISH DATA CONKECTION

Use mode 6 to go to data mode and attempt to handshake with the
other modem. 1If this does not happen within the connection timecut
period {(specified in mode 2}, a TimeOut error will be returned. VYou
can determine the type of handshake with mode 43,

MODE 7 - SET BITS/SECOND

! 7 | Speed
Speed = 5 - 300 Bits/Sec.
7 - 1200 Bits/Sec.

MODE 41 - TAKE PHONE OFF HOOK

Use mode 41 to connect to the phone line. The off-hook function is
also done automatically in mode 44.

MODE 42 - PUT PHONE ON HOOK

Use mode 42 to disconnect from the phone line. VYou cannot reconnect
to the phone line for a time called the disconnect delay. This

4-46 Device Drivers

delay ensures that the phone is really hung up. The disconnect
delay can be set with mode 49.

MODE 43 - SET ORIGINATE OR ANSHWER

! i Originate |
b 43 H or H
H i Answer :

Originate or Answer =

Automatic
Originate
Answer

Don't Change

0
1
2
235

Use mode 43 to control the type of handshake used in a mode 6
command. If automatic is chosen, the gateway driver will use

originate mode if the phone has been dialed since the last off hook
command, else answer mode will be used.

Programming the Modem Gateway Driver 4-7

' MODE 44 - DIAL PHONE NUMBER

MODE 45 -

Mode 44 causes the modem gateway driver to dial a number. If the
phone is not off the hook (see mode 41), then an off hook command is
automatically executed before dialing.

TouchTone A BOOLEAN that indicates if a touchtone or pulse
dialing is being used. Use TRUE for a touchtone
phone.

Length The length of the phone number that follows.

Fhone Number The phone number to be dialed. The number should be

in ASCII form. The following characters are valid:

Character Interpretation
0-9 Same as on a phone
. One second delay
- Wait for a dial tone
* Same as on a touchtone phone
Same as on a touchtone phone
space, parentheses, dash Ignored

Spaces, parentheses and dashes can be used to make the number more
readable but are ignored by the gateway driver. However, they must
be included when determining the length parameter.

ENABLE VOICE MODE

Use mode 45 to enable voice mode. When voice mode is enabled, voice
mode will be entered when data mode is exited with mode 3.

4-8 Device Drivers

MODE 46 - DISABLE VODICE MODE

If voice mode is disabled, an idle state is entered when exiting
data mode using mode 5.

MODE 49 - SET TIMEQUT VALUES

DialTone Timeout and DisconnectTimeout are WORD values.

DialTone Timeout The number of milliseconds the gateway driver
should wait for a dial tone when a caret (") is
encountered in a phone number. If this time is
exceeded, a Timelut error is returned.

Disconnect TimeOut The number of milliseconds the gateway driver
should delay before allowing a reconnection
(mode 41).

MODE 50 - SET SPEAKER VOLUME

]
<

Volume - Speaker Off

253 - HMaximum Volume

This mode lets you adjust the volume of the speaker.

Programming the Modem Gateway Driver 4-9

THE OsGetStatus CALL

The OsGetStatus call obtains information about the current state of
the modem gateway driver. This call is described in the GRiD-05
Reference Manuzl but the status record format differs for every
device. The status record for the modem gateway driver has this
format:

StatusType = RECORD

open: BOOLEAN:
access: BYTE:
seek: BYTE

filePosition: LONGINT;
numCharsInFito: WORD;

syncDetect: BOOLEANS
connection: BYTE:
usartStatus: BYTE;
modemStatus: BYTE
RingSID: WORD;
END;
cpen If the modem gateway is attached, this BOOLEAN is
TRUE.
access This BYTE is bit-mapped to indicate the type of

access allowed. It will always be set for read and
write access. See the GRiD-05 Reference Manual for
a description of the bit-map.

seek This BYTE is always O.
filePasition This LONGINT is always 0.

numCharsInfFifo This WORD contains the number of characters
currently in the recieve buffer.

synchDetect This BDOLEAN is always FALSE.

connection This contains the current status of the connection:

connection = 0 No connection established
1 - 0ff hook, voice mode.

2 - 0ff hook, data mode.

3 - Not used.

4

- Carrier was lost.

4-10 Device Drivers

usartStatus This byte allows you to determine if errors have

poccured on the interface.

bit-mapped as follows:

MSE

763543

x PFOU

where: P marks

F marks
error.

0 marks
Brror.

U marks
BFFOr,

21

X X

the
the

the

the

LSB
]
%

bit position
bit position

bit pbsition

bit position

A one (1) in a bit position means

cccured.

modemStatus This byte allows you to determine
certain signals on the interface.
byte is bit-mapped as follows:

MSH

765 43

21

LSB

0

»ox X 0 x D xox

The usartStatus byte is

for parity error.
for framing

for overrun

for underrun

that error has

the state of
The modemStatus

where: C marks the bit positien for Clear To Send

(CTS)

D marks the bit position for Dial Tane

Detect

A one (1) in a bit position indicates that signal

is active.

ringSID This WORD contains the ring semaphiore

identification number.

The semaphore will be

signaled when the ring indicator line is active.

Programming the Modem Gateway Driver 4-11

PROGRAMMING THE MODEM EXAMPLE

This is an example of & program that originates communication with a
remote modem. It does the necessary setup and then reads a
character from the modem and writes it back. It then does the steps
necessary to clean up.

NOTE: Although this program does not perform error checking after
GRiD-08 calls, you should include error checking in your code to

improve reliablity.

$DEBUG COMPACT NOLISTY

MODULE Maing

$INCLUDE ('w0'incs'Common.inc™text™)
FINCLUDE (*w0'incs'ConPas.inc™text™)
$INCLUDE ("w('incs'0OsPasProcs.inc™text™)
FINCLUDE ("w0'incs'OsPasTypes.inc™text™)
$INCLUDE ("wO'incs'WindowPFrocs.inc™text™)
FINCLUDE ('w0'incs 'WindowTypes.inc™text™)
$LIST

PROGRAM Maing

CONST deviceName = "Modem ' g
tempNumber = ""9~5551212 7
TYPE MumberType = RECORD
mode: CHAR;
touchtone: BOOLEAN;
length: CHAR:
number: PACKED ARRAY [1..10] OF CHARg
END;
VAR modemID: WORD;
che CHAR:
ParameterBlock: PACKED ARRAY [1..91 OF CHAR;
pathName: FACKED ARRAY [1..73 OF CHAR;
reserved: Bytes
Brror: WORD
Phone: NumberTypes
actual: INTEGER;
BEGIM
{—=memmmme- attach to the epdem ----------------c---mmmoom——
pathName ¢= deviceName;
pathNamel11 s= CHR{6): { Device name is 6 characters
reserved = {;
modemID := OsAttach (pathName, oldFileMode, reserved,

