
A GUIDE TO WRITING DEVICE DRIVERS

MARCH 1985

COPYRIGHT (C) GRiD Systems Corporation
2535 Garcia Avenue
Mountain View, CA 94043
(415) 961-4800

Manual Name: A GUIDE TO WRITING DEVICE DRIVERS
Issue Date: MARCH 1985

N~ part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means,
electronic, photocopy, recording, or otherwise without the prior
written consent of GRiD Systems Corporation.

The information in this document is subject to change without
notice.

NEITHER GRiD SYSTEMS CORPORATION NOR THIS DOCUMENT MAKE ANY
EXPRESSED OR IMPLIED WARRANTY, INCLUDING, BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, QUALITY, OR FITNESS FOR A
PARTICULAR PURPOSE. GRiD Systems Corporation has no obligation to
update or keep current the information contained in this document.

GRiD Systems Corporation's software products are copyrighted by
and shall remain the property of GRiD Systems Corporation.

UNDER NO CIRCUMSTANCES WILL GRiD SYSTEMS CORPORATION BE LIABLE FOR
ANY LOSS OR DAMAGES ARISING OUT OF THE USE OF THIS MANUAL.

The following are trademarks of GRiD Systems Corporation: GRiD,
Compass Computer.

The following is a trademark of Intel Corporation: Intel.

TABLE OF CONTENTS

ABOUT THIS BOOK .. vii

CHAPTER 1: INTRODUCTION TO DEVICES 1-1 9l

How Do Prograffls Communicate With Devices? 1-1
Steps for Writing Device Programs , 1-2

·Printers ... 1-3
The Internal Modem 1-3
Other Seri al Devices . 1-3
Other GPIB Devices 1-3

CHAPTER 21 ADJH NG AND REMO\I I NG DEV ICES • • • . . 2-1

The Active Device Table 2-1
Activating and Deactivating Gateway Drivers and Shells 2-2

The ActivateDevice Procedure Call 2-2
The DeactivateDevice Procedure Call 2-4

Coding Examples .. , 2-4
Activating the Internal Modem 2-5
Activating an Extra Portable Floppy 2-5
Deactivating the Modem , , 2-6
Activating a Linked Driver 2-6

CHAPTER 31 WRITING A SHELL 3-1

Why Use a Shell? .. 3-1
Types of Shells- 3-2

Contents iii

Printers ... , .. , , 3-2
Other GPIB Devices , 3-2
Other Ser:ial Devices

Writing or Modifying a Shell
Shell Interface

Procedure Name ,
PararoH1ter Block ...•..... , .. ,
Overflo1r1 Block ,

3-3
3-3

3-5
3-6

Gate~1ay Driver Interface 3-7
Processing l/0 Requests 3-7

0 s Set S t a t u s , , 3 - 8
OsGetSl:atus

Example Generic Serial Printer Shell
3-9
3-10

CHAPTER 4: PIUIEHHHUHNG THE IHlDEN GIHE~AY DIUVER 4-1

Communication with the Madam Driver - Program Overview 4-1
The OsSetStatus Call .. 4-2
OsSetStatus !'lodes , 4-3

Mode O - Return to Default Settings 4-3
Mode 1 - Set Operating Values 4-4
Mode 2 - Set Timeout IJ,,tl ues ,. 4-4
Mode 3 - Flush Receive FIFO Buffer 4-5
Mode 4 - Set User Defined Receive FIFO Buffer 4-5
Mode 5 - Disestablish Data Connection 4-5
Mode 6 - Establish Data Connection 4-6
Mode 7 - Set Bi ts/Second , 4-6
Mode 41 - Take Phone Off Hook 4-6
Mode 42 - Put. Phone Dn Hook 4-6
Mode 43 - Set Originate or Answer 4-7
Mode 44 - Dial Phone Number , , 4-8
Mode 45 - Enable Voice Mode 4-8
Mode 46 - Disable Voice Mode , 4-9
Mode 49 - Set Timeout Values 4-9
Mode 50 - Set Speaker Volume 4-9

The OsGetSt.atus Call , 4-10
PRogramming the Modem Example ~ 4-12
Develop File for Modem Example 4-15

CHAPTER Sn PROSRAMN!NG THE SERIAL GATE~AV DRIVER 5-1

Serial Communications Overview 5-1
The GRi D Seri al Interface 5-2

Serial Connector ,
RS-423 and RS-422 Compatibility
Serial Ring Semo1phore ,

Programming the Serial Gateway Driver From an Application .. .
Programming the Serial Gateway Driver from a Shell
The OsSetStatus Call

5-3
C ;"
,.J-,.}

5-3
5-4
5-4
5-5

OsSet.Status Modes , 5-6

iv Device Drivers

Mode O - Return to Default Settings 5-6
Mode 1 - Set Operating Values 5-7
Mode 2 - Set Timeout Values 5-7
Mode 3 - Flush Receive FIFO Buffer 5-8
Mode 4 - Set User Defined Receive FIFO Buffer 5-8
Mode 5 - Disestablish Data Connection 5-8
Mode b - Establish Data Connection 5-9
Mode 7 - Set Bi ts/Second 5-9
Mode 60 - Signals Required to Complete a Go-To-Data 5-10
Mode 61 - Enable/Disable Ring Interrupt 5-10

The OsGetStatus Call , 5-11
PRogramming the Serial Gateway Driver Example ,. . 5-13
Develop File for Serial Example 5-15

CHAPTER 61 PROGRANNING THE BPIB GATEWAY DRIVER , 6-1

GPIB Overview ... b-1
GRiD GPIB Gateway Driver Overview b-2
Data Structures ... b-3

Para11eter Block•.•......•...••....... 6-3
Overflow Block for 1/0 Requests 6-3
OVerfloM Block for SetStatus Requests 6-4

Service Requests ... , , , .. b-5
Programaing the GPIB Gateway Driver Examples b-6

Reset The Device ... 6-6
Notify the Driver To Recognize Service Requests 6-7
Read from the Device , , 6-7
Write to the Device , 6-8

Generic GPIB Shell Example 6-9
Generic GPIB Shell with Service Requests Example 6-12
Generic GPIB Develop File 6-16

APPENDIX A: UNIVERSAL PRINTER LANGUAGE A-1

APPEND IX B s ERROR CODES "" • • . • B-1

Contents v

FIGURES

Figure 1-1. Sample GRiD Computer System 1-1
Figure 1-2. Communicating With Devices 1-2
Figure 3-1. GRiD-OS Device I/0 Calls 3-3
Figure 3-2. The Parameter Block 3-5
Figure 4-1. The Parameter Block 4-3
Figure 5-1. The Relationship Between DTE and DCE 5-2
Figure 5-2 The Parameter Block 5-5

Table 3-1. GRiD-OS calls and 1/0 Requests 3-4
Table 5-1. Handshaking Signals 5-2
Table 5-2. Serial Connector Pinout 5-3

vi Device Drivers

ABOUT THIS BOOK

This manual explains how write to programs to control devices for computers
running the GRiD Operating System <GRiD-05}.

ASSUMPTIONS ABOUT THE READER

This manual assumes that you are an experienced PASCAL and Pl/M
programmer and are familiar with the GRiD-OS development
environment.

OTHER BOOKS YOU MAY NEED

If you have not programmed under GRiD-OS before, you may need to
refer to the following publications:

o GRiD-05 Reference manual for detailed information on operating
system calls, semaphores 1 ~nd file I/0.

o Program Development Guide for information on how to run the
compilers and utilies and the GRiDDevelop program.

o Intel PASCAL-86 User's Guide for information on the Pascal
programming language.

o Intel Pl/M-86 User's Guide for information on the Pl/M
programming language.

About This Book vii

EXAMPLE PROGRAM SOFTWARE

This book contains example programs and develop files. Source
code for these is available on GRiD Central under Software
Subjects 3.1: Contributed Device Drivers,

Device Drivers viii

CHAPTER 1: INTRODUCTION TO DEVICES

WHAT IS A DEVICE?

Here is a diagram of devices in a sample GRiD computer system:

Hard
Disk

Por-t.=1ble
Floppy

Printer
1° -I
Custorii
I.Jidget

Figure 1-1. Sample GRiD Computer System

Printers, plotters, digitizers, video disks, laser printers,
laboratory equipment, hard disks, floppy disks, bubble memory and
modems are all physical devices. These devices and others like them
can be controlled by GRiD software.

SRiD-OS supports three types of devices: those that have a serial
interface, those that have a GPIB (IEE-488) interface, and the
internal modem.

Introduction 1-1

HOW DO PROGRAMS COMMUNICATE WITH DEVICES?

Application programs make I/0 requests to the GRiD Operating System
(GRiD-0S1. GRiD-05 passes the request to a program called a shell
which passes the request an to a program called the gateway driver,
The gateway driver actually communicates with the device at the
hardware level. See Figure 1-2.

SERIAL
OEIJICE

APPLICATI0~4

GATEhlA'f'

DRIIJER

IMTEl<'.t-lAL
MODEM

GF'IE:
DEI . .JICE

Figure 1-2. Communicating With Devices

SRiD supplies three gateway drivers for device I/0. The serial
gateway driver is in a file called Serial~Device~ and the modem
gateway driver is in a file called Madem~Device~. The GPIB gateway
driver is built into GRiD-05.

A shell is a program that allows applications to be device
independent. You can put all device dependencies in the shell.
Then ~hen a new device is used, the application need not be
mod if i ec:l.

STEPS FOR WRITING DEVICE PROBRAHS

1-2 Device Drivers

PRINTERS

GRiD supplies all the software necessary to use many devices, To
use a device that is not supported by GRiD 1 or to use the internal
modem differently from GRiD applications, you may have to write some
software to control the device,

1, If you don't require text formatting commands or graphics, you
can use a generic printer shell. If you do require these
features, you should write a shell or modify a generic shell,
Writing a shell is covered in Chapter 3 - "Writing A Shell", You
may also need to refer to Chapter 5 or Chapter 6 depending on
which interface your printer requires. If you write a she~l, be
sure the final, linked file containing the shell has kind
~Printer~.

2. Use GriDManager's CODE-0 command to make the shell your current
printer.

1. Include calls to the modem gateway driver in your application
program as described in Chapter 4 - "Programming The Modem
Gateway Driver".

2. Activate Modem~Device~ from the command line or from your
program. See Chapter 2 - "Adding And Removing Devices" for more
information on this.

OTHER SERIAL DEVICES

1. Include calls to the serial gateway driver in your application
program for all devices except printers; you must use a shell for
printers. See Chapter 5 - "Programming the Serial Gateway
Driver"

2. Activate Serial~Device~ from the command line or from your
program. See Chapter 2 - "Adding And Removing Devices" for more
information on this,

OTHER GPIB DEVICES

1, If it is acceptable to send all device dependent commands from
your application, then you can use a generic GPIB shell. If you
want your application to be device independent, then you can

Introduction 1-3

write or modify a shell. Refer to Chapter 3 - "Writing A Shell"
and Chapter 6 - "Programming The BPIB Gateway Driver".

