
\Eii

(1

\iiE

6RioBASIC REFERENCE HANUAL

March 9, 1983

Model Number 2lt:)I()-4t:l

COPYftl6HT
2535 Barci PAv:::: GRID 5y5tem5 Cc}rporat]on
MOLintain View. CA 94043
(415) 961-4800

Manual Name : 6RiDEIASIC ftef erenc:e Maniial
Model Niimber 21020-40
Issue date: Marc:h 9. 1985

Nc] part of this piiblic:ation may bE reprodiiced. stc}red in a retrieval 5ystEm,
c}r transmittecl, in any fc]rm or by any means, electronic, mec:hani[al,
Photc}copy, recording, or c)therwi5e. withoLit the prior written perml55ion C)+
GRiD Systems Corporation.

The infclrmation in this documEnt is sLibjec.t to change withoiit notice.

NEITHER BF{iD SY§TEM§ CORPORATION NOR THIS DOCUMENT MAKES ANY EXPRE§§ED 0R

IMPLIED WARRANTY, INCLUDING. EIUT NOT LIMITEI) T0 THE IMPLIED WARRANTIES OF

MERCHANTABILITY, QUALITY, OR FITNESS FOR A PARTICULAR PuRPO§E. 6RiD §y5tem5
CC}rporation makes r`o representation a5 to thE act.urac:y or aclequac:y c}f thls
dc}[l`ment. 6Ril) §ygtems Corporation has nc) obligation to update or keep
ciirrent the informaticin I:c)ntained in this document.

GRil) System Corporation'5 Software products are copyrighted by and Shall
remain the property of GftiD Systems Corporation.

UNI)Eft N0 Clf{CUM§TANCE§ WILL t3RII) SY§TEM§ CORPORATION EIE LIABLE FOR ANY LOSS 0fl
OTHER DAMABE§ ARI§INB OUT 0F THE USE 0F THIS MANUAL.

The follc}wing are trademarks of GRiD Systems [orporation: 6Ril), NAVIGATOR,
COMPA§§ CEN"AL, COME.A§5 COMPUTEFi, and LEVEFiA6ED LEARNING.

F"

H

u

•-I

r

-,

TABLE 0F CONTENTS

GF3il)BASIC COMMAND SUMMAF{Y

AB0llT THIS BOOK

CHAPTEfi ONE: 6ETTIN6 STARTED

What ls BF!iDBA§IC
Invoking 6RiDBASIC
The Programming (Indirect) Mode

Running, Continuing, and Stopping a Program.
The E§Cape Key
Erasing Line(s)
Other Commands

The Direct Mode ,................
Aboiit the GRiDBA§IC Environment

Layout of the GRiDBA§IC Screen
Lines and Line Numbering . . .

Automatic: Line Numbering .
Manual Line Numbering . .
F3eni`mber i nq
Multiple Statements . . .
Reformatting yc]ur Listings

I-1
1-1

1-2
1-3
1-3
I-3
1-3
i-4
1-4
i-4
I-6
1-6
1-6
i-6
1-7
I-7

CHAPTEB TWO: GENERAL INFORMATION AElolJT GfiiDEIA§]C

§ynta>: I)iagramg . . .
Reserved Words . . .
Constants......

§trina Constants
Numeric Con5tant§

Var i abl es
Array Variable§
Expres5ic)ne and Operators

Order of Precedence and Ni`meric Operators.
Relational Operators ,.
Logical Operatc]r5,....
String Operators

File Naming Conventions
File I:ind5 -......,........
Oel i mi ters

CHAPTER THREES ASSIGNMENT AND DEFINITION §TATEMENT§

DIM........

LET........
REAI) I)ATA [RE§TORE]
A.EM........

CHAPTER FOUR: STATEMENTS THAT CONTROL PROGRAM FLOW

END........
FOR T0 NEXT [§TEP]
60SIJB RETURN . . .
60TO.......
IF THEN [EL§EJ . .
ON 60T0 and ON 60SUB
STOP........
WHILE WEND

CHAPTER FIVE: ARITHMETIC AND LOGIC

INTEGER F.UN[TI0NS
ABS (Absolute) .
ACOS (Arc cosine)

u

iiEI

A

BIB

ANI) ' -.....

ASIN (Arc: Sine)
ATN (Arc:tangent)
CDEL (Convert to double)
CINT (t:onvert to integer)
COS (Cosine) .,,,,,
CSN6 (Convert to single)
EXP (E}:ponentlal) . . .
FALSE.........
FIX..........