4-12 Device Drivers

updatefccess, error);
{(-=m=mm—- open the Modem ----------------o--emm e B

OsOpen {(modemID, 1, error):

{-=mmmmm - now establish some appropriate Modem settings --3
ParameterBlock[1]l := CHR(1)3; { mode byte
ParameterBlock{2] := CHR(1); { async }
ParameterBlock(3] := CHR(8); { 8 data bite= ;
ParameterBlock[4] := CHR(3); { Z stop bit 3
ParameterBlock{3] := CHR(1); { even parity 1}

0sSetStatus (modemID, ParzmeterBlock, 5, error});

{-=-mmmm——- set bits/sec --------o----eem e 3
ParameterBluck[l] := CHR(7): { mode byte }
ParameterBlock[2] := CHR{S5); { 300 Bits/Sec I

(sSetS5tatus (modemID, ParameterBlock, 2, error);

{-=mommmm turn the speaker up -----------------moommomm oo 3
ParameterBlock[11 2= CHR(50); { mode byte }
ParameterBlock[2] := CHR(235); { volume byte 2

OsSetStatus (modemlID, ParameterBlock, 2, error}:

(e dial the number -------------e--——m— e }
Phone.mode := CHR(44); { mode byte 3
Phone.touchtone := TRUE; { touchtone ?
Phone.length := CHR(10); { # length 1}
Phone.number := tempNumber; { number 3

0sS5etStatus (modemID, Phone, 13, error);
(- go to data mode -------mmeemommm e e H
ParameterBlock[1] := CHR(&6); { mode byte 1}

OsSetStatus (modemID, ParameterBlock, 1, error);

{-=mmmmmm turn the speaker off -----------m—momme oo H
ParameterBlock[1] := CHR(S0); { mode byte ?
ParameterBlock[21 := CHR(0); { volume byte }

OsSetStatus (modemID, ParameterBlock, 2, error);

Programming the Modem Gateway Driver 4-13

actual := 0OsRead {(modemID, ch, 1, error);

{(~mmmmm - write a CHAR to the modem ---------------------
OsWrite (modemID, ch, i, errar):

{(mmmmmm e disestablish data mode --~-----------oooooo——uo
ParameterBlock[11 := CHR(3); { mode byte 3
OsSetStatus (modemID, ParameterBlock, 1, error);

{mommmmm e put phone on hook -----=-----eoomm e
ParameterBlock{1] := CHR{42}); { mode bvte I
OsSetStatus (modemlID, ParameterBlock, 1, error);

{mommm close the modem -----------------—-——-————————-—-
OsClose (modemlID, error);

{=--mommmem detach from the modem ----------~—-ro--ooommoo
OsDetach {(modemID,error};

OsExit (0}

END

4-14 Device Drivers

DEVELOP FILE FOR HODEM EXAMPLE

:Name: Modem Example
:Prefix: Example

:Sources:
HodemExample.Pas

tlListings:

‘w'LST’
:0Objects:
‘w'0Bd’

:Controls Yes w/Debug:

slink:

DEBUG

Link ‘w;DBJ‘HodemExampleEPaEWDBJ”,‘w‘Libs‘CampactSystemCalls“Lib"
70 ModemExample™RUN™ BIND SEGSIZE (STACK{+1500)) NOPRINT

:Test:

Activate 'w'Programs ' Modem™Device™

HodemExample
Deactivate "Modem

:Debug:
Debug ModemExample

:Command Line:
DevelopmentExecutive

:GridManager:
GriDManager

Programming the Modem Gateway Driver

4-15

CHAPTER 5: PROGRAMMING THE SERIAL GATEWAY DRIVER

SERTAL COMMUNICATIONS OVERVIEW

This chapter assumes you are familiar with the R5-232C serial
communications standard. However, a short review of some relevant
concepts follows.

In the RS5-232C interface, there are two kinds of communication
equipment - Data Terminal Equipment (DTE) and Data Communication
Equipment (DCE). DTE generally are the source or destination of
communication such as terminals or computers. DCE are usually
devices that provide communication services, such as a modem. See
Figqure 5-1.

Programming the Serial Gateway Driver 5-1

THE

5-2

GRil

Compriter Moderm
OTE 4 3 OCE
1!
\l

Y
:#j% Telsphone Sustem

np

OCE OTE

Modem Compurter

Figure 5-1. The Relationship Between DTE and DCE

The transfer of data between a DTE and a DCE is controlled by
certain signals:

Signa Direction

Reguest to Send (RTS) DTE to DCE
Clear to Send (LTS DCE to DTE
Data Terminal Ready (DTR) DTE to DCE
Data Set Ready (DSH} DCE to DTE
Data Carrier Detect (DCD) DCE to DTE
Ring Indicator (RI) DCE to DTE

Table 5-1. Handshaking Signals

BRiD SERIAL INTERFACE

The GRiD serial port provides an RS5-232C compatible interface. The
computer has a serial connector {(Canon 2ZDEL198) on the rear which has
19 pins instead of the standard 23. The six pins not represented
are used for a secondary channel but few devices use this feature.
GRiD manufactures cables (model #6100) to provide a 19 pin to
standard 23 pin connector.

Device Drivers

The GRiD computer

igs wired as a DTE

{Data Terminal Equipment).

Therefore, special cables may need to be fabricated in order to
connect the computer directly to other devices that are also set up

as DTE.

BERIAL CONMNECTOR

FIN

S~ A e

i1
13
15
17
i9

NOTE:

The serial connector has the following pinout:

FUNCTION

Shield

RxD

£T18

Logic Gnd

TxD Reference
TxC

Ring Indicator
TuC Reference
RxC Reference
+i0V DC @ 100mA

In/0ut

In
in

Out
In
in
gut
in
Out

PIN

FUNCTION

TxD
RTS5
DSR
Carrier Detect
RxD Reference
DTR

-10V DC @ 100mA
T«C/Speed Select

RxC

The voltage source circuits should be used only for testing.

Table 5-2.

RS8-423 AND RE-422 COMPATIBILITY

Serial Connector Finout

In/0ut

Qut
Jut
In
in
In
Out
Qut
Out
In

R5-423 and R5-422 are extensions to RS5-232 that allow higher signal
rates, greater distances between stations, and improved noise
immunity. PBoth standards specify that incoming signals shouid be
evaluated differentially.
Balancing is a techniqne that reguires two
conductors per circuit but results in vetter performance.

should be balanced.

The GRiD serial
of the R5-422 c=iandard.
and RxC.