2. Activate your shell from the command line or from your program.
See Chapter 2 - "Adding And Removing Devices'' for more
information on activating shells.

1-4 Device Drivers

CHAPTER 2: ADDING AND REMOVING DEVICES

This chapter provides information on how to add and remove devices from within
your program. You could also use the Activate and Deactivate command line
utilities to achieve the same results. These utilities are described in the
Program Development Guide.

THE ACTIVE DEVICE TABLE

The Active Device Table, main~dined by GRiD-05 1 is a table of
gateway drivers anrl device driver shells currently residing in
memory and avaiiable to be used by an application.

The table associates an ASCII string with the device or shell code;
this allows an application to attach to the driver by name instead
of by memory address,

You can add or remove !also referred to as activate and deactivate)
gateway drivers and driver shells from this table dynamically. This
allows you to save memory by keeping memory resident only those
drivers necessary at a given time,

You must activate the modem and serial gateway drivers before using
them. Because the SPIB gateway driver is in SRiD-0S 1 it is not
necessary to activate it. However, you must activate a SPIB shell
before using it.

The active device table also allows you to associate a SPIB address
with a shell when it is added to the table. Because driver s~ells
are re-entrant, you can associate the same driver code with devices
that have different GPIB addresses. This allows you to avoid

Adding and Removing Devices 2-1

duplicating cede. For example, the same driver code can be used for
a Portable Floppy and an Extra Portable Floppy; only the GPIB
address need change.

ACTIVATING AND DEACTIVATING GATEWAY DRIVERS AND SHELLS FRO~ YOUR PROGRAM

You can activate a gateway driver or shell from your program by
calling a procedure named ActivateDevice. Versions of the procedure
exist for both the Compact and Large models of compilationi they can
be found in files named Activate Compact~oeJ~ and Activate
Large~oeJ~ on GRiD Central: Software Subjects 3. I under Contributed
Device Drivers. The appropriate object file should be linked to the
program making the call.

These procedures use the GRiD- □ S call OsAddDevice, Applications can
use OsAddDevice directly, but the interface to ActivateDevice is
simpler and easier to use.

A similar procedure named DeactivateDevice exists in each of the
object modules and can be used to remove a driver or shell from the
active device table.

THE ActivateD~vice PROCEDURE CALL

You must provide information about the attributes of the driver or
shell code and its location, which can be one of the following:

o The driver or shell is in a file on secondary storage.

o The shell code has been linked to the program making the
ActivateDevice call.

o The shell has already been activated and you want to use the same
code for another device.

The ActivateDevice procedure has the following PASCAL declaration.

NOTE: This definition is not in an include file. You must type the
declaration yourself in the interface specification of your PASCAL
program.

PUBLIC DeviceProcs;
PROCEDURE ActivateDevice (path: StringPtr;

name: StringPtr;
entryPoint: BYTES;
intAddr: BYTE;
attributes: WORD;

VAR

VAR error: WORDl;

path ~ is a string used to indicate the location of the

2-2 Device Drivers

name

entryPoint

intAddr

attributes

Bit

0

2

3

4

gateway driver or shell to be activated. If you set
bit O of attributes {described beloNl to O, set~
to the pathname of the driver or shell file. If you
set bit Oto 1 1 then set~ to the device name
including back quote (·). If the driver or shell
code is l i. nked to program (case two) 7 then set ~
to NIL. If~ is not NIL, then the ActivateDevice
procedure automatically frees the path StringPtr.

name is a string that indicates the name that is to
be put into the active device table. Name should NOT
have a back quote (') in front of it. If you want
the title part of the path parameter to be the name,
then set name to NIL. If this parameter is not NIL 1

then it is automatically freed.

If the shell is linked to the program, then set
entryPoint to the shell main procedure name. If not,
then this parameter should be a de-referenced NIL
Pointer. If entrypoint has any value other than NIL,
then ~ is ignored.

intAddr is the interface address (GPIB address) of
the device. If the device is not a GPIB device, then
set intAddr to NULLBYTE (OFFh).

Individual bits in this word represent attributes of
the device. The following bits are defined (bit O is
the least significant bit):

Description

Driver location bit.
IF 0 1 then~ is the pathname where
the driver or shell is located,
If 1 1 then ~ is the
name of an already activated device,

Visible bit.
0 - visible; 1 - invisible,
Invisible devices don't appear on the file
form's device list. For a device to appear on the
device list it must be visible and a mass storage
device.

This bit should be set to zero.

Mass storage bit.
0 the device is a non mass storage device.
1 - the device is a mass storage device.

This bit should be set to zero.

Adding and Removing Devices 2-3

5 This bit should be set to :::ero.

6 This bit should be set to zero,

7 SearchMe bi L
0 the device i 5 searchable
1 - the device is not software searchable

(For this to be v a 1 id the mass storage bit
must be 1) Sometimes GRiD-0S searches for files.
For example, if you select a text file from a file
form, GRiD-0S Nill search for a file with a kind
"Run Text". It will only search in software
searchable mass storage devices.

Error

All other bits in this word are reser ed and should be set to
zero.

The ActivateDevice routine returns an error code in
this parameter.

THE DeactivateDavice PROCEDURE CALL

To deactivate a gateway driver or shell, call the DeactivateDevice
routine with the name of the device to deactivate; specify the same
name an application would use to attach to the driver.

Here is the PASCAL definition for DeactivateDevice. It should also
be typed in the interface specification,

PROCEDURE DeactivateDevice (pathName: StringPtr;
VAR error: WORD);

PathName is automatically freed in the procedure.

CODING EXANPLES

Four examples are shown:

a Activating the internal modem.

o Activating the Extra Portable Floppy.

o Deactivating the modem.

o Activating a linked driver.

2-4 Device Drivers

ACTIVATING THE INTERNAL MODEM

It is assumed that that a file named Modem~Device"' exists in the
programs subject on a secondary storage device. The ActivateDevice
routine will search each mass storage device until the file is
found.

PROCEDURE ActivateTheModem;

CONST
11 u 11 Byte = OH h j
attribute = BOH i

VAR
error: WORD;
nullPtr: 1··BYTE;

BES IN
nullPtr := NIL;
Act i vateDevi ce <NewStr i ngli t ('Modem"'Devi ce"'II') 1

NIL,
nullPtr'',
null Byte,
attril:rnte 1

error);
END;

ACTIVATING AN EXTRA PORTABLE FLOPPY

This example assumes that the Portable Floppy has already been
activated.

PROCEDURE ActivateExtraFloppy;

CONST
fl oppyAddr = 7;
attribute= 9; { mass storage, visible, already activated}

VAR
error: WORD;
nullPtr: ·''BYTE;

BEGIN
nullnr := NIL;
ActivateDevice !Ne1<JStringlit ('Portable Floppyllll'),

NewStringlit ('Extra Floppylll'),
nullPtr'··f
floppyAddr 1

attribute,

Adding and Removing Devices 2-5

error);
END;

DEACTIVATING THE MODEM

PROCEDURE DeactivateTheModem;

VAR
WORD;

BEGIN
DeactivateDevice (NewStringlit ("Modeml'l, error);

{ Remember the backquote! ! ! }
END· i

ACTIVATING A LINKED DRIVER

It is assumed that a generic GPIB driver has been linked to this
program and that the OsDevice PROCEDURE has been declared PUBLIC in
the interface specification of this program,

PROCEDURE ActivateGenericGPIB;

CONST
attribute
Address

VAR

= SOH;
= 28;

error: WORD;
nullPtr: "BYTE;

BEGIN
nullPtr := NIL;
ActivateDevice (NIL,

END;

2-6 Device Drivers

NewStringlit ('SenericGPIBfl') 1

OsDevice,
Address,
attri !Jute 7

error)j

CHAPTER 3: WRITING A SHELL

A shell is a program that GRiD-OS calls after an application program requests
device I/0. Shells are usually written in the PL/M programming language.
Shells process the I/0 request and then pass the request to a gateway driver
which actually communicates with the device.

WHY USE A SHELL?

Shells provide device independence by standardizing the interface to
the gateway drivers. Device independence is important because it
takes the burden of communicating to different devices away from the
applications programmer.

Shells translate generic commands from applications into
device-specific commands. For example, GRiDWRite includes commands
for formatting printed text. One such command is the boldface
command. However, different printers use different control
characters for boldface. Rather than requiring GRiDWrite to know
the boldface control characters for every printer, GRiDWrite uses a
generic printer language which is passed to the shell. The shell
then translates the generic boldface command into a printer specific
boldface command. In this way GRiDWrite can be used with a new
printer by simply creating a new shell rather than changing
GRiDWrite,

Writing a Shell 3-1

TYPES OF SHELLS

PRINTERS

For users not interested in text formatting commands or graphics,
generic printer shells are available for serial and GPIB printers.
They pass text as received from applications to the gateway driver.

If text formatting commands or graphics are desired, you can modify
one of the generic shells. GRiD uses a Universal Printer Language
that the shell must interpret and translate into printer specific
tommands. See Appendix A for a description of the Universal Printer
Language.

l
Here are the generic printer shells available on GRiD Central under
Software Subjects 3.0 in the Contributed Programs subject:

MinimumSerial:

Protocol: None
Baud: 300
Assumes printer has at least a 128 byte internal buffer

GenericSerialETX/ACK:

Protocol: ETX/ACK
Baud: 1200
Assumes printer has at least a 128 byte internal buffer

GenericSerialX0N/X0FF:

Protocol: X0N/X0FF
Baud: 1200
Assumes printer has at least a 128 byte internal buffer

GenericGPIB:

Default GPIB address: 21

OTHER GPIB DEVICES

If the device doesn't require data translation, and if
device-specific commands can be done in the application, generic
GPIB shells are available for devices that use GPIB Service Requests
and those that don't. These shells simply pass requests from
applications to the GPIB gateway driver without translating the
information into device specific commands.

If the you need a device specific shell, one of the generic GPIB

3-2 Device Drivers

shells can be modified.

OTHER SERIAL DEVICES

It is generally not necessary to write or modify a shell for a new
serial device other than a serial printer. Instead, the serial
gateway driver can be programmed from the application as described
in Chapter 5.

WRITING OR NODIFVING A SHELL

An application performs device I/0 by making calls to SRiD-0S. The
sequence of calls is shown in the following figure:

ftttach
,i,

Open

I ►
Head

w)ite

I
Get5tatus

I
5et5tatus

Figure 3-1.

Detach

t
Close

I

SRiD-0S Device 1/0 Calls

Writing a Shell 3-3

When GRiD-OS receives an 1/0 call, it passes an 1/0 request to the
shell. The correspondence between GRiD-OS calls and I/0 requests is as
follows:

GRiD-OS Call

Activate
OSAttach

OSOpen
OSRead

OSWri te
OSGetStatus
OSSei::Status

OSClose
DSDetach

Deactivate

I/0 Request

ddinit:ialize
ddAtt ach
ddOpen
ddRead
ddWr:ite
ddGetstatus
ddSetStatus
ddClose
ddDetach
ddDeacti vate

Table 3-L GRiD- □ S calls and I/0 Requests

The I/0 requests are actually constant numbers that are defined in the
PrinterDriver.Inc include file.