INT (IntEger)
Integer I)ivi5ion (\) . .
Lots (Logarithm)
L0BIO (Log tc] base lil) .
MOD..........

NOT..........
OR...........
PI...........
RANDOM I Z E

RND (Random)
F(OUND.........

§6N (Sign)
SIN (Sine) ® ,.,,,,
SGiR (Square root) . . .
TAN (Tangent)
TRUE..........
TRUNC (Truncate)
XOFt (E>:t:lusive OR) . . .

CHAPTER SIX= STRIN8 FUNCTICIN§

A§C (A§CII)
CHRS (Character string)
INSTR (In string) . . .
LEFTS (Left strinq) . .
LEN (Length)
HIDS (Mid string) . . .
RIBHTS (Right string) .
SPA[ES (Space String)
§TF{S (S-T-R String) .
STF(INBS (String) . . .
VAL (Value)

CHAPTEB SEVEN: INPUT/OUTF.UT §TATEHENT§

COMMA . . .

DATES . . .
INKEYS . .

INPUT . . .
LOCATE . .

PRINT . . .
PRINT lj§IN6
SEMICOLON .

TAB....

TIMES . . .

CHAPTER EIGHT: SEG!UENTIAL FILES §TATEMENT§

CLOSE.......
EOF (End of file) .
EOLN (End of line)
GETFILES.....
INF,UT# '
I NPuTS
KILL........
LOB (Locating) . . .
LOF (Length of file)
OPEN-.......
PRINT,.......
PRINT# USING

CHAPTER NINE: RANI)CIM FILE §TATEllENTS

CVI.CV§,CVD (Convert)
FIELD............
BET.-...........
LOO (Locating)
LOF (Length of f ile)
LSET and R§ET
MKIS.Mh:SS,MKDS (Make string) .
OPEN.............
PUT.............

u

n

ZI

ZiE

CHAPTER TEN: BF{APHICS STATEMENTS

CLEARMS6 . .
DOMENU . . .

DRAWEOX . .

DftAWCHAFts .

DRAW[IF([LE .
DRAWI)OT . . .

I)RAWLINE . .

ERASEB0X . .
ERA§ECIRCLE .
ERA§EI)OT . .
E:f]ASELINE . .

INVERTB0X . .
I NVEftTC I RCLE
INVERTDOT . .
INVERTLINE .
MOVEB0X . . .

STA[KM§B . .

APPENDICES

APPENl)IX Ai ERROR ME§SA6E§

APPENDIX a: A§CII CHARACTERS

I NI)E X

10-4
10-5
i ()-6
10-7
10-9

10-10
1 ('-1 I
10-12
10-14
I (:I - i 5
10-16
1 (:I - i 7

10-18
1 {'- i 9
10-20
10-21
1 0-22

u

LIST 0F FIBURE§

Figure I-1.
Figure i-2.
Figure 1-3,

Figure 2-1.
Figure 2-2.
Figl,re 2-3.
Figu.re 2-4.

Figure 3-1.
Figure 3-2.

Figure 5-1.
Figure 5-2.
Figure 5-5.

viii

The Initial F'rogram Editing §[reen
The Program Editor Screen
Line 1300 after Inserting SHIFT-RETURNS

Example of a Type Mismatch Failure
Example of Faulty Logic
A Wcirkinq Lc)gic
Another Working Logic

Besiilt5 of a Simple READ DATA Program
Re5ult5 of a READ with Two Variableg .,....

Three Types of Randc}m Numbers
A Program and §erie5 of Random Numbers
Output of RNI) an Three Ni`meric Ranges

Examples of Comma Formatting . .
The Input Statement Illustrated .
Haw Format Characters Pad Digits
Basic formatting PPIINT U§INB . .
The PRINT USING Format with Signs
A5teri5k and I}c}llar Formatting .

Worksheet Figures for E>:ample Program . .
PRIN" USING Formatting of Random Numbers

The ThreE. Circle 6raphics
The Three Dot 6raphil=5
The Three Line Grapliics
Bet ore I:LEARM§6
Af ter CLEAF"§B
A Menii Created with I)OMENU
An Example of Df{AWB0X
The DRAWCHAR§ Example
An Example of ERASEEI0X
An E>:ample of INVERTEOX
A STA[k:M§6 Prt]mpt Line

1-2
I-5
I-8

2-9
2-10
2-10
2-11

5-7
3-7

5-24
5-25
5-27

10-5
10-6
10-8

I ()-13
10-17
I,.1-2=`

U

u

A

1

n

LIST 0F TABLES

Table 2-i.