TxD, RxD, Tu

SERIAL RINB SEMAPHORE

RS5-422 further specifies that signals

interface surports the R5-423 standard and a subset

R5-422 balanced lines are available for
R5-423 compatibility can be attained by
grounding the RxC and RxD reference lines.

Upon initialization, the serial gateway driver creates the serial

ring semaphore.
the ring indicator circuit is active

The gateway driver signals this semaphore whenever
(if rino interrupts are

enabled). An application program can do an UsWait on the semaphore

Programming the Serial Bateway Driver

5-3

and allow other processes to run while it is waiting for a ring
indicator signal. VYou obtain the identification number for the
serial ring semaphore using the OsBetStatus call.

PROGRAMMING THE SERIAL GATEWAY DRIVER FROM AN APPLICATION

(3N
s

(2]

w
a

Add Serial*Device™ as an active device.

fttach to the serial gatewav driver using Osfttach with filename
= ‘Berial,

Open the serial gateway driver using OsOpen.

Program desired operating characteristics ({(bits/sec, stop bits,
etc) using OsSetStatus.

Use OsSetStatus to establish a connection with the other device.

Read from and write to the serial gateway driver using OsRead and
Oslrite.

Close and detach the serial gateway driver using Osllose and
OsDetach.

Femove the serial gateway driver from the active device table.

PROGRAMMING THE SERIAL GATEWAY DRIVER FROM A SHELL

5-4

If vou are writing a serial printer shell, you should follow the

-

steps outlined in Chapter 3 with the following additions:

0

In the ddinitialize section of the shell, the shell should add

serial to the list of active devices as covered in Chapter 2.

In the ddlpen section of the shell, the shell can make ddRequests
to the serial gateway driver using {OsCalliDriver to program
operating characteristics and to establish a data connection. In
this case, the overflow block would have the same format as the
OsSetStatus buffer covered in this chapter.

In the ddDeactivate section of the shell, the shell should remove

serial from the list of active devices as covered in Chapter 2.

Device Drivers

THE OsSetStatus CALL

The 0sSetS

PROCEDURE

conn

pBuffer

length

error

tatus call has this PASCAL declaration:
Os5etStatus (conn:WORD; VAR pBuffer:BYTES;
length:WORD; VAR error:WORD);
The connection number returned from an OsAttach call.
A pointer to a parameter block. The parameter block has a
mode byte followed by a varying number of parameter bytes.
See Figure 5-2.
The length of the parameter block including the mode byte.

A WORD where an error code is returned. VYou can examine
this word to determine if the call was successful.

The parameter block has this format:

FEUFF

(=

Farameter
Butes=

Figure 5-2 The Farameter Block

Programming the Serial BGateway Driver 3-9

OsSetBtatus WODES

MODE 0 - RETURN TO DEFAULYT BETTINGS

A parameter block with mode byte = 0 and no parameter bytes causes
the gateway driver to return to a default state:

Default Value Mode To Change
Bits/Sec 1200 7
Data Bits a8 i
Stop Hits 2 1
Parity ‘ None 1
Connection Timeout 30 Seconds Z
Character Timeout Forever 2
Receive @Oueue Internal 4
Required For Go-To-Data €75, DCD 60
Ring Interrupt Enabled 61

5-6 Device Drivers

MGDE 1

HMODE

- SET OPERATING VALUES

] g i Bits/ | Btop : i
H 1 iProtocaoll Char. | Bits i Parity |
] b H i] 1
Frotocol = 1 Asynchronus
Bits/Char. = 5 - 5 bits/char.
& - b bits/char.
7 - 7 bits/char.
8 - B bits/char.
- Stop Bits = 1 - 1 stop bit
‘ 2 - 1.5 stop bits
3 - 2 stop bits
Parity = ¢ ~ MWone
i ~ Even
2 - Ddd
3 - HMark
4 - OSpace

NOTE: Mark and
bits/character.

space parity are only allowed with less than eight

2 - SET TIMEOUT VALUES

L

CharTimeOut and

CharTimelut

ConnectTimeDut

ConnectTimeOut are WORD values.

The number of milliseconds the gateway driver should
wait for a character before issuing a TimeOut error,
If you set CharTimeOut to zero, then the gatway
driver waits until the requested number of bytes are
available.

The number of milliseconds the gateway driver should

wait for a handshake from the other device after a
go-to-data (mode six) command.

Programming the Serial Gateway Driver 5-7

MODE 3 - FLUSH RECEIVE FIFO BUFFER

Mode 3 can be used to remove spurious characters from the receive
FIFD buffer.

HODE 4 - SET USER DEFINED RECEIVE FIFD BUFFER

H 4 fifoPtr : fifolength !
fifoPtr A FPOINTER to an input buffer in the application
program.
fifolength A WORD epecifying the length of the new buffer.

Use this mode when you want the gateway driver to use a larger input
buffer than the driver's internal 32 character FIFD buffer to avoid
overflow and loss of data. VYou should not access the new butfer
directly: but should use the OsRead call instead.

MODE 5 - DISESTABLISH DATA CONNECTION

Use mode 5 to exit data mode. The driver will drop the DTR and RTS

5-8 Device Drivers

MODE &6 - ESTABLISH DATA CONNECTION

Use mode 6 to go to data mode and attempt to handshake with the
other device. The driver will set the RTS and DTR lines active and
wait for DCD and CTS to go active (see mode 60). If this does not
happen within the connection timeout period (specified in mode 2), a
TimeOut error will be returned.

MODE 7 - SET BITE/SECOND

]])

H 7 | Speed |

] 1]

Speed = 0 - 50 Bits/Sec.

| - 75
2 - 110
3 - 134.5
4 - 150
] - 300
b - 600
7 - 1200
8 - 1800
9 - 2000
10 - 2400
11 - 3600
12 - 4800
13 - 7200
14 - 9600
15 - 19200

Programming the Serial Gateway Driver 5-9

MODE 60 - EIGNALE REGUIRED TO COWPLETE A& BOD-TO-DATA COMMAND

MODE &1 -

1]

Mode 60 allows you to control whether CTS or DCD, or both, must be
active to complete a go-to-data command (mode = 6). The default is
that both CT5 and DCD must be active. The mask bvte is used to
specify which signal(s) are to be affected by this command. The
data byte is used to specify whether the signal{s) are required or
not.

The mask and data bytes are both bit-mapped as follows:

MSH L5HE

76543210

» % C 2 D x x o
where "C" marks the bit position for the LTS5 signal and "D" marks
the bit position for the DCD signal. VYou should set the bit
position(s) in the mask byte to one for the signal{s) te be changed

and set the bit position{(s) in the data byte to one to indicate
which signal(s) need be present to complete & go to data command.