SHELL INTERFACE

A shell is written as a PROCEDURE in Pl/M that accepts three
parameters:

OsDevice: PROCEDURE
DECLARE request

pParamters
pError

!request, pParameters 1

WORD,
PO INTER 1

PO INTER;

pErrorl PUBLIC REENTRANT;

Here is a discusion of the parameters passed to the shell:

request The I/0 request number passed to the shell by GRiD-0S.

pParameters A POINTER to a parameter block containing information from
the application and GRiD-OS.

pError A POINTER to a WORD where the shell can return an error
code to the application.

3-4 Device Drivers

Procedurll! N,u1e

The name of the procedure must be OsDevice. This is because the shell
will be linked to an assembly language module (JmpDev.Asm~oaJ~) that
expects this name. The assembly language module serves as a main
module for the shell; its only purpose is to provide a start address to
the linker.

Par,u1eter Block

The parameter block has this format:

Connect. D-:1t,:1 Buffet··

p81_4f'f'et- i.. ,..
p,::,si tion

len9th

mode

nurriBuf

intAddt- O• . .Jerf l m.J Bl ock
pO•y•e,-f l 01,,i

Ill,.
II'

d:itaMode

E0:3cr,ar

secAddr

t.iri1e01.~t

Figure 3-2. The Parameter Block

Here is the PL/M declaration for the parameter block:

DECLARE ParamListType LITERALLY 'STRUCTURE (

connection
pBuffer
position
length
mode
numBuf
intAddr
p □ verflol'l

SELECTOR,
POINTER,

DWORD 1

WORD,
BYTE 1

BYTE I

BYTE,
POINTER)';

Do not modify these parameters except as noted below.

Writing a Shell 3-5

pBuffer

length

intAddr

pOverf low

Overflow Block

A POINTER to the buffer specified by the application when
it made the GRiD-0S call. This buffer contains data for
ddRead and ddWrite requests or status information for
ddGetStatus and ddSetStatus requests.

The length of the buffer as set by GRiD-0S according to
the number of bytes requested by the application; it is
updated by the gateway driver to reflect the actual number
of byte~ transferred.

The GPIB address of the device with which the application
wants to communicate. If the device is serial I this
parameter can be ignored.

A POINTER to another STRUCTURE of parameters.

The overflow block is used only in GPIB shells. The format of the
overflow block depends on the gate•ay driver called and the request
being passed to it. For all cases except when a ddSetStatus is being
passed to a gateway driver, the overflow black will have the following
format:

DECLARE OverFlowType LITERALLY 'STRUCTURE (

datal"lode
EOSchar
secAddr
timeout

dataMode

EOSchar

secAddr

timeout

BYTE,
BYTE I

BYTE I

WORD l ';

The data transfer mode used in GPIB shells. A serial
shell can ignore this parameter.

The End Of String character used in GPIB shells. A serial
shell can ignore this parameter.

Not used.

timeout is only used by the GPIB gateway driver. It is
the length of time the gateway driver should wait before
giving up on a request. This number is in milliseconds
i.e. 1 a timeout duration of six seconds would be expressed
as 6000.

When a ddSetStatus request is being passed to a gateway driver, the
format of the overflow block varies for BPIB shells. For information
on serial ddSetStatus 1 see Chapter 5. For information on GPIB
ddSetStatus 1 see Chapter 6.

3-6 Device Drivers

GATEWAY DRIVER INTERFACE

A shell communicates with a gateway driver with the OSCallDriver call.
The OsCallDriver call looks like this:

OsCallDriver (pathName : BYTES;
level : Byte;
request : WORD;
paramList : ParamlistType;
error : WORD;

pathName The pathname (formatted as a ShortStringl of the gateway
driver. For a serial device, the pathname is 'Serial.
For a GPIB device, the pathname is 'GPIB.

level A value of 1 specifies that this is a low-level driver
(for a mass storage device such as bubble memory, hard
disk, or floppy disk!, a value of O specifies that it is a
file level driver (for devices such as printers,
Phonelink 1 serial devices, or non-disk SPIB devices). A
value of 81 or 80 indicates that the driver, rather than
the OS will supply the address.

request A word defining the specific activity !such as open, read,
write) that the gateway driver is to perform on the
device. This is the dd-request passed by the applitation
to the shell.

paramList The parameter block specifying device characteristics.

PROCESSING I/0 REQUESTS

The body of a typical shell, in outline form, looks like this:

Writing a Shell 3-7

IF request= ddlnitialize THEN
Initialize any shell variables. If necessary, send initialiration
commands to the device using OsCallDriver and a ddWrite request,

IF request= ddRead THEN
Read from the device through the gateway driver and put data i~
the application's buffer. The shell should also translate data
from the device at this point if necessary,

IF request= ddWrite THEN
Write to the device through the gateway driver from the
application's buffer. The shell should should translate data into
a device-specific format at this point if necessary.

IF request= ddSetStatus THEN
Set shell characteristics. A typical use of the OsSetStatus call
is to all □• the application to adjust the device timeout. This
ddSetStatus request resulting from OsSetStatus is not passed on to
the gateway driver. However, the sh•Il can make separate
ddSetStatus requests to the gateway driver to set gateway
characteristics as follows:

o Service Reque~t Initialization or Selective Device Clear when
using the GPIB gateway as described in Chapter 6.

o A serial printer shell can set operating characteristics of the
serial gateway driver like baud rates, stop bits, etc. In this
case, the shell should set up an overflow block such as the
ones used for OsSetStatus discussed in Chapter 5 and pass this
block and the ddSetStatus request to the serial gateway driver,

IF request ~ ddGetStatus THEN
Pass shell status back to the application. This request is not
passed on to the gate~ay driver.

IF request= ddOpen 1 ddAttach,ddCiose,ddDetach 1 ddDeactivate THEN
Do nothing.

IF request= any other request THEN
Return error: RequestNotSupported

OsSetStatus

You can use OsSetStatus to pass information to the shell from an
application, The modem and serial gate~ay drivers are examples of
sophisticated OsSetStatus implementations. In those drivers, you can
pass a number of parameters, including rate of transmission, stop bits,
etc,

3-8 Device Drivers

The shell should meet the GRiD-OS m1n1mum specifications for
OsGetStatus but can add user-defined fields, See the GRiD-OS Reference
Manual for a discussion of OsGetStatus parameters.

Writing a Shell 3-9

EXAMPLE SENERIC SERIAL PRINTEA SHELL

This generic serial printer shell has a simple 5et5tatus function to
allow an application to adjust the device timeout. This shell uses the
serial defaults for baud rates, stop bits, etc.; the shell could be
modified to make ddSetStatus requests to the serial gateway driver.

SNDLIST LARGE OPTIMIZE(31

I• Generic Serial Read and Write Shell
Default Timeout: 5 seconds

GenericSerialDriver: DO;

$INCLUDE ('~~O'Incs'P!mlit.Inc"'Text'"l

I• Include declarations far ParamlistType, etc. *'
tINCLUDE (PrinterDriver, Inc'"Text"l

OsDevice: PROCEDURE (request, pParams, pErrorl PUB REENT;
DCL request WORD,
DCL pParams PTR;
DCL pError PTR;

DCL error BASED pError WORD;
DCL params BASED pParams ParamListType;

DCL pSetStatus PTR;
DCL setStatus BASED p5et5tatus SetStatusType;
DCL StatusBlock SetStatusType,
DCL getStatus 6etStatusType;
DCL getStatusLength WORD;

IF request= cldWrite THEN

IF params.length > 0 THEN
DO;

END;
ELSE

CALL OSCALLdriver (@(5 1 "Serial'), 80 1 DOUBLE (ddll!ritel,
@params 1 @error);

IF request= ddR~ad THEN
IF params.length > 0 THEN

DO;
parims.pOverflow: @overflow;

3-10 Device Drivers

CALL OSCALlDriver (@(5,"Serial') 1 80 1 DOUBLE (ddReadl,
@params,@error>;

END;
ELSE
IF request= ddGetStatus THEN

DO;
I* Device is OPEN, update Access allowed, all other O ¼/

CALL SETB (0, @getStatus, SIZE !getStatusl l;
getStatus,open = OFFH;
getStatus.access = 4;
IF params.Iength (SIZE (getStatus)

THEN getStatusLength ~ params.length;
ELSE getStatuslength = SIZE (getStatusl;

CALL MOVB (@getStatus, params.pBuffer, getStatuslength);
END;

ELSE

I* Ignore other valid requests, return error if not valid¼/

IF NOT ((request "' ddOpen) OR
(request = ddinitialize) OR
{request :::: ddSetStatusl OR
(request = ddClosel OR
(request = ddDetach) OR
(request = ddAttac:h > OR
(request = ddTruncatel OR
(request :: ddDeactivate)) THEN

error = notSupported;
END;

END; 1* Module 'Ir/

Writing a Shell 3-11

CHAPTER 4: PROGRAMMING THE HODEH GATEWAY DRIVER

If GRiDTerm, GRiDVTIOO, GRiD3101 1 SRiDAccess, or GRiDManager do not satisfy
your communication requirements, you'll need to write a program that sets the
modem options yourself.

GRiD provides a modem gateway driver called Modem~Device~, through which you
can control the modem and send and receive data.

The modem gateway driver supports voice mode, where you can talk through the
GRiD handset and listen on the speaker, and data mode, where the modem
tommunicates with a remote modem.

CONMUNICATION WITH THE MODEN DRIVER - PROGRAN OVERVIEW

To write a program that reads from and writes to the modem gateway
driver:

1. Add Modem~Device~ as an active device.

2. Attach to the modem using OsAttach with pathname= 'Modem.

3. Open the modem using OsOpen.

4. Program desired operating characteristics (bits/sec, stop bits,
etcl using OsSetStatus as described in this chapter.

5. If you are originating the call, use OsSetStatus to dial a phone
number and to establish a connection. If you are answering, use
OsGetStatus to obtain an identification number for the ring
semaphore. The gateway driver signals the ring ~emaphore when it

Programming the Modem Gateway Driver 4-1

detects an incoming call. You should wait for the signal using
OsWait, then use OsSetStatus to connect with the remote modem.

6. Read from and ~rite to the modem using OsRead and OsWrite.

7. Close and detach the modem using OsClose and OsDetach,

8. Remove the modem from the active de ice table,

THE OsSetSt~tus CALL

The OsSetStatus call has this PASCAL declaration:

PROCEDURE OsSetStatus (conn:WORD; VAR pBuffer:BYTES;
length:WORD; VAR error:WORD);

conn

pBuffer

length

error

4-2 Device Drivers

The connection number returned from an OsAttach call.

A pointer to a parameter block. The parameter block has a
mode byte followed by a varying number of parameter bytes.
See Figure 4-1.