Table 5-I.
Table 5-2.
Table 5-3.
Table 5-4.
Table 5-5.
Table 5-6.

GRiDBASIC Reserved Words

A Table of Integer Functions
The AND Truth Table
The NOT Truth Table
The OR Trutti Table
A Tal]le of Ranges and Fun[tion5
The XOR Truth Table

2-4

Table 9-I. Chcic]5ing MKS and CV Function5 9-5

ORi DEA§IC COMMAND REFERENCE

Aes
ACO§
AND

A§
A§C
ASIN
ATN
CDEL
Cm
CINT
CIEAFiM§G
CLOSE
COMVA
COS
CsO
CVD, CVI, CV§
DATA
DATE,
DIH
DOMENU

DRAWElox

OF`AW[HAR§

DRAWC I RCLE
DF`AWDOT

ORAOufNI
ELSE
END
EOF
EOLN
ERA§EB0X

10-9
10-10
10-11

4-9
-2

8-4
8-5

10-12
ERA§ECIRCLE 10-14
EfiA§EDOT 10-15
ERA§ELINE 10-16
EXP 5-11
FALSE 5-15
FIELD 9-5
FIX 5-I,
FOP TO [STEP] NEXT 4-5
GET 9-a
GETF I LE. 8-7
60§lJB FiETIJFiN 4-6
GOTl) 4-0
IF THEN [ELSE] 4-9
I NKEY. 7-5
I NPuT 7-6
I NPUT, E)-8
INPUT, a-10
I NSTR 6-4
INT 5-15
INVERTB0X 10-17
INVERTC]RCLE 10-18
INVERTl)CIT Io-19

X

INVERTLINE
I(ILL
LEFT,
|EN
LET
LOC
LOCATE
LOF
LOO

L0010
LSET
HIl),
MKz}., rltl., MK§.
MOD

MOvEcex
NEXT

NOT

0N cOSuB
0N 60T0
OPEN
OR
PI
PPINT
PRINT LIBINO

PBINT,

8-ls' 9-8
S-17
5-'8

9-9
6-8

9-10
2-8

10-21

PR(NT. u§lNC
PUT
RANDOMIZE
READ DATA [RESTORE]
REM

RESTORE
RIGHT,
FiNI)

RO|'ND
R§ET
SEMICOLON
§EN
SIN
SPACE,
SQR
§TACKri§G
STEP
STOP
§TR,
§TRIN6,
TAG
TAN

THEN
T I tlE,
TRl'NC
VAL

WHILE WENZ)

5-23
5-50
6-10
5-Sl

10-22
-3

-15
6-11
6-12
7-20
5-23

4-9
7-21
5-34
6-13
4-14

u

n

rl

ill

ABOUT THIS BOOK

This reference manual introdiices the 6F{iDBASI[proqramming erlvironment.
inc:luding how to enter, run, and edit proqram5. It also Eover5 the Elements
c]f Syntax. Beyorid that. the manual c:las5lf lei and disci(55es eat:h c:cimmand in
6RiDBASIC. Ea[li di5i(cssion includes a brief . e>:ample program. We Invite you
to enter any that interest you and modify them a5 `,`ou wish.

Besides the Table of Contents, this manual inc:ludes an alphabet.ic. Command
Silmmary (+allowing the Table of Contents) and an index.

NOTE: This i5 a referent:e manual, not a tL`torial. If yc}u have never
programmEd in the BASIC lanquaqE, you would do well to fincl a book that
teaches Bf`§I[proqramming and/or take a class in EIASIC.

u

RE

u

rl

iiE

a

Cl+f)PTER I: INTRODu=TI0N

This chapter introduc:e5 6RiDEIA§IC and its programming environment. It also
tt]uches on thE fc]llc]wing subjects:

I How tc) invol:e 6FtiDBA§IC and use its c:cJmmands fc)r writing, running, and
listing programs

• The 6RiDBASIC direc.t mc)dE

• The 6RiDBASIC editc)r and editing screen

I Lines and line nilmbering

Ill+AT IS 6FiiDBA§I[?