ENABLE/DISABLE RING INTERRUPT

i
<

Option byte - Disable Ring Interrupt

1 - Enable Ring Interrupt

Hode &1 tells the driver whether or not to generate an interrupt
when it detects a ring indicator signal. GSome devices may not have
the capability to drive the ring indicator line and will simply keep
it active, thus reducing performance by causing unwanted interrupts.
You should disable the ring interrupt in that case.

Device Drivers

THE OsGetBS8tatus CALL

The OsGetStatus call obtains information about the current state of

the serial gatewav driver.

This call

is described in the GRiD-0S

Reference Manual but the status record format differs for every

device.
format:

StatusType =

open

aCCcess

seek
filePosition

numCharsinFifo

~synchDetect

connection

The status record for the serial gateway driver has this

RECORD
open: BOOGLEAN;
ACCESS! BYTE:
seek: BYTE;
tilePosition: LONGINT;
numCharsinFifo: WORD;
syncDetect: BOOLEAN;
connection: BYTE;

- ModemContrel: BYTE;
unused: BYTE;
RingSID: WORD

END:

I+ the serial gateway is attached, this BOOLEAN

will be TRUE.

This BYTE is bit-mapped to indicate the type of

access allowed. It will always be set for read and
write access. See the GRiD-05 Reference manual for
a description of the bit-map.

This BYTE is always 0.

This LONGINT is always 0.

This WORD contains the number of characters
currently in the recieve buffer.

This BOOLEAN is always FALSE.

This contains the current status of the connection:

connection

Frogramming the Serial Gateway Drivéf

4 - Carrier was lost.
2 - Connection established.
0 - No connection established.

5-11

modemControl This byte allows vou to determine the if certain
signals are active on the interface. The
modemControl byte is bit-mapped as follows:

M5B LEE

~J
o
[y}
=9
(=}
2

10

¥ % % ¥ xw DER

=

where: marks the bit position for DCD
marks the bit position for CTS

R marks the bit position for DSK

o

A one (1) in a bit position indicates that signal
is active.

ringSID This word contains the ring semaphore
identification number. This semaphore will be
signaled when the ring indicator lipne is active and
ring interrupts are enabled. Gee OsSetStatus mode
61. ‘

5-12 Device Drivers

PROGRAMMING THE SERIAL GATEWAY DRIVER EXAMPLE

This is an example of a program that communicates with another
device using the serial port. It does the necessary setup and then
reads a character and writes it back. It then does the steps
necessary to clean up. '

NOTE: Althougﬁ this program does not perform error checking after
GRiD-0S8 calls, you should include error checking routines in your
code to improve reliability,)

$DEBUG COMPACT NOLIST

MODULE HMaing .

$INCLUDE ("w0'incs Common.inc™text™)
$INCLUDE ('w0'incs'ConPas.inc™text™)
$INCLUDE ('w0'incs'OsPasProcs.inc™text™)
$INCLUDE {('wO'incs’'0OsPasTypes.inc™text™)
$LIST

PROGRAM Main;

CONST deviceName = ' ‘Serial’;
VAR SeriallD: WORD;
ch: CHAR;
ParameterBlock: PACKED ARRAY [1..91 OF CHAR;
pathName: PACKED ARRAY [1..81 OF CHAR;
reserved: Byte;
error: WORD
actual: INTEGER;
BEGIN
{--====-==- attach to the serial gateway ----------->---c--- 3
pathName := deviceName;
pathNamel1] := CHR{7): { Device name is 7 characters }
reserved := 03

SeriallD := OsAttach (pathName, oldFileMode, réserved,
updateAccess, error);

{-=mmm———- open the serial gateway --------------c--oooouo- 3
OsOpen (seriallD, 1, error);
{---- now establish some appropriate serial driver settings -}

ParameterBlock[1] := CHR{1)3 { mode byte }

Programming the Serial Gateway Driver 5-13

-

FarameterBlock[2] := CHR{1); { async }

ParameterBlock[3] := CHR{B):s { 8 data bits ¥
ParameterBlock(4] := CHR(3)g { 2 stop bit }
ParameterBlockIS] := CHR{1)3 { even parity I

OsSetStatus (SeriallD, ParameterBlock, 5, errorlg

(- Set bits/sec ---------morommomm oo b

ParameterBlock(1]
FarameterBlock[2]

CHR{71}3 { mode bvte I
CHR{3) ; { 300 Bits/S5ec }

n

OsSetStatus (SeriallD, ParameterBlock, %, errorl;

(-mmmmmmm e go to data mode ---b---es-eomsem oo e oo ¥
FarameterBlock[1] := CHR(&); | { mode byte ?
OsSetStatus (Serialld, ParameterBlock, 1, error);

{mmmmmmmm——— read a CHAR from the Serial gateway ---=-—-=---- H
actual := 0OsRead {(SeriallD, ch, 1, errorl;

{-=-mmomom e write a CHAR to the serial gateway -----»----—-- ¥
OsWrite (SeriallD, ch, 1, error);

{-vommmmee - disestablish data mode -------------co-oc—e——- 3
ParameterBlock[1] := CHR(3); { mode byte
OsSetStatus (SeriallD, Parameterﬁlnck7 1, error};

{(rrommmmeeee close the serial gateway ------------o-ooomcem- b
BsClose {seriallD, errorl;

{(=mmmmmm e detach from the Serial gateway ------=------o--- ¥
OsDetach (SeriallD,error);

OsExit (0D

END

5-14 Device Drivers

DEVELOP FILE FOR SERIAL EXANPLE

sName: Serial Example
tPrefix: Example

:Sources:
SerialExample.Pas

tlistings:
‘W' LET®

sObjects:
‘w'0BJ”

sControls Yes w/Debug: DEBUG
shink:

Link 'w' 0BJ ' SerialExample.Pas“0BJ™, w' Libs ' CompactSystemCalls™Lib™
TO SerialExample™RUN™ BIND SEGSIZE (STACK(+1300)) NOPRINT

:Teste
fictivate 'w Programs’Serial“Device®
SerialExample
Deactivate 'Serial

: Debug:
Debug SerialExample

:Command Line:
DevelopmentExecutive

:GridManager:
GriDManager

Programming the Serial Gateway Driver 5-15

CHAPTER é: PROGRAMMING THE GPIB BATEWAY DRIVER

GPIB

OVERVIEW

The General Purpose Interface Bus (BPIB) is a parallel interface
used to transmit byte-wide data. At GRiD, the interface is used for
disk drives, printers, and plotters. Since the bus is arbitrated,
many devices can be hooked up simultaneously and each device has a
unique address. The GPIB supports addresses ranging from 0 to 31.