The length of the parameter block including the mode byte.

A WORD where an error code is returned. You can examine
this word to determine if the call was successful.

The parameter block has this format:

p8uffer I Mode byte I

P -:1r-:1r11et.er
Bytes

Figure 4-1, The Parameter Block

OsS1tStatum HODES

The following section describes the modes that can be used to
program the modem gateway driver.

NODE O - RETURN TO DEFAULT SETTINGS

0

A parameter block with mode byte= 0 and no parameter bytes causes
the modem gateway driver to return to a default state:

Bi ts/Sec
Data Bits
Stop Bits
Pai'"i.ty
Connection Timeout
Character Timeout
Receive Queue
Od gi nate/Answer
Dial Tone Timeout

Default Value

1200
8
2

None
30 Seconds

Forever
Internal
Automatic

15 Seconds

Mode To Change

7

1
1
2
2
4

43
49

Programming the Modem Gateway Driver 4-3

Disconnect Timeout 3.5 Seconds

NODE 1 - SET OPERATING VALUES

Bi ts/
:Protocol: Char,

Stop
: Bits

Protocol = Asynchronus

B:its/Char, = 5 5 bits/char,
6 6 bits/char,
7 7 bits/char,
8 8 bits/char.

Stop Bits "' 1 1 stop bit
2 L5 stop bits
3 2 stop bits

Parity = 0 None
Even

2 Odd
3 Mark
4 Space

MODE 2 - SET TIMEOUT VALUES

: Parity i

2 Char Timeout Conned Ti me □ ut l

CharTimeOut and ConnectTime □ ut are WORD values,

49

CharTimeOut The number of milliseconds the gateway driver should
wait for a character before issuing a Timeout error,
If you set CharTimeOut to zero 1 then the gatway
driver waits until the requested number of bytes are
available.

ConnectTimeOut The number of milliseconds the gateway driver should
wait for a handshake from the other modem after a
go-to-data (made six) command.

4-4 Device Drivers

MODE 3 - FLUSH RECEIVE FIFO BUFFER

3

Mode 3 can be used to remove spurious characters from the receive
FIFO buffer.

NODE 4 - SET USER DEFINED RECEIVE FIFO BUFFER

4

fifoPtr

fifolength

fifoPtr fifoLength

A POINTER to an input buffer in the application
program.

The length of the new buffer.

Use this mode when you want the gateway driver to use a larger input
buffer than the driver's internal 32 character FIFO buffer to avoid
overflow and loss of data. You should not access the new buffer
directly; but should use the OsRead call instead.

MODE 5 - DISESTABLISH DATA CONNECTION

5

Use mode 5 to exit data mode. Voice mode will be entered if it has
been enabled with mode 45; otherwise an idle state will be entered.

Programming the Modem Gateway Driver 4-5

MODE 6 - ESTABLISH DATA CONNECTION

6

Use mode 6 to go to data mode and attempt to handshake with the
dther modem. If this does not happen within the connection timeout
period (specified in mode 2) 1 a Timeout error will be returned. You
can determine the type of handshake with mode 43.

NODE 7 - SET BITS/SECOND

7 : Speed

Speed= 5
7

MODE 41 - TAKE PHONE OFF HOOK

41

300 Bits/Sec.
1200 Bits/Sec,

Use mode 41 to connect to the phone line, The off-hook function is
also done automatically in mode 44.

MODE 42 - PUT PHONE ON HOOK

42

Use mode 42 to disconnect from the phone line. You cannot reconnect
to the phone line for a time called the disconnect delay. This

4-6 Device Drivers

delay ensures that the phone is really hung up. The disconnect
delay can be set with mode 49.

MODE 43 - SET ORIGINATE OR ANSWER

Originate
43 or

Answer

Originate or Answer= 0 - Automatic
1 - Originate
2 - Answer
255 - Don't Change

Use mode 43 to control the type of handshake used in a mode 6
command. If automatic is chosen, the gateway driver will use
originate mode if the phone has been dialed since the last off hook
command, else answer mode will be used.

Programming the Modem Gateway Driver 4-7

MODE 44 - DIAL PHONE NUMBER

44
Touch
Tone length : Phone Number

Mode 44 causes the modem gateway driver to dial a number. If the
phone is not off the hook {see mode 41) 1 then an off hook command is
automatically executed before dialing.

Touch Tone

length

Phone Number

Character

0-9

A

*

A BOOLEAN that indicates if a touchtone or pulse
dialing is being used. Use TRUE for a touchtone
phone.

The length of the phone number that follows.

The phone number to be dialed, The number should be
in ASCII form. The following characters are valid:

Interpretation

Same as on a phone
One second delay
Wait for a dial tone

space, parentheses, dash

Same as on a touchtone phone
Same as on a touchtone phone
Ignored

Spaces, parentheses and dashes can be used to make the number more
readable but are ignored by the gateway driver. However, they must
be included when determining the length parameter.

NODE 45 - ENABLE VOICE MODE

45

Use mode 45 to enable voice mode. When voice mode is enabled 1 voice
mode will be entered ~hen data mode is exited with mode 5.

4-8 Device Drivers

MODE 46 - DISABLE VOICE NODE

46

If voice mode is disabled, an idle state is entered when exiting
data mode using mode 5.

NODE 49 - SET TIMEOUT VALUES

49 l DialTone Timeout DisconnectTimeOut :

Dial Tone Timeout and DisconnectTimeout are WORD values.

Dial Tone Timeout The number of milliseconds the gateway driver
should wait for a dial tone when a caret (A) is
encountered in a phone number. If this time is
exceeded! a Timeout error is returned.

Disconnect Timeout The number of milliseconds the gateway driver
should delay before allowing a reconnection
(mode 41).

MODE 50 - SET SPEAKER VOLUNE

50 Volume

Volume= 0 - Speaker Off

255 - Maximum Volume

This mode lets you adjust the volume of the speaker.

Programming the Modem Gateway Driver 4-9

THE OsGetStatus CALL

rhe OsBetStatus call obtains information about the current state of
the modem gateway driver. This call is described in the GRiD-OS
Reference Manual but the status record format differs for every
device. The status record for the modem gateway driver has this
format:

StatusType = RECORD
open:
access:
seek:

BOOLEAN;
BYTE;
BYTE;
LONG INT;
Im RD;
BOOLEAN;
BYTE;
BYTE;
BYTE;
lrnRD;

open

access

seek

filePosition

numCharsinFifo

synchDetect

connection

4-10 Device DFivers

f i lePos i ti on:
numCharsinFifo:
syncDetect:
connectiorn
usartStatus:
modemStatus:
RingSID:

END;

If the modem gateway is attached, this BOOLEAN is
TRUE.

This BYTE is bit-mapped to indicate the type of
access allowed, It will always be set for read and
write access. See the GRiD-OS Reference Manual for
a description of the bit-map.

This BYTE is always 0.

This LONGINT is always 0.

This WORD contains the number of characters
currently in the recieve buffer.

This BOOLEAN is always FALSE.

This contains the current status of the connection:

connection= 0 - No connection established
1 - Off hook, voice mode.
2 - Off hook 1 data mode.
3 - Not used.
4 - Carrier was lost.

usartStatus

modemStatus

ringSID

This byte allows you to determine if errors have
occured on the interface. The usartStatus byte is
bit-mapped as follows:

MSB LSB

7 b 5 4 3 2 1 0

l(p F 0 u l(X X

where: p marks the bit position for parity error.
F marks the bit position for framing

error.
0 marks the bit position for overrun

error,
u marks the bit position for underrun

error,

A one (1) in a bit position means that error has
occured.

This byte allows you to determine the state of
certain signals on the interface. The modemStatus
byte is bit-mapped as follows:

MSB LSB

7 6 5 4 3 2 1 0

X X X C X D X X

where: C marks the bit position for Clear fo Send
!CTSl

D marks the bit position for Dial Tone
Detect

A one (1) in a bit position indicates that signal
is active.

This WORD contains the ring semaphore
identification number, The semaphore will be
signaled when the ring indicator line is active,

Programming the Modem Gateway Driver 4-11

PROSRANMING THE MODEM EXAMPLE

This is an example of a program that originates communication with a
remote modem, It does the necessary setup and then reads a
character from the modem and writes it back. It then does the steps
necessary to clean up.

NOTE: Although this program does not perform error checking after
GRiD-0S calls, you should include error checking in your code to
improve reliablity,

$DEBUG COMPACT NOLIST
MODULE Main;
$INCLUDE i'wO'incs'Common.inc~text~l
SINCLUDE l'NO'incs'ConPas.inc~text~l
SINCLUDE ('wO'incs'OsPasProcs.inc~text~)
$INCLUDE ('wO'incs'OsPasTypes.inc~text~)
SINCLUDE ('wO'incs'WindowProcs.inc~text~l
$INCLUDE ('wO'incs'WindowTypes.inc~text~)
$LIST
PROGRAM Main;

CONST deviceName
templllumber

TYPE

= ' ·Modem';
= '•'·9"5551212';

RECORD
CHARi
BOOLEAN;
CHAR;

NumberType =
mode:
touchtone:
length:
number: PACKED ARRAY [1..10J OF CHAR;

END;

VAR modem ID: WORD;
ch: CHAR;
ParameterBlock: PACKED ARRAY [L. 9 J OF CHAR;
pathName: PACKED ARRAY [L. 7] OF CHAR;
reserved: Bytej
error: t,JQRD;
Phone: !\!umber Type;
actual: INTEGER;

BEGIN

{----------- attach to the modem----------------------------}

pathName
pathName[1]
reserved

:= deviceName;
:= CHRl61; { Device name is 6 characters}
:= O;

modemID := OsAttach !pathName 1 oldFileMode, reserved,

4-12 Device Drivers

updateAccess, error);

{----------- open the Modem---------------------------------}

OsOpen (modemID, 1, error);

{----------- now establish some appropriate Modem settings--}

ParameterBlock[1] : = CHR<llj { mode byte }

ParameterBlock[2] : = CHR(l); { async }

ParameterBlock[3] : = CHR(8); { 8 data bit i; }

ParameterBlock[4] : ::; CHR (3); { 2 stop bit }

ParameterBlock[5J : = CHR < 1); { even parity }

OsSetStatus lmodeml0 1 ParGmeterBlock 1 5 1 error);

{----------- set ~its/sec-----------------------------------}

ParameterBluck[ll := CHRl71;
ParameterB1ock[2] :~ CHR(5);

{ mode byte}
{ 300 Bits/Sec}

OsSetStatus (modemID, ParameterBlock, 2 1 error);

{----------- turn the speaker up

ParameterBlock[l] := CHR(50l;
ParameterBlock[2l := CHRl255l;

----------------------------}

{ mode byte}
{ volume byte}

OsSetStatus (modemID, ParameterBlock, 2, error);

{----------- dial the number--------------------------------}

Phone.mode := CHR!44l;
Phone.touchtone := TRUE;
Phone.length := CHR(10l;
Phone.number := tempNumber;