6RiDEIASIC meets and e}:ceed5 the requirements of the Americ:an
National Standard for Minimal EIA§I[as de5c:ribed in do[itment ANSI
X3.60-197B. Hc)Never, GRiDEtA§IC i5 much more than a "minimal"
vergion --it is c:ompatible with full-featilred industry Standard
versions of EIA§IC.

lhrvq(ING GRi I)Euslc

You c:an invol:e GRiDE(A§It: iri the Same way that yc]Li Invoke GRID
applic:ations. Far e}{ample, you [oiild select a file of the
apprc)priate I:ind, i.E.. Ela5ic:. 6RiDEIASIC supports twc) mc)des: the

programming or indirec:t mode and the direct moc]E. We will t:reE`t the
prc)gramiTiing mode f ir5t.

Intrc)diicti c)n 1-i

TiE Fiiij6RonlNe I lNDIFtECT) rrol}E

tJncE. you have invc)l{ed GRiDBASIC. the prc}gram editing screen appears.
Figure i.1 below shows the editor Screen ready fc)r input in Its
initiEil form --with no program listing. When yc)u have the program
editor c}n the sc:reen. type yoiir program.

FigurE i-I. The Initial F'rogram Editing Screen

The term I.Editor" refers to that portion of the 8RiDBA§IC software
thrc]ugh whic:h yoi` tyi]e, modify, and list prc}grams. Pregsing RETURN
at the end cif eac'h line generBte5 a new line niimber and a new line.

When you write 5tatement5 with line niimbers, the computer waits fc]r
a CODE-R command before executing the program. We call this the
"indirect mode," bec:ause 5tatement5 don't exec.ute directly when you
complete a ling. They wait in RAM memory, before, during, and after
e}' ecut i c]n .

A8 with c]ther BftiD applic:ations, you pre55 arrow keys to move within
and between fields. Wheriever you exceed the 5creen'5 depth (either
by typing statements c)r by pressing a vertical arrc)w key), the
displayed material "scrolls, " letting yoi` see previously undi5played
materi al ,

After writing or editing a line, be sure to press fiETURN, Dc"nArrow,
c}r Col)E-FiETURN befc}re renumbering the listing or executing it. Any
c]f theEte actior`5 moves your newly written c:ode from the kEyboard
buffer intc) RAM memc]ry. Failure tc] take one of these three actic}n5
can c.aiise the loss of the line in question.

I-= 8Ril)BASIC Fieference Manual

`J

u

)iii

A

iii

Ftuming, Continuing, alid Stopping a Pragrao

NOTE: GRil)BASIC does not asl: you tc] t`,Jpe a RUN. Ll§T, or NEW
command.

Press CODE-Fi to run (a):ecute) the program you..ve typed. Whenever
you riin a program or e}:e[utE a statemerlt, GRiDBASIC di5p]ay5 ttie
program's c}utpiit instead of the current listing. If you have a STOP
statement in your program, you can continue after the STOP line by
pressing Cl]DE-C.

Wllen prc)gram executic)n enc:ounters a STOP or END statement (or when
yc)u press ESC), you see the following message:

Program 5tc)pped at line nnrin

where nnnn is the statement's line ni`mber.

Trie Escape Key

Yell can Stop program E}:ecittion at any point by pressing ESC. Press
E5C once more and yoi`r listing comes bac:k with the field outline
where it was when you i]ressed CODE-R. If a 5ynta>: error stops yciur
program, ESC returns yc}u to your listing.

Erasing Line(5)

You can erase an entire line by plac:ing the ciir5c}r on the line you
want to erase, pre55ing col)E-E, and then conf irming. To erase more
than one line at a time, pre55 the appropriate vertical arrow after
pressing CODE-E. Yc}u Can sele[t a5 many lines for era5i.re a5 yc}u
want before confirming. If you Start at the f irst line, pre56
CODE-E, and follow it with Col)E-SHIFT-DownArrow and CODE-RETURN, you
erase the entire prc)gram.

Other Ccnands

Like GF=iD appliEatic)ns, 6RiDEtASIC also has ceDE-? to SEE and/or
exec:ute available c:ommE`nds (including Renumber), Col)E-a to Cult,
Cot)E-T to Transfer and print files, CODE-U to see meml]ry usage, and
Col)E-Eec to e>:it without 5avirig the current file.