The interface supports three kinds of devices: Controllers, Talkers
and Listeners. A Controller is a device that arbitrates the busg
talkers write date onto the busy and Listeners only receive data.
Some devices may combine the functions. A computer running GRiD-0S
is a Controller but also has Talker/Listener capability.

Data transfer on the bus is arbitrated by the Controller. The
Controller first places the addresses of a Talker and Listener{s}) on
the bus before each message. The messages can either be transmitted
a byte at a time or in blocks. Handshaking on the bus ensures that
Talkers send at a rate compatible with Listeners and there is a
signal called EO! {End or Identify) that indicates when a message is
complete.

Some devices can interrupt the Controller. This occurs on a line
called Service Request (5R@8). After the interrupt, the Controller
initiates a process called a Serial Poll to determine which device
reguested service.

Programming the GFIB Gateway Driver b-1

GRiD GPIB BATEWAY DRIVER OVERVIEW

6-2

The GFIB gateway driver transmits data in two modes: low speed and
high speed. In the low speed mode {zometimez called the interrupt
mode), the gateway driver transmits data a single bvte at a time and
checks atter every bvte to see if the transmission has been
terminated. Termination can occur one of five ways:

o The number of bytes reguested has been transferred.

o The sending device sent a special bvte called the end of string
{E0S) character. For example, a digitizer might send a carriage
return after each coordinate has been transmitted over the bus.
The EO5 character is device dependent and can be specified to the
GPIB gateway driver. If the device doesn’'t have an EOS character
or if vou want to disable this feature, the EOS5 character should
be specified as OFFH when programming the gatewav driver.

o The other device indicated it was finished by asserting the EOI
line on the bus.

o The request timed out.

o An ervor occured on the GFIB bus.

In the high speed mode (sometimes called the DMA mode), the gateway
driver transfers blocks of data to or from a special address in
memory; special timing is implemented to speed up the transfer.
Termination can occur one of four ways:

o The number of bytes requested has been transmitted.

a The other device indicated it was finished by asserting the EODI
line on the bus.

o The request timed out.
o An error occured on the GPIB bus.

Because there is no EOS concept in the high speed mode, you should
use the low speed mode whenever an EOS5 function is desired and the
high speed mode otherwise.

I vou use the low speed mode, you can program the amount of time
the driver should wait before issuing a request timed-out error. In
the high speed mode, the timeout duration is fixed at five seconds
because a hardware timer is used.

Device Drivers

DATA STRUCTURES

Three main data structures are important to a programmer interested
in writing a GPIB shell: a parameter block and two kinds of overflow
blocks.

PARAMETER BLOCK
The parameter block has this PL/M declaration:

DCL ParamListType LITERALLY °'STRUCTURE

connection SELECTOR,
pBuffer POINTER,
position DWORD,
length WORD,

mode WORD,
numBuf BYTE,
intAddr BYTE,
pOverflow POINTER) "3

These parameters shouldn’'t be modified by the shell unless otherwise
noted. The parameters of interest are:

pBuffer A POINTER to the buffer specified by the application
when it made the G6RiD-05 call.

length The number of bytes requested by the application. It
is updated by the gateway driver to the actual number
of bytes transferred.

intAddr The GPIB address of the device with which the
application wants to communicate. If the shell was
not assigned an address when it was activated, this
parameter is NULL (OFFH). You should check for NULL
and assign an address in that case.

pOVerflow A FOINTER to another block of parameters. You should
set pOverflow to point to this block. The format of

the overflow block varies as described in the
following sections.

OVERFLOW BLOCK FOR I/D REQUESTS

This overflow block is used when sending ddRead, ddWrite, or
ddDeactivate to the gateway driver; it appears as follows:

FProgramming the GPIB Gateway Driver 6-3

DCL OverflowType LITERALLY ° STRUCTURE |

dataMode

EQSchar

secAddr

timeOut

datatiode BYTE,
EQSchar BYTE,
secAddr BYTE,
timeOut WORD) "3

The data transfer. mode. You should put a O in this
byte if the high speed mode is desired, and a 7 if
the low speed mode is desired.

In the low speed mode, set this parameter to the
character, if any, used to terminate a message. In
the high speed mode, or if no EOS character is
desired, set it to OFFH.

Not used.

In the low speed mode, zet this parameter to the
length of time you want the gateway to wait before
giving up on a request. This number is in
milliseconds, i.2., a time out duration of siu
seconds is specified as 6000, If the high speed mode
is chosen, the timeout is fixed at five seconds.

OVERFLOW BLOCK FOR SETEVTATUS REQUESTS

6-4

This overflow block is used when sending a ddSetStatus reguest. It
appears as follows:

DECLARE gatelaySetStatus STRUCTURE ¢

mode

datakord

mode BYTE,
dataWord WORD) 3

Set this byte to 0 if you want to send a selective
device clear (reset) to the device. VYou should set
this byte te 2 when notifying the gateway driver to
recognize service Reguests from a2 device.

If you want to recognize service requests from a
device, set this word to the identification number of
the semaphore that is to be signaled. When doing a
selective device clear, ignore this parameter.

NOTE:s FaramlListType and OverflowType are defined in an Include file
-~ PrinterDriver.Inc. GateWavSetStatus should be defined in
the shell.

Device Drivers

SERVILE REQUESTS

Some devices can interrupt the compufer by asserting the Service Request
line. Typically, service requests are used by a device to indicate a
readiness to transfer data or to report an error. If the gateway driver
has been notified to recognize service requests for a device and one
occurs, the driver will:

1. Poll the bus to determine which device requested service,

Read a status byte from the requesting device.

[y

3. Signal a semaphore and pass the status byte through the semaphore
note. You must create the semaphore and pass the semaphore
identification number to the gateway driver with ddSetStatus reguest,
mode two.

There are two major uses for service requests:

o The service request is used to report a readiness to transfer data.
Some devices require a command to be written to them before they can
transfer data. For example, a device might need a command sent to it
before it will transmit. 1In the ddRead section of the shell, vou
would write the command to the device and then wait for a service
request before reading from the device.

o The service reguest is used to report an asychronous event. In this
case, the application should check for the signal. For example, the
device might generate a service request when it detects an error
condition. VYour application could have a process waiting for an error
signal and then take appropriate action.

Service requests are very device-dependent and many devices do not
support them. If they do, they may need to be programmed to supply a
service request. Check your device manual for details.

When the shell receives a ddDeactivate request, delete the semaphore and

pass a ddDeactivate request to the gateway driver. This will inform it
to stop responding to service reguests from this device.