{ mode byte}
{ touchtone}

{ I length }
{ number }

OsSetStatus (modemID, Phone, 13 1 error);

{-----------goto data mode--------------------------------}

ParameterBlock[1J := CHR(6l; { mode byte}

OsSetStatus (modemID, ParameterBlock, 11 error);

{----------- turn the speaker off

ParameterBlock[1J := CHR(50);
ParameterBlock[2] := CHR!Ol;

---------------------------]

{ mode byte}
{ volume byte}

OsSetStatus (modemID, ParameterBlock, 2 1 error);

Programming the Modem Gateway Driver 4-13

, {----------- read a CHAR from the modem ---------------------,

actual:= OsRead (modemID, ch 1 1 1 error);

{----------- write a CHAR to the modem

OsWrite (modemID 1 ch, 1, error);

, {----------- disestablish data mode ------------------------,

ParameterBlock[1] := CHR(5); { mode byte}

OsSei:Status (modemID, ParameterBlock, 1 1 error);

{----------- put phone on hook------------------------------;

ParameterBlock[1] := CHR(42l; { mode byte}

OsSetStatus (modemID, ParameterBlock, 1 1 error);

{----------- close the modem--------------------------------}

OsClose (modemID 1 error);

{----------- detach from the modem

OsDetach (modemID,errorlj

OsExit (0);

END

4-14 Device Drivers

--------------------------' ,

DEVELOP FILE FOR MODEM EXAMPLE

:Name: Modem Example
:Prefix: E:<ample

:Sources:
ModemExample.Pas

:Listings:
'w'LST'

:Objects:
'w'OBJ'

:Control~ Yes w/Debug: DEBUG

: lin.k:
Link 'w'OBJ'ModemExample.Pas~OBJ~, 'w'Libs'CompactSystemCalls~Lib~

TO Mode•Example~RuN~ BIND SEGSIZE ISTACK(+15001l NOPRINT

:Test:
Activate 'w'Programs'Modem~Device~
ModemExample
Deactivate 'Modem

:Debug:
Debug ModemExample

: Command Line:
DevelopmentExecutive

: Gr i dM-anager:
Gri DManager

Programming the Modem Gateway Driver 4-15

CHAPTER 5: PROSRAHMINS THE SERIAL GATEWAY DRIVER

SERIAL CONNUNICATIONS OVERVIEW

This chapter assumes you are familiar with the RS-232C serial
communications standard. However, a short review of some relevant
concepts follows,

In the RS-232C interface, there are two kinds of communication
equipment - Data Terminal Equipment <DTE) and Data Communication
Equipment (DCE). DTE generally are the source or destination of
communication such as terminals or computers. DCE are usually
devices that provide communication services, such as a modem. See
Figure 5-1.

Programming the Serial Gateway Driver 5-1

1
DCE r .

1
DTE

Moder,1

Figure 5-1. The Relationship Between DTE and DCE

The transfer of data between a DTE and a DCE is controlled by
certain signals:

Signal Direction

Request to Send (RTSl DTE to DCE
Clear to Send (CTS) DCE to DTE
Data Terminal Ready <DTRl DTE to DCE
Data Set Ready (l)SR l DCE to DTE
Data Carrier Detect IDCDl DCE to DTE
Ring Indicator rn 1 l DCE to DTE

Table 5-L Handshaking Signals

THE GRiD SERIAL INTERFACE

The GRiD serial port provides an RS-232C compatible interface. The
computer has a serial connector (Canon 2DE19Sl on the rear which has
19 pins instead of the standard 25. The six pins not represented
are used for a secondary channel but few devices use this feature.
GRiD manufactures cables (model ib100) to provide a 19 pin to
standard 25 pin connector.

5-2 Device Drivers

The GRiD computer is wired a~ a DTE (Data Terminal Equipment).
Therefore, special cables may need to be fabricated in order to
connect the computer directly to other devices that are also set up
as DTE.

SER UL CONNECTOR

PIN

1
3
5
7
9

11
13
15
17
19

The serial connector has the following pinout:

FUN CT ION

Shield
RxD
CTS
logic Gnd
Tx D Reference
TxC
Ring Indicator
TxC Reference
RxC Reference

+10V DC @ iOOmA

In/Out

In
In

Out
In
In
Out
In
Out

PIN FUNCTION

2 hD
4 IHS
6 DSR
B Carrier Detect

10 RxD Reference
12 DTR
14 -10V DC@ 100111A
16 TxC/Speed Select
18 RxC

In/Out

Out
Out
In
In
In
Out

Out
Out
In

NOTE: The voltage source circuits should be used only for testing.

Table 5-2. Serial Connector Pinout

RS-423 AND RS-422 COMPATIBILITY

RS-423 and RS-422 are extensions to RS-232 that allow higher signal
rates, greater distances bet~een stations, and improved noise
immunity. Both standards specify that incoming signals sho~id be
evaluated differentially. RS-422 further specifies that ~ignals
should be balanced. Balancing is a techniq11.~ that requires two
conductors per circuit but results in ~etter performance.

The GRiD serial interface surports the RS-423 standard and a subset
of the RS-422 s~andard. RS-422 balanced lines are available for
TxD 1 RxD, T~C and RxC. RS-423 compatibility can be attained by
grounding the RxC and RxD reference lines.

SERIAL RING SEMAPHORE

Upon initialization, the serial gateway driver creates the serial
ring semaphore. The gateway driver signals this semaphore whenever
the ring indicator circuit is active (if ring interrupts are
enabledi. An application program can do an OsWait on the semaphore

Programming the Serial Gateway Driver 5-3

and allow other processes ta run while it is waiting for a ring
indicator signal. You obtain the identification number for the
serial ring semaphore using the OsGetStatus call.

PROGRAMMING THE SERIAL GATEWAY DRIVER FROM AN APPLICATION

1. Add Serial~Device~ as an active device.

2. Attach to the serial gateway driver using OsAttach with filename
= 'Se1rial.

3. Open the serial gateway driver using OsOpen.

4. Program desired operating characteristics !bits/sec, stop bits,
etcl using OsSetStatus.

5. Use OsSetStatus to establish a connection with the other device.

6. Read from and write to the serial gateway driver using OsRead and
Os.Write.

7. Close and detach the serial gateway driver using OsClose and
OsDet ach.

8. Remove the serial gateway driver from the active device table.

PROGRAMMING THE SERIAL GATEWAY DRIVER FROM A SHELL

If you are writing a serial printer shall, you should follow the
steps outlined in Chapter 3 with the following additions:

o In the ddinitialize section of the shell, the shell should add
serial to the list of active devices as covered in Chapter 2.

o In the ddOpen section of the shell, the shell can make ddRequests
to the serial gateway driver using OsCallDriver to program
operating characteristics and to establish a data connection. In
this case, the overflow block would have the same format as the
OsSetStatus buffer covered in this chapter.

o In the ddDeactivate section of the shell, the shell should remove
serial from the list of active devices as covered in Chapter 2.

THE OsSetStatu• CALL

The OsSetStatus call has this PASCAL declaration:

PROCEDURE OsSetStatus (conn:WORD; VAR pBuffer:BYTES;
length:WORD; VAR error:WORDlj

conn

pBuffer

length

error

The connection number returned from an OsAttach call.

A pointer to a parameter block. The parameter block has a
mode byte followed by a varying number of parameter bytes.
See Figure 5-2.

The length of the parameter block including the mode byte.

A WORD where an error code is returned. You can examine
this word to determine if the call was successful.

The parameter block has this format:

p8uffer

ParaMeter
Bytes

~igure 5-2 The Parameter Block

Programming the Serial Gateway Driver 5-5

OaSatStatua MODES

MODE O - RETURN TO DEFAULT SETTINGS

0

A parameter block with mode byte= 0 and no parameter bytes causes
the gateway driver to return to a default state:

Bits/Sec
Data Bits
Stop Bits
Parity
Connection Timeout
Character Timeout
Receive Queue
Required For Go-To-Data
Ring Interrupt

5-6 Device Drivers

Default Value

1200
8
2

None
30 Seconds

Forever
Internal
CTS, DCD
Enabled

Mode To Change

7
1
1

2
2
4
60
61

MODE 1 - SET OPERATING VALUES

Bi tsi Stop
!Protocol i Char. : Bi ts l Parity :

Protocol = Asynchronus

B:its/Char. = 5 5 bits/char.
b b bits/char.
7 7 bits/char.
8 8 bits/char.

Stop Bits = 1 1 stop bit
2 1.5 stop bits
3 2 stop bi ts

Parity = 0 None
1 Even
2 Odd
3 Mark
4 Space

NOTE: Mark and space parity are only allowed with less than eight
bits/character.

MODE 2 - SET TIMEOUT VALUES

2 CharTimeout ConnectTimeOut :

CharTimeOut and ConnectTimeOut are WORD values.

CharTimeOut The number of milliseconds the gateway driver should
wait for a character before issuing a Timeout error.
If you set CharTimeOut to zero, then the gatway
driver waits until the requested number of bytes are
available.

ConnectTimeOut The number of milliseconds the gateway driver should
wait for a handshake from the other device after a
go-to-data lmode six) command.

Programming the Serial Gateway Driver 5-7

NODE 3 - FLUSH RECEIVE FIFO BUFFER

Mode 3 can be used to remove spurious characters from the receive
FIFO buffer.

MODE 4 - SET USER DEFINED RECEIVE FIFO BUFFER

4

fifoPtr

fifolength

fifoPtr fifolength

A POINTER to an input buffer in the application
program.

A WORD specifying the length of the new buffer.

Use this mode when you want the gateway driver to use a larger input
buffer than the driver's internal 32 character FIFO buffer to avoid
overflow and loss of data. You should not access the new buffer
directly; but should use the OsRead call instead.

MODE 5 - DISESTABLISH DATA CONNECTION

5

Use mode 5 ta exit data mode. The driver will drop the DTR and RTS
lines.

5-8 Device Driver~

NODE 6 - ESTABLISH DATA CONNECTION

6

Use mode 6 to go to data mode and attempt to handshake with the
other device, The driver will set the RTS and DTR lines active and
wait for DCD and CTS to go active (see Mode 60). If this does not
happen within the connection timeout period (specified in mode 21 1 a
Timeout error will be returned.

MODE 7 - SET BITS/SECOND

7 I Speed

Speed "' 0 50 Bih/Sec.
1 75
2 110
3 134.5
4 150
5 300
6 600
7 1200
8 1800
9 2000
10 2400
11 3600
12 4800
13 7200
14 9600
15 19200

Programming the Serial Gateway Driver 5-~

NODE bO - SIGNALS REQUIRED TO CONPLETE A GO-TO-DATA COMMAND

60 Mask Data

Mode 60 allows you to control whether CTS or DCD 1 or both, must be
active to complete a go-to-data command (mode= 6). The default is
that both CTS and DCD must be active. The mask byte is used to
specify which signal (s) are to be affected by this command, The
data byte is used to specify whether the signal (s) are requ red or
not.