Introduction i-3

TiE DIRECT mDE

The ''direct mode" has no line numbers. When yc}u confirm the line
(Col)E-RETURN), it executes and disappears from the t:omputer'5
memclry. People i ind the clirect mode useful for quic:k Computations
and for debi`gginq small Segments of [ocle. NOTE: All 6Ril)BA§I[
commands, except the looping c:ommands (See Chapter Foiir). work in
the direct mode.

To enter the dire[t mode. press DownArrow from the last statement
f ield in the program. This creates a Statement f ield with no number
field. (Fields are disc:us5ed later in this chapter.) Enter the
material yc}u want to execute. Fc)r eh.ample,

PFilNT 5+3

Press CODE-RETURN, ftETURN, or DownArrow. NOTE: The material you
E.ntered disappears and the answer appears. To continue in direct
mode, |Jress ESC or DownArrt]w. The statement outline reappears. To
return to the indirect mode and generate a ling number, press
RETUFiN. To pc)sitic}n the c:ur5or within the [itrrent listing, press
UpArrow until the c:L`rsor reac:he5 the desired line.

ABniT TiE cRil>BAslc ENvlFtoh.ENT

This Section gives details of the editing Screen and discus5e51ine5
and line nLimbering.

Layout af the GFtiDBA§IC screen

Figure i-2 belc)w 5hc)ws the 6RiDBA§IC editor in the midst c]f marking
on a program. As yoiL can See. the narrc)w column on the left
displays prc)gram line ni`mber5. We call it the "line number field."
The wide cc)lumn to the right displays program statements --the
ac:tiial "te}:t" of the EA§IC program. We refer to it a8 the
"Statement field." You can move within each field, and from one

field to the other. A description of eat:h element in the editor
Screen follows:

Statement Fielcl

Line NLlmt)er Field

I-4 6RiDBA§IC fteferen[e Manual

The f ield c]f the prc]qram editc]r screen where
yc)u enter and edit program statements. The
Statement f ield displays the "text" of yc]ur
BASIC program.

The f ield of the prcigram editc]r 5c:reen where
program line numbers are displayed. 6fiiDBA§IC
generates line numlJer5 automatically. Yc)u

EE

u

EI

rl

rl

n

The Outline

Cursor

Hi qlll i ght i ng

Me59aqe line

f i el d

Cursor

Hi ghl I

Me55ag

also c:an Enter and edit line numbers manually.
See the section below on "Lines and Line
Numbering. "

A rectangular outline Surrounds the current
statement or line number field. When you
first begin editing a program, the outline
surrol.nd5 the statement i iElc], indicating that
you can enter or edit the text that composes
your program.

The blinking triangle within the outline. Its
po9itiori indicates where yoiir next kEy5trc)ke
will appear.

A +c]rm of display that causes te}:t on the
Screen to show as dark-ori-light when the other
text is light-on-dark. (Also called "Inverse
vi deo. ")

The highlighted line displayed at the bt)ttom
of the screen. Your system prints command and
error me5sage5 here.

Line nLimber Statement
f i el dc---

1880 REtl This program rolls a pair of dice

Outl 1 ne \ghtingeline

11©© PRIN1-12cOPRINT1300.I#5Hi',PRINT1400GOTO • INPUT ''How uang throbis"; taunt: f'RINT"DIE,IDIE#2"

•=::ku!:;-#:j r#IR;I,i:oui, L:EXTr`;®w= I

110©
lsee END

ruTT[ill-.._+EL,,-,.T.IH|

Figure i-2. The F'rogram Editc)r Screen

Intrc)ducti on i-5

LINEs Ahu} LINE ^LmaRlrG

Multiple 5tatEmentg and/or physical lines can follc)w any line
number. Only the Size af the Screen limits thE length c]f a line.
When you type a line that e>:ceecls the width of the statement f ield,
the line breal¢5 at the space character nearest to the end of the
field ancl "text wraparDuncl" automatically mc}ve5 the next word c)nto
ttie next line.

Any number from i tc) 64SOOO cc}n5titutes a legal line niimber.
GRiDBA§IC suppc}rts aiitomatic ling numbering, manual line niimbering,
and reniimbering. It also lets you reformat lines for enhanced
readabi i i ty.