Programming the GPIB Gateway Driver 6-5

PROGRAMMING THE GPIB GATEWAY DRIVER EXAMPLES

This section contains four examples of GPIB driver programming:

o Sending a selective device clear to a device.

o Notifving the GFIB gateway driver to recognize service reguecsts from a
device.

o Heading from the device.

o Writing to the device.

All the examples assume these data declarations:

DECLARE params ParamListTvpe;

DECLARE overflow OverflowType;

DECLARE plotBuf (B8) BYTE;

DECLARE gateWaySetbtatus STRUCTURE
mode BYTE,
dataWord WORD) 3

RESET THE DEVICE

This code tells the GPIPB gateway driver to send a selective device clear
{reset) to the device at the address specitied.

/% 14 the device wasn’'t assigned an address when
it was activated, assign a default one now %/
IF params.intfAddr = OFFH THEWN
params.intAddr = 28;

gateWaySetStatus.mode = 03 /% Reset #/

params.pOverflow = @gateWaySetStatus;

CALL DSCALLDriver (@(5, 'GFIB’),B80,D0UBLE (ddSetStatus),
@params,@error);

6-6 Device Drivers

NOTIFY THE DRIVER TD RECOGNIZE SERVICE REQGUESTS

This example is for an HP 7470A plotter that requires an Input Mask (IM)
instruction before it will assert a SR@. IM is an HF 747048 plotter
specitic command. Other devices may require different commands.

/% I+ the device wasn't'assigned an address when
it was activated, assign a default one now #/
IF params.intAddr = OFFH THEN
params.intAddr = 28;

gateWaySetStatus.mode = 23 /% Set SRR mode */

/% Create a semaphore to pass to the gateway driver #/
gateWaySetStatus.dataWord = OsCreateSemaphore (@error);
IF error = 0 THEN
DO;
params.pOverflow = @gateWaySetStatus;
CALL OSCALLDriver {(@{(5, 'GPIB'),80,DOUBLE (ddSetStatus),
@params,@error);

/% Send the 7470 a command to enable SRO #/

plotBut = "IM,223,4";
params.pBuffer = @plotBuf;

params.length = 8;
params.pOverflow = @overflow;
CALL DSCALLDriver (@(5, ' GPIB’'),B80,DOUBLE (ddWrite),

@params,@error);
END;

READ FROM THE DEVICE

This example assumes the device has GPIB address 28, uses the low speed
transfer method and terminates messages with a carriage return (0DH).

Overflow.dataMode = 23 /% Low Speed mode #/
Overflow.E0Schar = O0DH; /# Terminate message on CR #/
params.pOverflow = @Dverflow;
/% 1+ the device wasn’'t assigned an address when

it was activated, assign a default one now */
IF params.intAddr = OFFH THEN

params.intAddr = 283
CALL OSCALLDriver (@{5, ' 'GFIB'),B0,DOUBLE (ddRead),

@params,@error);

Frogramming the GPIB Gateway Driver 6-7

WRITE 70 THE DEVICE

This example assumes the device has GFIB address 28, and uses the high
speed transfer method.

Overflow.datalode = 0; /# High Speed mode %/
Overflow.E0Schar = OFFH; /% No EOS char in this mode #/
params.plverflow = @0verflow;
/% 14 the device wasn’'t assigned an address when

it was activated, assign a default one now */
IF params.intfddr = OFFH THEN

params.intAddr = 28;
CaLL DSCALLDriver (@(5, 'GFIB'),B0,DOUBLE (ddUWrite),

Eparams,@error);

6~-8 Device Drivers

GENERIC GPIB SHELL EXAMPLE

$NOLIST LARGE OFTIMIZE(3)

/% Generic GFIB Read and Write Shell

Default GFIB address: 28.

No Service Requests.

High Speed data transfer mode.

Default TimeOut: 5 seconds -- Fixed in High Speed WMode.
*/

GenericGPIBDrivers DO;
FINCLUDE ('w0'Incs'PlmLit.Inc“Texnt™)
$INCLUDE (PrinterDriver.Inc“Text™)

DCL defaultAddress LIT "28°';

DCL HiSpeedMode LIT 0"y

/% Inpitialize the parameters in the Overflow Block #/

DCL overflow OverflowType INITIAL (HiSpeedMode, OFFH,
OFFH, OFFFFH);

OsDevice: PROCEDURE irequest, pParams, pError) PUB REENT;
DCL request WORD;
DCL pFParams FTR;
DCL pError PTRs

DCL error BASED pError WORD;
DEL params BASED pParams ParamListType;:

DCL pSetStatus PTRj;

DCL setStatus BASED pSetStatus SetStatusType;
DCL StatusBlock SetStatusTypes

DCL getStatus GetStatusType;

DCL getStatusLength WORD;

IF request = ddWrite THEN
CALL SendToGPIB (@params);
ELSE
IF request = ddSetStatus THEN
DO
pSetStatus = params.pBuffer;
IF setStatus.setStatMode = setTimeout
THEN overflow.timeout = setStatus.setNewTime;
ELSE error = notSupported;
END;
ELSE
If request = ddGetStatus THEN
DO;
CALL SETB (0, @getStatus, SIZE (getStatus));

Programming the GPIB Gateway Driver

6-9

0

getStatus.open
getStatus.access accessStat;
getStatus.GFIBAddr params.intAddrg
IF params.length < SIIE (getStatus)
THEN getStatusblength = params.length;
ELSE getStatuslength = SIZE (getStatus):
CALL MDVE {(@getStatus, params.pBuffer, getStatuslLength);
ENDs
ELSE
IF request = ddRead THEM
DO

cpenStat;

L]

it

/# 1+ np address was assigned when attached,
use the default address ¥/
IF params.intfddr (OFFH THEN
params.intAddr = defaultAddress;
params.pOverflow = @overflow;
CALL OSCALLDriver <{(@(3, 'GBPIR'),BC,DOUBLE (ddRead},
@params,@error);

i

END3;

ELSE

IF NOT ({request = ddOpen) R
{(request = ddlIpitialize) OR
(regquest = ddClose! OR
(request = ddDetach) Ok
{request = ddAttach) R
(request = ddiruncate) oRr

(request = ddDeactivate)) THEN
error = notSupported;

END;

WriteString: PROC (pString) REENT:
DCL pString PTR;
DCL string BASED pString STRUCTURE (len BYTE, chars (1) BYTE)j
DCL intParams ParamlistType:

intParams.pBuffer = @string.chars;
intParams.length string.len:
£ALL SendToGFIB {(@intParams)g

END;

SendTobPIB: PROC (pParams) REENT:
DCL pParams FTR:
DCL params BASED pParams FarambListTvpe;
DCL error WORD;

IF params.length > O THEN
bo;

/% 14 no address was assigned when attached,
use the default address */

IF params.intAddr = OFFH THEN
params.intfAddr = defaul tAddress;

params.pOverflow = @overtlow;

CALL OSCALLdriver (@{(53, "GPIB'), 80, DOUBLE (ddWrite),

Device Drivers

@params, @error);
END;
END3

END; /% Module #/

Programming the GPIB Gateway Driver 6-11

GENERIC GPIB SHELL WITH SERVICE REGUESTS EXAHPLE
$NOLIST LARGE OPTINIZIE(E)

/+* Beneric BFIE Shell with "hooks" for Service Reguests
Default GFIB address: 28.
High Speed Hode.