The mask and data bytes are both bit-mapped as follows:

MSB LSB

7 6 5 4 3 2 0

X X C X D X X N

where "C" marks the bit position for the CTS signal and "D" marks
tha bit position for the DCD signal. You should sat the bit
position(s) in the mask byte to one for the signal (sl to be changed
and sat the bit positionlsl in tha data byte to ona to indicate
which signal (sl naad ba present to complete a go to data command.

MODE 61 - ENABLE/DISABLE RING INTERRUPT

b1

Option byta = 0
1

Option

- Disable Ring Interrupt
- Enable Ring Interrupt

Mode 61 talls the driver whether or not to generate an interrupt
when it detects a ring indicator signal. So~a devices may not have
the capability to drive the ring indicator line and will simply keep
it active, thus reducing performance by causing unwanted interrupts.
You should di ■ able the ring interrupt in that case.

5-10 Device Drivers

The OsGetStatus call obtains information about the current state of
the serial gateway driver. This call is described in the GRiD-OS
Reference Manual but the status record format differs for every
device. The status record for the serial gateway driver has this
format:

StatusType = RECORD

open

access

seek

filePosition

numCharsinFifo

. synchDetect

connection

open:
access:
seek:
filePosition:
numCharsinFi fo:
sync Detect:
connection~
ModemControl:
unused:·
RingSID:

END;

BOOLEAN;
BYTE;
BYTE;
LONGINT;
WORD;
BOOLEAN;
BYTE;
BYTE;
BYTE;
WORD;

If the serial gateway is attached, this BOOLEAN
t"lill be TRUE.

This BYTE is bit-mapped to indicate the type of
access allowed. It will always be set for read and
write access. See the GRiD-OS Reference manual for
a description of the bit-map.

This BYTE is always O.

This LONGINT is always 0.

This WORD contains the number of characters
currently in the recieve buffer .

This BOOLEAN is always FALSE.

This contains the current status of the connection:

connection= 4 - Carrier was lost.
2 - Connection established.
0 - No connection established.

Programming the Serial Gateway DriVer 5-11

modemControl

ringSID

5-12 Device Drive,s

This byte allows you to determine the if certain
signals are active on the interface. The
modemControl byte is bit-mapped as follows:

MSB LSB

7 6 5 4 3 2 0

where: D marks the bit position far DCD
C marks the bit position for CTS
R marks the bit position for DSR

A one (1) in a bit position indicates that signal
is active.

This word contains the ring semaphore
identification number. This semaphore will be
signaled ~hen the ring indicator line is active and
ring interrupts are enabled. See OsSetStatus mode
6L

PROGRAHHINS THE SERIAL GATEWAY DRIVER EXAMPLE

This is an example of a prograffi that communicates with another
device using the serial port. It does the necessary setup and then
reads a character and writes it back. It then does the steps
necessary to clean up.

NOTEs Although this program does not perform error checking after
GRiD-OS calls, you should include error checking routines in your
code to improve reliability.

SDEBUG COMPACT NOllSl
MODULE Main;
SINCLUDE ('wO'incs'Common.inc~text~)
$INCLUDE ('wO'incs'ConPas.inc~text~l
SINCLUDE ('MO'incs'OsPasProis.inc~text~)
SINCLUDE ('wO'incs'OsPasTypes.inc~text~)
$UST
PROGRAM Main;

CONST devic:eName = • 'Serial';

VAR Seri.al ID: WORD;
ch: CHAR;
ParameterBloc:I:: PACKED ARRAY [1. . 9]

pathName: PACKED ARRAY [L. 8]
reserved: Byte;
error; WORD;
actual: INTEGER;

BEGIN

OF CHAR;
OF CHAR;

{----------- attach to the serial gateway-------------------}

:= deviceName; pathName
pathName[1] := CHR(7); { Device name is 7 characters}
reserved := O;

Serial ID:= OsAttach (pathName 1 oldFileMode 1 reserved,
updateAccess, error);

{----------- open the serial gateway------------------------}

OsOpen (serialID, 1, error);

{---- now establish some appropriate serial driver settings-}

ParameterBlock[l] := CHR(1l; { mode byte }

Programming the Serial Gateway Driver 5-13

ParameterBlock[2] : = CHR 11 l; { async }

ParameterBlock[3] : = CHR; { 8 data bits
, ,.

ParameterBlock[4] : = CHR(3l; { 2 stop bit }

ParameterBlock[5] : = CHR i 1) i { even parity ' .f

OsSetStatus (Serial ID, ParameterBlock 1 5 l er rorl;

{-------------- Set bits/sec --------------------------------}

ParameterBlock[1] := CHR(7);
ParameterBlock[2] := CHR(5l;

{ mode byte}
{ 300 Bits/Sec }

OsSetStatus (SerialID, ParameterBlock, 2, error);

(-----------goto data mode ---b----------------------------}

ParameterBlock[ll := CHRl6l; { mode byte}

OsSetStatus <Seria1ID 1 PararneterBlod: 1 1 1 error>;

{----------- read a CHAR from the Serial gateway------------}

actual :,:, OsRead <SerialID, ch 1 1 1 error};

(----------- write a CHAR to the serial gateway-------------]

{----------- disestablish data mode ------------------------}

ParameterBlock[1] := CHR(5); { mode byte}

OsSetStatus (SerialID, ParameterBlock, 1, erroFl;

{----------- close the serial gate~ay ----------------------}

OsClose (serialID, errorl;

{----------- detach from the Serial gateway-----------------}

OsDetach (Serial ID,errorl;

OsExi.t (0};

END

5-14 Device Drivers

DEVELOP FILE FOR SERIAL EXAMPLE

:Name: Serial Example
:Prefix: Eiiample

:Sources:
SerialExample.Pas

:Li.stings:
'w'LST'

:Objects:
'w'OBJ'

:Controls Yes "/Debug: DEBUG

:Link:
Link 'w'OBJ'SerialExample.Pas~oeJ~,'w'Libs'CompactSystemCalls~Lib~

TO SerialExample~RuN~ BIND SEGSIZE (STACK<+1500)} NOPRINT

:Test:
Activate 'w'Programs'Serial~Device~
SerialExample
Deactivate 'Serial

:Debug:
Debug SerialExample

:Command Line:
DevelopmentExecutive

: Gr-i dManager:
GriDManager

Prograaming the Serial Sate~ay Driver 5-15

CHAPTER 61 PROGRANNINS THE GPIB GATEWAY DRIVER

GPIB OVERVIEW

The General Purpose Interface Bus CGPIBI is a parallel interface
used to transmit byte-wide data. At GRiD, the interface is used for
disk drives, printers, and plotters. Since the bus is arbitrated,
many devices can be hooked up simultaneously and each device has a
unique address. The GPIB supports addresses ranging from Oto 31.

The interfaci supports three kinds of devices: Controllers, Talkers
and Listeners. A Controller is a device that arbitrates the bus;
talkers write data onto the bus; and listeners only receive data.
Some devices may'combine the functions. A computer running GRiD-OS
is a Controller but also has Talker/listener capability.

Data transfer on the bus is arbitrated by the Controller. The
Controller first places the addresses of a Talker and listener(s) on
the bus before each message. The messages can either be transmitted
a byte at a time or in blocks. Handshaking on the bus ensures that
Talkers send at a rate compatible with Listeners and there is a
signal called EOI (End or Identify) that indicates when a message is
complete.

Some devices can interrupt the Controller, This occurs on a line
called Service Request <SRQ). After the interrupt, the Controller
initiates a process called a Serial Poll to determine which device
requested service.

Programming the GPIB Gateway Driver b-1

GRiD GPIB GATEWAY DRIVER OVERVIEW

The BPIB gateway driver transmits data in two modes: law speed and
high speed. In the low speed mode (sometimes c lled the interrupt
fflode), the gateway driver transmits data a single byte at a time and
checks after every byte to see if the transmission has been
terminated. Termination can occur one of five ways:

o The number of b es requested has been transferred.

o The sending device sent a special byte called the end of string
iEOS) character. For example 9 a digitizer might send a carriage
return after each coordinate has been transmitted over the bus.
The EOS character is device dependent and can be specified to the
GPIB gateway driver. If the device doesn't have an EOS character
or if you want to disable this feature, the EOS character should
be specified as OFFH when programming the gateway driver.

o The other device indicated it was finished by asserting the EDI
line on the bus.

o The request timed out.

o An error occured on the GPIB bus.

In the high speed mode (sometimes called the DMA mode), the gateway
driver transfers blocks of data to or from a special address' in
memory; special timing is implemented to speed up the transfer.
Termination can occur one of four ways:

o The number of bytes requested has been transmitted.

a The other device indicated it was finished by asserting the EOI
line on the bus.

o The request timed out.

o An error occured on the GPIB bus.

Because there is no EDS conc•pt in the high speed made, you should
use the low speed mode whenever an EDS function is desired and the
high speed mode otherwise.

If you use the law speed mode, you can program the amount of time
the driver should wait before issuing a request timed-out error. In
the high speed mode, the timeout duration is fixed at five seconds
because a hardware timer is used.

b-2 Device Drivers

DATA STRUCTURES

Three main data structures are important to a programmer interested
in writing a GPIB shell: a parameter block and two kinds of overflow
blocks.

PARAMETER BLOCK

The parameter block has this Pl/M declaration:

DCL ParamListType LITERALLY 'STRUCTURE

connection
pBuffer
position
length
mode
numBuf
int.Addr
pOverflow

SELECTOR,
POINTER,
DWORD,
WORD,
WORD,
BYTE l

BYTE,
POINTER!';

These paraMeters shouldn't be modified by the shell unless otherwise
noted. The parameters of interest are:

pBuffer

length

intAddr

pOVerflow

A POINTER to the buffer specified by the application
when it made the GRiD-OS call.

The number of bytes requested by the application. It
is updated by the gateway driver to the actual number
of bytes transferred.

The GP!B address of the device with which the
application wants to communicate. If the shell was
not assigned an address when it was activated, this
parameter is NULL (OFFH). You should check for NULL
and assign an address in that case.

A POINTER to another block of para~eters. You should
set pOverflow to point to this block. The format of
the overflow block varies as described in the
following sections.

OVERFLOW BLOCK FOR I/0 REQUESTS

This overflow block is used when sending ddRead, ddWrite, or
ddDeactivate to the gateway driver; it appears as follows:

Programming the GPIB Gateway Driver 6-3

DCL OverflowType LITERALLY ' STRUCTURE

dataMode

EOSchar

secAddr

timeout

dataMode
EOSchar
secAddr
timeout

BYTE,
BYTE,
BYTE,
WORD)';

The data transfe~ mode. You should put a O in this
byte if the high speed mode is desired, and a 2 if
the low speed mode is desired.

In the low speed mode, set this parameter to the
character, if any, used to terminate a message. In
the high speed mode, or if no EOS character is
desired, set it to OFFH.

Not used.

In the low speed mode, set this parameter to the
length of time you want the gateway to wait before
giving up on a request. This number is in
milliseconds, i.e., a time out duration of six
seconds is specified as 6000. If the high speed mode
is chosen, the timeout is fixed at five seconds.