AJtcoatic Line Nu.bering

Automatic line numbering begins with line 1000. Each time yc)u press
ftETURN, GR]I)BASIC issues ant)ther line number. If you are not
inserting a line bet.ween two

When you ingert a line, the
by loo. For example, a line
the number 200. Increments
the two [ilrrent line numbers
the two line ni.mber5 is less
inc:rement by 10. The three
(clifferen[e less than 10). 2
(difference of 2 or less).

existing lines, inc:remEntg are by locl.

editor f irst tries to Simply increment
Inserted between locl and 10110 receives

becl]me Smaller a5 the different:e between
Shrinks. When the differenc.e beti~Een
than 100, 6BiDEASIC next tries to

remaining in[rEments are by 5
(difference less than 5). and i

Manual Line Nu.boring

Tc) enter your own line numbers. pc)sition yc)itr EL`rsor on the last
display line of the program or on the last line niimber field. Press
I)ownArrc}w. This caii5e5 a new statment f ield to emerge. Press
LeftArrc)w to create a new line number f ield, then type the desired
line number. Pressing BightArrc]w moves thE cLirsc}r bac}: into the
statement f ield.

Ffroudrering

GRil)BASIC has a command that renumber5 yoiir line numbers so that
they Suit the Current automatic numl]ering fiJrmLtla. To renumber,
press CODE-? and select the Reniimber c)ption. In a mciment, the
command puts all Statements ir`to 6Ril)BA§IC'5 default form --with
1000 a5 the first line niimber and increments c}f 100 between all line
numbers. This command also renumbers in the statement area 5o that
numberg that point to lines (60TO 2710) adjust cc}rrec:tly to the new
line ni`mbers.

1-6 GRiDEASIC Ref erence Manual

u

u

EE

iiil

Zii

Eii

Mul tiple StateJlents

`i'ou can pi`t a5 many 5tatement5 as the 5c.reen pEirmit5 after a }ine

number. Howe`,`er. you mi`5t place a c.olon (:) between each statement
c}n the)ine. For e;:ample. yc]u could put these three 5tatement5

1{)I:1(I FOR X=1 T0 Ei

111.JCI F'RINT X

121:I.:I NEXT X

on I)ne l]ne:

1{:tl.:to FOR X=1 Tt] 5: PRINT X: NEXT X

NOTE: Statements placed after a F`.EM statement (See Chapter 3) do not
e}:ec.|'te,

Ftefar.atting Your Ligting5

You can manually reformat your program listing5 in Such a way a5 to
add to the current number of di5pla\,. lines within a given program
line. Press SHIFT-Fl.ETUFiN at that point in a program line where you
want to begin a new display line.

Ttle ciut.line E>:pancl5 by one display line with the cursor positioned
at the beginning Df that nel~ blank line. The program editor won't
generate a new line niimber. Figure li breaks out the seven
statements in line 13.:10 by inserting SHIFT-RETIJRN5 after each the
each Statement. [omF)are it to Figure 1-2.

Introduc:tion 1-7

leeo REM Thif praorun rc.Ill . p.1r ef dlc.
11B0 P8lNTi INPUT I.tlou n.nu throw."i Counti PftlNT
12®® PBINT "DIE .I DIE. 2"
13ee ' TIl Ill |,aunt,I

Fas x-1 Ta 21
LET ThrowiTRUNC(I 6*RND(I)+I)I
PRINT Throw, .
next X.
PE I NT ,

XT
1®®0 lleo
i5oe END

Figure 1-3. Line 1300 after lnsertinq SHIFT-RETUF!N5

To remove SHIFT-RETURN or other invisible c:haracters, place the
cursor to the right of the c)ffending character and press BAck:§FA[E.

Yc}u terminate mi`lti-line statements jii5t a5 you do single line
statemertt5 --by pre55ing RETUF{N or either vertical arrow key. If
yc)u press RETURN, the statement field oi`tline will move to the lle>:t
line position and will retLirn to its Single line size.

If you c:hoose an arrow key, you will generate a single statement
field (ilnle55 the ne,¥t prDqram line al5c) ocEupie5 multi}ple display
lines). NOTE: If yc}il press DciwnArrow from the last line c)f a
program, you will get a statement field with no line number.