*/

GenericGPIBDriver: DO:

SINCLUDE (w0 ' Incs Plmblit.Inc™Text™)
. $INCLUDE (PrinterDriver.Inc™Text™)

/% Declarations for 0S5 Procedures not in
PrinterDriver.Inc“Text™ ¥/

OsSignal: FROCEDURE (sid, mode, note, pError) EXTERNAL:
DCL sid WORD;
DCL mode BYTE;
DCL note WORD;
DCL pError PTR:
END;

OsRegisterNames PROCEDURE {(pName, token, mode, pErrar) EXTERNAL;
DCL {(pMName, pError) FTR;
DCL token DWORD;
DCL mode BYTE;
END;

OsWait: PROCEDURE (sid,time,pError) WORD EXTERNAL:
DCL eid WORD,

time WORD,

pError PTH:
END3

OsCreateSemaphore: PROCEDURE (pError) WORD EXTERNAL;
DCL pError PTR:
END;

OsDeleteSemaphore: PROCEDURE (sid,pError) EXTERNAL;:
DCL sid WORD,

pError PTR:
END;

DECL detTimeout LIT '5000': /% five seconds %/
DCL defaultAddress LIT "28°;
DCL HiSpeedMode LIT "0

DCL overflow OverflowType INITIAL (HiSpeediode, OFFH, OFFH,

6-12 Device Drivers

defTimeout):

DCL firstimeThru BYTE INITIAL (OFFH);
DCL MNote WORD:

DCL gateWaySetStatus STRUCTURE (mode BYTE,
dataWord WORD);

OsDevice: PROCEDURE {request, pParams, pError) PUB REENT;
DCL request WORD:
BCL pFarams PTRg
DEL pError PTR:

DCL error BASED pError WORD;
DCL params BAGED pParams ParamlListType;

DCL pSetStatus PTR:

DCL setStatus BASED pSetStatus SetStatusType;
DCL StatusBlock SetStatusType;

DCL getStatus GetStatusTypes

DCL getStatusiength WORD;

IF request = ddWrite THEMN
CALL SendToGPIB (@¶ms);
ELSE
IF request = ddSetStatus THEN
DO
pSetStatus = params.pBuffer:
IF setStatus.setStatMode = setTimeout
THEN overflow.timeout = setStatus.setNewTime;
ELSE error = notSupported:
ENDs
ELSE
IF reguest = ddGetStatus THEN
Do;
CALL SETB (0, @getStatus, SIZE (getStatus));
getStatus.open openStat;
getStatus.access s accessStat;
getStatus.GPIBAddr = params.intAddrg
IF params.length < SIZE (getStatus)
THEN getStatusiength = params.length;
ELSE getStatusLength = SIIE (getStatus);
CALL MOVEB {€getStatus, params.pBuffer, getStatuslength);

]

END3
ELSE
IF request = ddRead THEHN
bo;
IF error = 0 THEN
DO;

IF params.intfddr = OFFH THEN
params.intAddr = defaulthddress;
params.plverflow = Goverflows

CALL D5CALLDriver (@(5, '6GFIB'),80,DO0UBLE (ddRead),

Frogramming the BPIB Gateway Driver

6-13

6-14

@params,@error);
END;
END3
ELSE IF request = ddInitialize THEN
DO

/% Tell the BFIE gateway driver to respond to SRR for this device.

OFFH THEN
defaul tAddresss

IF params.intAddr
params.intAddr

IF firstimeThru THEN
DO;
gateWaySetStatus.mode = 23 /% Set SR@ */

/# Create the semaphore that the gateway driver
will Signal when a SRQ is asserted by the
device. */

gateWaySetStatus.datalWord =
OsCreateSemaphore (&error);

IF error = 0 THEN
DOs
params.pOverflow = @gateWaySetStatus;
CALL OSCALLDriver (@(5, 'GPIB’),
80,DOUBLE (ddSetStatus),
_ @params,@error);
firstimeThru = FALSE;

/% Register the semaphore ID so an application can
wait for a signal to this semaphore. #/

CALL OsRegisterName (@{(8, gpibSema’),
gatewaysetstatus.dataword,
1,
Gerror);

END3
END3
END;
ELSE IF request = ddDeactivate THEN
DO;
IF params.intAddr = OFFH THEN
params.intAddr = defaultfddress;

params.pOverflow = @overflow;
/% Tell the gateway driver to stop responding to
Service Requests from this device. */
CALL OSCALLDriver (@(5, 'GPIB"),80,D0UBLE (ddDeactivate),

Gparams,@error);

CALL OsDeleteSemaphore {(gatewavsetstatus.dataWord,@error);

Device Drivers

*/

/% Remove the name from the name table #/

CALL OsRegisterName (@(B, gpibSema’),
gatewaysetstatus.dataword,

2,
Gerror)
END;
ELSE
IF NOT ({request = ddOpen) Ok
(request = ddClose) OR
(request = ddDetach) OR
(request = ddAttach) OR
(request = ddTruncate)) THEN

error = notSupported;
END;

WriteString: PROC (pString) REENT;
DCL pString PTR;
DCL string BASED pString STRUCTURE (len BYTE, chars (1) BYTE);
DCL intParams FParamListType;

intParams.pBuffer = @string.chars;
intParams.length = string.len;
CALL SendToGFIB (&intParams):

END;

SendToGFPIB: PROC (pParams) REENT:
DCL pParams FTR;
DCL params BASED pParams ParamListType;
DCL error WORD

IF params.,length » 0 THEN
DOy

IF error = 0 THEN
DO;
IF params.intAddr OFFH THEN
params.intAddr defaul tAddress;
params.pOverflow = Goverflow;
CALL 0OS8CALLdriver (@(5, 'GPIB"'), 80,
DOUBLE (ddWrite), @params,
Gerror);

]

END;
END;
END;

END; /% Hodule #/

Programming the GPIB Gateway Driver

GENERIC GFIP DEVELOP FILE

sName: GenericBFIR
sFrefin: GenericGPIB
sbistingss “WO'LST®
:0biects: ‘WoC0RJ

:Sources:
GenericBGPIB.Flm
GenericGFIBSRA.Fla

:Control Yes w/Debug: DEBUG

tbink GenericGFIB:

LINE

"w(' 0BJ GenericBFIB.PLM™DBJI™, wi'Libs ' Jmplev.fsm™0bj™, 'w0 ' Libs LargeBingl
eException.Bsm™0bji™, w0 'Libs ' LargeSystemCalls™Lib™ TO GenericBPIB“Device™
BIND SS5{(S5TACK(0)) PC{PURGE) FASTLOAD PURGE

PRINT w0 'L5T ' GenericGPIBYHFL™)

sLink GenericGPIB SRE:

LINK

‘w0 0BJ GenericBPIBSRE.PLHY0BI™, w0 'Libs ' JmpDev.Asa™0bi™v, w0 'Libs'Largesi
ngleException.fAsa™0Bbi™, 'wl'Libs ' LargeSystemCalls™Lib™ TO
GenericBPIRSRE™~Device™ BIND S55(STACK(0)) PC(PURGE) FASTLOAD PURGE

PRINT{ w0 'LST GenericGPIBSREYMP1™)

:Test GenericBPIB:
Deactivate GenericBPIE
Activate GenericGFIB 28

:Test GenericBGFIB SRB:
Deactivate GenericBGFPIBSRE
Activate GenericGPIBSRE 2B

sCommand Lines
‘DevelopmentExecutive’

:GRiDHManager:
‘GRiDHanager’

6-16 Device Drivers

APPENDIX A: UNIVERSAL PRINTER LANBUABE

This appendix defines the GRiD Universal Printer Interface Language. It
defines the interface between any application which supports printing and any
GRiD supported printer driver.

Applications should attach to 'Printer. OGRiD-0S5 will be responsible for
mapping this into the current system printer. When opened, the driver
initializes the printer into its normal typeface (12 pitch). When closed, the
driver flushes the printer’'s internal buffer.

The commands which each printer must support (support can mean to ignore) are
listed below. The driver must accept these codes in a serial byte stream.

Command Turn on/oft

Boldface ESC 'B°

Underline ESC U’

Italics ESC "1

Superscript ESC "+~

Subscript ESC -7

Enlarged ESC "E’

Condensed ESC 'C~

Line spacing ESC 'L’ n

Where n is in 1/8ths of an line. (B/8 = single line spacing }

Graphics ESC ‘G’ width height reserved reserved
reserved

FPass an ESC thru ESC ESC

Fass all codes thru ESC "7

NOTE: When using sub or superscripts, the line spacing must be set to a value
greater than single line spacing to allow roonm.

Universal Printer Language a-1

NOTE: Turning subscripting {superscripting) on automatically turns
superscripting {(subscripting) off,

In addition, each driver must support a command to print screen images. This
is impossible for letter guality printers but thev must skip the appropriate
amount of "white space" so that an image could be pasted in later.

ESC ‘6’ width, height, reserved, reserved, reserved

The width and height parameters are word values and define the size of the
graphics area {(screenimage) in pixels. The driver rounds up to a multiple of
8 for both width and height. The 3 dummy words are reserved for later use.
The data stream following the graphics command is sent to the printer one
horizontal row at a time starting at the top left.

A-2 Device Drivers

APPENDIX B: ERROR CODES

This section lists the error codes that can result from calling a gateway

driver.

Serial Bateway Driver

=3
L%
e
=

FJ
(]
()]

401

Everything 0K. No action necessary.

Request Not Supported. VYou asked the gateway driver to do something
impossible. For example, the serial driver does not support a seek
request.

Device Not Active. This error can occur in three situations:

1. The serial device has not been activated. Be sure you have
activated Serial®Device™ from the command line or ‘
programmatically.

2. You attempted to transfer data before establishing a connection.
Make an OsSetStatus mode six call to establish a connection.

3. The gateway driver lost CTS5 and/or DCD. VYou can determine which
one by making a OsGetStatus call and examining the modemControl
byte. Make sure these signals are active on your hardware or
make an OsSetStatus mode 60 call to change the required signals.

Bad Farameter. VYou passed the gateway driver a valid request but with
a bad parameter. For example, vou would get this error if you made an
OsSetStatus mode 44 call to the serial gateway driver.

Time Qut Error. This error can occcur in two situations,
1. When reading, the gateway driver did not receive a character
within the character time out period. Check your hardware or
make an OsSetStatus mode two call to change the character time

Error Codes B-1

402

4403

out.

2. When establishing a connection, the gateway driver did not
detect a handshake within the connect time out period. Check
your hardware. VYou can make an OsSetStatus mode two call to
change the connect time out period, or you can make an
OsSetS5tatus mede 60 call to change the required signals.

Carrier Was Lost. Check your hardware.

Farity Error. MHake an OsSetStatus mode one reguest to change parity
type.

lHodem Gateway Driver

B-2

0:

35:

(o8]
(2]
wn

400:

401:

402:

403

4062

Everything OK. No action necessarv.

Reguest Not Supported. You asked the gateway driver to do something
impossible. For example, the modem driver does not support a seek
reguest.

Pevice Not Active. This error can occur in two situations:

1. The modem device has not been activated. Be sure you have
activated Modem“Device™ +rom the command line or
programmatically.

You attempted to transfer data before establishing a connection.
Make an 0OsSetStatus mode six call to establish a connection.

+J

Bad Farameter. You passed the gateway driver a valid request but with
a bad parameter. For example, vou would get this error it you made an
OsSetStatus mode 61 call to the modem gateway driver.

Modem Did Mot Answer. MWhen establishing a connection, the gateway
driver did not detect a handshake within the connect time out period.
You can change the connect time out period with OsSetStatus mode two.

Time Out Error. Hhen reading, the gateway driver did not receive a
character within the character time out period. You can adjust the
character time out period with OsGetStatus mode two.

Carrier Was Lost.

Parity érror, Make an DsSetStatus mode one reguest to change parity
type.

Bad Phone Number. VYou asked the modem driver to dial a number that
contained illegal characters. Only numbers or format characters are
allowed. 14 you are using touchtone dialing, the "#" or "#"
characters are also allowed.

Device Drivers

GPIB Gateway Driver

4
[}

451

Everything 0OK. No action necessary.

Request Not Supported. You asked the gateway driver to do something
impossible. For example, the GPIB driver only supports set status
modes of zero or two. Other requests will return this error.

GPIB Time Out. When reading, the gateway driver did not receive a
character within the time out period. If you are using the low speed

mode, you can adijust the time out period in the parameter block.

GPIB Not Responding. The gateway driver could not communicate with
the other device. Be sure the other device is turned on and ready.

Error Codes B-3