OVERFLOW BLOCK FDR SETSTATUS REQUESTS

This overflow block is used when sending a ddSetStatus request. It
appears as follows:

DECLARE gateWaySetStatus STRUCTURE

mode

dataWord

mode
dataWord

BYTE,
WORD};

Set this byte to O if you want to send a selective
device clear (reset} to the device. You should set
this byte to 2 when notifying the gateway driver to
recognize service Requests from a device.

If you want to recognize service requests from a
device, set this word to the identification number of
the semaphore that is to be signaled. When doing a
sele~tive device clear, ignore this parameter.

NDTE1 ParamListType and OverflowType are defined in an Include file
-- PrinterDriver.Inc. GateWaySetStatus should be defined in
the shell.

6-4 Device Drivers

SERVICE REQUESTS

Some devices can interrupt the computer by asserting the Service Request
line. Typically, service request~ are used by a device to indicate a
readiness to transfer data or to report an error. If the gateway driver
has been notified to recognize service requests for a device and one
occurs, the driver will:

1. Poll the bus to determine which device requested service.

2. Read a status byte from the requesting device.

3. Signal a semaphore and pass the status byte through the semaphore
note. You must create the semaphore and pass the semaphore
identification number to the gateway driver with ddSetStatus requ~st,
mode two.

There are two major uses for service requests:

o The service request is used to report a readiness to transfer data.
Some devices require a command to be written to them before they can
transfer data. For example, a device might need a co~mand sent to it
before it will transmit. In the ddRead section of the shell, you
would write the command to the device and then wait for a service
request before reading from the device.

o The service request is used to report an asychronous event. In this
case, the application should check for the signal. For example, the
device might generate a service request when it detects an error
condition. Your application could have a process waiting for an error
signal and then take appropriate action.

Service requests are very device-dependent and many devices do not
support them. If they do, they may need to be programmed to supply a
service request. Check your device manual for details.

When the shell receives a ddDeactivate request, delete the seMaphore and
pass a ddDeactivate request to the gateway driver. This will inform it
to stop responding to service requests from this device.

Programming the GPIB Gateway Driver 6-5

PROGRAMMING THE GPIB SATEWAY DRIVER EXAMPLES

This section contains four examples of BPIB driver programming:

o Sending a selective device clear to a device.
o Notifying the BPIB gateway driver to recognize service requests from a

device,
o Reading from the device.
a Writing to the device.

All the examples assume these data declarations:

DECLARE params ParamlistType;
DECLARE overflow OverflowType;
DECLARE plotBuf <Bl BYTE;
DECLARE gateWaySetStatus STRUCTURE C

mode BYTE,
dataWord WORD;

RESET THE DEVICE

This code tells the GPIB gateway driver to send a selective device clear
(reset) to the device at the address specified.

I• If the device wasn't assigned an address when
it was activated, assign a default one now •I

IF params.intAddr = OFFH THEN
params.intAddr = 28;

gateWaySetStatus.mode = O; I• Reset *I
params.pOverflow = @gateWaySetStatus;
CALL OSCALLDriver (@(5 1 ''GPIB') 1 80,DOUBLE (ddSetStatus),

@params,@error) l

6-6 Device Drivers

NOTIFY THE DRIVER TO RECOGNIZE SERVICE REQUESTS

This example is for an HP 7470A plotter that requires an In-put Mask (IMI
instruction before it will assert a SRQ. IM is an HP 7470A plotter
specific command. Other devices may require different commands.

I* If the device wasn't assigned an address when
it was activated, assign a default one now *I

IF params.intAddr = OFFH THEN
params.intAddr = 28;

gateWaySetStatus.mode = 2; I* Set SRQ mode*'

I* Create a semaphore to pass to the gateway driver *I
gateWaySetStatus.dataWord = OsCreateSemaphore (@errorl;
IF error~ 0 THEN
DO;

params.pOverflow ~ @gateWaySetStatus;
CALL OSCALLDriver HH5,"GPIB') 1 80,DOUBLE iddSetStatus),

@params,@errori;

I* Send the 7470 a command to enable SRQ *I
plotBuf = 'IM,223,4';
params.pBuffer = @plotBuf;
params.length ~ B;
params.pOverflow = @overflow;
CALL OSCALLDriver !@!5, '·-sPIB') 1 80,DOUBLE (ddWrite),

@params,@error);
END;

READ FROM THE DEVICE

This example assumes the device has GPIB address 28, uses the low speed
transfer method and terminates messages ~ith a carriage return (ODH).

Overflow.dataMode = 2;
Overflow.EOSchar = ODH; I• Terminate message on CR¼/
params.pOverflow = @Overflow;
I* If the device wasn't assigned an address when

it was activated 1 assign a default one now*'
IF params.intAddr = OFFH THEN

params.intAddr = 28;
CALL OSCALLDriver (@(5 1 "GPIB') 1 80 1 DOUBLE (ddRead),

@params,@errorl;

Programming the GPIB Gateway Driver 6-7

WRITE TO THE DEVICE

This example assumes the device has GPIB address 28 1 and uses the high
speed transfer method,

Dverflow.dataMode = O; /1 High Speed mode I/

Overflow.EOSchar = OFFH; /1 No EOS char in this mode 1/

paraMs.pOverflow = @Overflow;
/I If the device wasn't assigned an address when

it was activated, assign a default one now 1/

IF params.intAddr = OFFH THEN
params.intAddr = 28;

CALL OSCALLDriver (@<5,' 'GPIB' l 180,DOUBLE (dd!>lr:ite),
@params,@error);

6-8 Device Drivers

GENERIC GPIB SHELL EXAMPLE

SNOLIST LARGE OPTIMIZEC31

I* Generic GPIB Read and Write Shell
Default GPIB address: 28.
No Service Requests.
High Speed data transfer mode.
Default Timeout: 5 seconds -- Fixed in High Speed Mode.

GenericGPIBDriver: DO;
$INCLUDE ('wO'Incs'Plmlit.Inc~Text~)
$INCLUDE (PrinterDriver.Inc~Text~l

DCL defaultAddress LIT '28';
DCL HiSpeedMode LIT 'O';

I* Initialize the parameters in the Overflow Block *I
DCL overflow OverflowType INITIAL (HiSpeedMode, OFFH,

OFFH, OFFFFHl;

OsDevice: PROCEDURE <request, pParams, pErrorl PUB REENT;
DCL request WORD;
DCL pParams PTR;
DCL pError PTR;

DCL error BASED pError WORD;
DCL params BASED pParams ParamListType;

DCL pSetStatus PTR;
DCL setStatus BASED pSetStatus SetStatusType;
DCL StatusBlock SetStatusType;
DCL getStatus GetStatusType;
DCL getStatusLength WORD;

IF request= ddWrite THEN
CALL SendToGPIB (@params);

ELSE
IF request= ddSetStatus THEN

DO;
pSetStatus = params.pBuffer;
IF setStatus.setStatMode = setTimeout

THEN overflow.timeout= setStatus.setNewTime;
ELSE error= notSupported;

END;
ELSE
IF request= ddGetStatus THEN

DO;
CALL SETB !O, @getStatus, SIZE igetStatus)>;

Programming the GPIB Gateway Driver 6-9

getStatus.open = openStat;
getStatus.access = accessStat;
getStatus.GPIBAddr = params.intAddr;
IF params.length (SIZE (getStatusl

THEN getStatuslength = params.length;
ELSE getStatuslength = SIZE (getStatus);

CALL MOVB !@getStatus, params.pBuffer, getStatusLengthl;
END;

ELSE
IF request= ddRead THEN
DO;

I* If no address ~as assigned when attached,
use the default address *I

IF params.intAddr = OFFH THEN
params.intAddr = defaultAddress;

params.pOverfloN = @overflow;
CALL OSCALLDriver (@(5, ''GPIB') ,80,DOUBLE (ddReadl,

@params 1 @errarl;
END;
ELSE
IF NOT (<request = ddOpenl

(r-equest == ddiniti.alize)
(request = ddClose)
(n1cp.1est = ddDetachl
(request ::: ddAtt ach l
(request = ddTruncate)
(request = ddDeacti. vatel)

error = not Supported;

END;

WriteStri.ng: PROC (pStringl REENT;
DCL pStr i ng PTR;

OR
OR
OR
OR
OR
OR
THEN

DCL string BASED pStr:ing STRUCTURE <len BYTE, chars (1l BYTE);
DCL intParams ParamlistType;

intParams.pBuffer = @string.chars;
intParams.length = string.len;
CALL SendToGPIB {@intParamsl;

END;

SendToGPIB: PROC lpParamsl REENT;
DCL pParams PHq
DCL params BASED pParams ParamlistType;
DCL error WORD;

IF params.length > 0 THEN
DO;

I* If no address was assigned ~hen attached,
use the default address *I

IF params.intAddr = OFFH THEN
params.intAddr = defaultAddress;

params.pOverflow ~ @overflow;
CALL OSCALLdriver !@(5,' GPIB'l, 80 1 DOUBLE (ddWrite),

6-10 Device Drivers

END;
END;

END; I* Module *I

@params 1 @error);

Programming the GPIB Gateway Driver 6-11

GENERIC SPIB SHELL WITH SERVICE REQUESTS EXANPLE

$NOLIST LARGE OPTIMIZE<3l

'* Generic GPIB Shell with "hooks" for Service Requests
Default GPIB address: 28.
High Speed Mode,

GenericGPIBDriver: DO;

$INCLUDE { 'wO' hics'Plmlit. Inc"'Te>:t''')
SINCLUDE (PrinterDriver.Inc~Text~)

'* Declarations for OS Procedures not in
PrinterDriver.Inc~Text~ ¾/

OsSignal: PROCEDURE Csid 7 mode, note, pErrorl EXTERNAL;
DCL sid WORD;
DCL mode BYTE;
DCL note WORD;
DCL pErrnr PTR;
END;

OsRegisterName: PROCEDURE CpName 1 token, mode, pErrorl EXTERNAL;
DCL (pName, pEr1°0Fl PTR;
DCL token DWORD;
DCL mc,de BYTE;
END;

OsWait: PROCEDURE 1sid 1 time,pError) WORD EXTERNAL;
DCL sid WORD,

ti me WORD,
pError PTR;

END;

OsCreateSemaphore: PROCEDURE (pErrorl WORD EXTERNAL;
DCL pError PTR;
END;

OsDeleteSeffiaphore: PROCEDURE {sid 1 pErrorl EXTERNAL;
DCL sid WORD,

pError PTR;
END;

DCL defT:imeout LIT '5000'; I* five seconds *I
DCL defaultAddress LIT '28';
DCL Hi.Speedl'lode LIT 'O',

DCL overflow OverflowType INITIAL <HiSpeedMode, OFFH, OFFH,

6-12 Device Drivers

deflimeout);

DCL firstimeThru BYTE INITIAL (OFFH);
DCL Note WORD;