I-8 GFtil)EIASIC F{ef erenc:e Manual

EI

u

u

\

1

iiil

cHAPTEFt 2: GENERfL INFOFunTlen ABtl.T GRiDBAslc

This c:hapter discil5se5 concepts essential tc} programming:

• Synta}: diagrams

• Reserved words

• [onstants, variablEs, and arrays

I E}:pressions ancl oi]erators

• File c:onvention5

I Delimiters

SYNTAX I)IAGF!AM§

This book describes each BF{iDBA§I[and f Ltnction ac:c:ording to the
fol lowing c:onvention5:

• We write BA§It: statments and fun[tions (''reserved words" --See
below) in all iippercase letters. For example. we render the
statement that caiise5 te>{t to appear on the screEn as PRINT.
However. when you enter a statement or functic}n, you c.an type
any c:ombination of upper-and lc]werc:age. All the fo}lc)wing
iteration5 constitute legal forms of the PF{INT Statement:

PRINT print Prlnt PRINT

General Information 2-1

• Variable names begin with a capital letter. For e}:ample:

LET AS=NameS

• You must sLipply any item 5hc)wn in lc)werc:age characters. For
e}:ample, the GOT0 c:ommancl synta;.(

GOT011ne#

means you must si`pply a line niimbEr. Failure to prc]vide a
reciuired parameter resiilts in a synta}(error or iine>:pe[ted
program output. For example, B0T015Ct, the legal form, tells the
program to ji`mp e}:ecutic]n to line LEO.

The follc]wing L`sage5 are illegal:

B0T0
B0T0 bed

The first fails to supply a line niimber: the 5ec:and 5llF)plies a
charac.ter String.

• Items enclosed in sciuE\re bra[l:et5 ([]) are optional. The LET
command synta}: loot¢5 like this:

[LETJ vE`ri E`bl eName=e;.:pres5i c}n

This means that in as5iqrting a [onstant tci a variable, you may
drc)p the ''LET." Thiis both

LET A=5
and
A=5

are c:orrect and accomplish the same piirpo5e within E\ program:
they store the c:c)nstant 5 in variable f).

I If you have a choice bEtween twc] items. the choices are separated
by a vErtic:al slasti (I) and sLlrrounded by c`i`rly brackets ({}.).
For example, the Syntax diagram

PRINT [expre5sic)n][{, :;}]

means that yoi` have the optic]n I:note sqiiare brackets) of piitting
eit.her a c:omma or semi-colon after an e}{pression. Note that.
thoiigh `/ou have a choic:e between the Items in the c.Lirly brac:ket5,
you mi`st supply one of them.

2-2 6RiDBASIC Reference ManLial

LEI

u

ill

il

lil

n

I A trailing EllipE;i5 (three dots --...) indic:ate5 I:c)ntinuation.
Far example, in the DIM syntax Statement,

DIM variableName(subscripts)I, variableName(5ub5[ript5)I...

the ellip5i5 at the end indicates that you can [ontinue the
variableName(5i`bscript) pattern as many times as you want.

I A vertical ellip5)s indicates that other 5tatenents may come
between the f ir5t and last items. Far e>:ample, you may place
exe[utable statements between FOP and NEXT.

• When programming, you mii5t include all punctuation --commas.
parentheses, semicc}lcins, colons, or equal signs, as shown (except
the syntax piinctuation --square brackets, curly brackets, ancl
the vertical 5la5h).

FtE- NtNap§
6RiDBA§IC reserves the words that represent its statenent5.
functions, operators, and con5tant5 for their individual tasks.
Because they are reserved, yoil cannot iise them a5 variable5.
However, yc}u can place them within variable5. The f irst twcl
following e!{amples are valid; the 5ec:and two aren't.

INF'UT "Type each e>:tra item.', REMainderS
LETter=ASC (NameS)

INPUT ''Cost of unit"; VAL
LET Tc!tal=Data+(.()65*Data)

In the f irst instance, the reserved word AND is hidden within the
variable "I(and5." In the seccind, a reserved word, DATA, is used as
a variable.

This list al5c] Serves as a quick index tc} 6Ril)EAslt:'s statemerlt6,
commands. operators, and i i`nc:tions. NOTE: The reserved words ON,
and USING are not whole commands, but witli other words make up such
commands. ThE»se words are:

General lnf ormation 2-5

ENI)