DCL gateWaySetStatus STRUCTURE <mode
dataWord

BYTE,
WORD);

OsDevice: PROCEDURE (request, pParams, pErrorl PUB REENT;
DCL request WORD;
DCL pParams PTR;
DCL pError PTR;

DCL error BASED pError WORD;
DCL params BASED pParams ParamlistType;

DCL pSetStatus PJR;
DCL setStatus BASED pSetStatus SetStatusType;
DCL StatusBlock SetStatusType;
DCL getStatus 6etStatusType;
DCL getStatuslength WORD;

IF request= ddWrite THEN
CALL SendToGPIB (@params);

ELSE
IF request= ddSetStatus THEN

DO;
pSetStatus = params.pBuffer;
IF setStatus.setStatMode = setTimeout

THEN overflow.timeout= setStatus.setNewTime;
ELSE error= notSupported;

END;
ELSE
IF request~ ddGetStatus THEN

DO;
CALL SETB 10, @getStatus, SIZE (getStatusi>;
getStatus.open = openStat;
getStatus.access = accessStat;
getStatus.GPIBAddr = params.intAddr;
IF params.length < SIZE (getStatusl

THEN getStatusLength = params.length;
ELSE getStatuslength = SIZE (getStatusl;

CALL MOVB (@getStatus, params.pBuffer, getStatuslengthl;
END;

ELSE
IF request= ddRead THEN
DO;

IF error= 0 THEN
DO;

IF params.intAddr = OFFH THEN
params.intAddr = defaultAddress;

params.pOverflow = @overflow;

CALL OSCALLDriver (@(5,' 'GPIB'l,80,DOUBLE (ddReadl,

Programming the GPIB Gateway Driver 6-13

END;
END;
ELSE IF request= ddlnitialize THEN
DO;

I* Tell the GPIB gateway driver ta respond to SRQ for this device. •I

IF params.intAddr = OFFH THEN
params.intAddr = defaultAddress;

IF firstimeThru THEN
DO;

gateWaySetStatus.mode = 2; f* Set SRQ •I

I* Create the semaphore that the gateway driver
Nill Signal Nhen a SRQ is asserted by the
device, •I

gateWaySetStatus.dataWord =
OsCreateSemaphore (@error);

IF error= 0 THEN
DO;

params.pOverflow = @gateWaySetStatus;
CALL OSCALLDri YEH'" (@ (5 1 ' 'GP IB' l i

80 1 DOUBLE (ddSetStatus},
@params,@errorl;

firstimeThru = FALSE;

I* Register the semaphore ID so an application can
wait for a signal to this semaphore. *'

CALL OsRegisterName (@(8,'gpibSema'},
gatewaysetstatus.dataword 1

1 ,
@error l;

END;
END;

END;
ELSE IF request= ddDeactivate THEN
DO;

IF params.intAddr = OFFH THEN
params.intAddr = defaultAddress;

params.pDverflow = @overflow;

f* Tell the gateway driver to stop responding to
Service Requests from this device. *I

CALL OSCALLDri.ver (@!5 1 ''GPIB') 1 80,DOUBLE !ddDeactivate) i

@paramsi@error);

CALL OsDeleteSemaphore (gatewaysetstatus.dataWord,@error);

6-14 Device Drivers

f* Remove the name from the name table i/

CALL OsRegisterName (€H8 1 'gpibSema') 7

gatewaysetstatus.dataword,
2 !

@error);

END;
ELSE
IF NOT ((request = ddOpeni

(request = ddClosel
(request = ddDetachl
(request ::: ddAttachl
(request = ddTruncate))

error = notSupported;

END;

WriteString: PROC (pStr:ing) REENT;
DCL pStr i ng PHq

OR
OR
OR
OR

THEN

DCL string BASED pString STRUCTURE (len BYTE, chars (1) BYTE);
DCL intParams ParamlistType;

intParams.pBuffer = @string.chars;
intParams.length : string.len;
CALL SendToGPIB l@intParamsl;

END;

SendToGPIB: PROC <pParamsl REENT;
DCL pParams PTR;
DCL params BASED pParams ParamlistType;
DCL error WORD;

IF params,length > 0 THEN
DO;

END;

IF error= 0 THEN
DO;

IF params.intAddr = OFFH THEN
params.intAddr = defaultAddress;

params.pOverflow = @overflow;
CALL OSCALLdriver (@(5 7 ''GPIB' l, 80 7

DOUBLE (ddWritel, @params,
@error),

END;
END;

END; I• Module •I

Programming the GPIB Gateway Driver 6-15

GENERIC GPIB DEVELOP FILE

:Name:
:Prefi>::
:L:ist:ings:
:Objects:

: Sources:

GenericGPIB
GenericGPIB
'WO'LST'
'WO'OBJ'

GenericGPIBePlm
GenericGPIBSRQ.Plm

:Control Yes w/Debug: DEBUG

:Link GenericGPJB:
UNI<
'wO'OBJ'6eneric6PIB.PLM~OeJ~,·wo·Libs'JmpDev.Asm~abj~,·wo·Libs'LargeSingJ
eException.Asm~Obj~ 1 ·wo·Libs'largeSystemCalls~lib~ TO GenericGPIB~Device~
BIND SSISTACKCOI) PCIPURGEl FASTLOAD PURGE
PRINTl'wO'LST'GenericGPIB~MPl~I

:Link GenericGPIB SRQ:
LINK
'wO'OBJ'6enericGPIBSRQ.PLM~osJ~,·wo·Libs'JmpDev.Asm~obj~,·wo·Libs'LargeSi
ngleException.Asm~Obj~,·wo·Libs'LargeSystemCalls~Lib'' TO
GenericGPIBSRQ~Device~ BIND SS<STACK(O)l PCiPURGE) FASTLOAD PURGE
PRINT('wO'LST'GenericGPIBSRQ~MPl~i

:Test SenericGPIB:
Deactivate GenericGPIB
Activate SenericGPIB 28

:Test GenericGPIB SRQ:
Deactivate GeneritGPIBSRQ
Activate GenericGPIBSRQ 28

:Command Line:
'DevelopmentExecutive'

:GRiDManager:
'GRiDManager'

6-16 Device Drivers

APPENDIX A: UNIVERSAL PRINTER LANGUAGE

This appendix defines the GRiD Universal Printer Interface Language. It
defines the interface between any application which supports printing and any
GRiD supported printer driver.

Applications should attach to 'Printer. GRiD-OS will be responsible for
mapping this into the current system printer. When opened, the driver
initializes the printer into its normal typeface (12 pitch). When closed, the
driver flushes the printer's internal buffer.

The commands which each printer must support (support can mean to ignore) are
listed below. The driver must accept these codes in a serial byte stream.

Command

Bed df ace
Underline
Italics
Superscript
Subscript
Enlarged
Condensed
Line spacing

Turn

ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC

on/off

, B,

'u'
, I ,

'+'

-
, E,

'C,
'L, n

Where n is in 1/Sths of an line. C 0/8 = single line spacing
Graphics ESC 'G' width height reserved reserved

reserved
Pass an ESC thru
Pass all codes thru

ESC ESC
ESC 'Z'

NOTEs When using sub or superscripts, the line spacing must be set to a value
greater than single line spacing to allo~ room.

Universal Printer Language A-1

NOTE: Turning subscripting (superscripting) on automatically turns
superscripting (subscripting) off.

In addition, each driver must support a command to print screen images. This
is impossible for letter quality printers but they must skip the appropriate
amount of "white space" so that an image could be pasted in later.

ESC 'G' width, height, reserved, reserved, reserved

The width and height parameters are word values and define the size of the
graphics area lscreenimagel in pixels. The driver rounds up to a multiple of
B for both width and height. The 3 dummy words are reserved for later use.
The data stream following the graphics command is sent to the printer one
horizontal row at a time starting at the top left.

A-2 Device Drivers

APPENDIX B: ERROR CODES

This section lists the error codes that can result from calling a gateway
driver.

Serial Gateway Driver

0: Everything OK. No action necessary.

35: Request Not
impossible.
request.

Supported. You asked the gateway driver to do something
For example 1 the serial driver does not support a seek

231: Device Not Active. This error can occur in three situations:
1. The serial device has not been activated. Be sure you have

activated Serial~Device~ from the command line or
programmatically.

2. You attempted to transfer data before establishing a connection.
Make an OsSetStatus mode six call to establish a connection.

3. The gateway driver lost CTS and/or DCD. You can determine which
one by making a OsGetStatus call and examining the modemControl
byte. Make sure these signals are active on your hardware or
make an OsSetStatus mode 60 call to change the required signals.

235: Bad Parameter. You passed the gateway driver a valid request but with
a bad parameter. For example, you would get this error if you made an
OsSetStatus mode 44 call to the serial gateway driver.

401: Time Out Error. This error can occur in two situations.
1. When reading, the gateway driver did not receive a character

within the character time out period. Check your hardware or
make an OsSetStatus mode two call to change the character time

Error Codes B-1

out.
2. When establishing a connection, the gateway driver did not

detect a handshake Nithin the connect time out period. Check
your hardware. You can make an DsSetStatus mode two call to
change the connect time out period, or you can make an
OsSetStatus mode 60 call to change the required signals.

402: Carrier Was Lost. Check your hardMare.

403: Parity Error. Make an DsSetStatus mode one request to change parity
type.

0: Everything OK. No action necessary.

35: Request Not
impossible.
request.

Supported. You asked the gateway driver to do something
For example, the modem driver does not support a seek

231: Device Not Active. This error can occur in two situations:
I. The modem device has not been activated. Be sure you have

activated Modem~Device~ from the command line or
programmatically.

2. You attempted to transfer data before establishing a connection.
Make an OsSetStatus mode six call to establish a connection.

235: Bad Parameter. You passed the gateway driver a valid request but with
a bad parameter. For example, you Nould get this error if you made an
OsSetStatus mode 61 call to the modem gateway driver.

400: Modem Did Not Answer. When establishing a connection, the gateway
driver did not detect a handshake within the connect time out period.
You can change the connect time out period with OsSetStatus mode two.

401: Time Out Error. When reading, the gateway driver did not receive a
character ~ithin the character time out period. You can adjust the
character time out period with OsSetStatus mode two.

402: Carrier Was Lost.

403: Parity Error. Make an DsSetStatus mode one request to change parity
type.

406: Bad Phone Number, You asked the modem driver to dial a number that
contained illegal characters. Only numbers or format characters are
allo~ed. If you are using touchtone dialing, the "I" or "1"

characters are also allowed.

B-2 Device Driver&

0: Everything OK. No action necessary.

35: Request Not Supported. You asked the gateway driver to do something
impossible. For example, the GPIB driver only supports set status
modes of zero or two. Other requests will return this error.

451: GPIB Time Out. When reading, the gateway driver did not receive a
character within the time out period. If you are using the low speed
mode, you can adjust the time out period in the parameter block.

GPIB Not Responding. The gateway driver could not communicate with
the other .device. Be sure the other device is turned on and ready.

Error Codes B-3