EOF
EOLN
ERA§EB0X
ER.ASECIRCLE
ERA§EI)OT

ATN EftA§EL I NE
CI)BL EXP

CHRS FALSE
CINT FIELD
CLOSE FOR
CLRMSG GET
COS 6ETF I LEO
C§NG GOSUB
CVI) 60T0
CVI IF
CVS I NKEYS
DATA I NPUT

DATES I NF'UT#
PIN INPUTS
DOMENIJ IN§TR
DRAWB0X I NT

I)RAWCHAR§ I NVERTB0X

DRAWC I RCLE INVERTC I RCLE
DRAWDOT I NVERTI}OT

DRAWL I NE I NVERTL I NE

ELSE KILL

LEFTS PUT
LEN RANDOMI ZE
LET F{EAD

LDC REM

LOCATE ftE§TORE
LOF RET LJRN

LOG R16HTS
L0B10 FiND
LSE T ftouNI)
M IDS RSET
MK DS SGN

MKIS SIN
MK§ S §PACES
MOD SCR

MOVEB0 X STACK M§O

NEXT STEP
NOT STOP
t]N STR$
ON 60T0 STRING$
ON GO§UB TAB
OPEN TAN
0f? TH EN
PI TIMES
PPINT T0
PRINT IJ§lNB TRUE
PRI NT# TRUN[
F.ft[NT# lJ§ING USING

Tdble 2-1. 6R.iDBA§IC f}e5erved Words

cesTAV§

Program execution operates on values that we call "constant5. "
6RiDBA§IC re[ognize5 two kinds of constants: string con5tants ancl
numeric c:onstants.

String Cen5tant5

A string c:on5tant i5 a 5eqiience of characters (ranging in length
from 0 to 65,535). NOTE: You can only enter one screenful of
[haracter5 at a time. A String constant can inc:lude any valid
character. You must plac:e double quotEition marks before any string
lf the String does not eiid the program line, `/'ou must also close it
with double qilDtation marks. You Can treat a number like a
charac:ter string by plating it within quDtation marks. see the
examples of String c:onstant5 (5iirrounded by their quotation marks)
below:

2-4 BRil)BASIC i.ef E.rence Manual

u

EI

iiE

rl

n

"A"

" $ 1 C,0 . ,JO(, . ,)(,a . {,C, „
"Qiiarterly Prof it Statement"
„%@*8,?„

'675„

t\Li.eric Constants

Ni`meric constant5 are pc]sitive or negative numbers. 6RiDBASIC
operates on two different types of numeric c:c)nstants: real numbers
(also known as dec.imal or f]oatinq point numbers) and integers.

GRiDBA§]C performs all numeric operatic)ns in cloiible pre[i5ion. This
allows for 15 signific.ant digits. 8RiDBASIC hanclles numbers as
small as 4.19E-507 and a51arge as l.67E308.

Real numbers are pc}sitive or negative niimbers that can include
decimal points. 6RiDBA§IC works on doiiblE preci5ion, real numbers
anc] provideg 15 diqits of precision. Three examples of real number
constants are:

a.12345678901234
987654321. C198765
-i.I

NOTE: GRiDBASIC does not return niimber5 in scientif ic: nc)tation (alsc]
kriown a5 "E notation"). You can enter numbers with the c:arat r.) to
indicate pciwer (10``3 i5 the same ail() c:ubed). bi`t the 6Ril)EIASIC
will never print 10E5.

Integers are whole numbers between -52768 and +52767, inc:1usive.
Integer c:c)nstant5 do not have deEimal points. 6RiDBA§IC 5tore5 all
integer values in 15-digit format and c:onverts them to real ni`mbers
before operating on them. No cost in speed rE5ult5: Operations on
real numbers are as fast as integer operatic)n5, because of special
arithmetic hardware.

Here are e>:amples of integer c:cJnstant5:

- 1 C) 1 C) I

0
2C'01

64

6enera] Irifc)rmEition £-5

VAFtlAELE§

A variable i5 a symbol. It stands far the memciry addregg where the 1/
computer storeg thE exprBsgion you assign to the variable. Thiis
"A=15" tells the [ompl`ter to 5tc}re the value 15 at a position in

memory that yc}u have assigned the addre55 ''A." When BASIC executes
the program it gubstitiite5 the constant found at the addre9g for the
var i ab I e .

Thus when the computer exec.iite5 the c.ommand

PRINT A

it goes to the address labeled A, and prints the constant it finds
there. If wE use the c:onstant assigned above, the number 15 woi`ld
appear on the 5c:reen.

Variable names must begin with a letter, but the rest Df the
Characters in the name t:an be any number, letter, or the decimal
pc)int. The lertgth of a variable can range from one c:haracter tc} one
full 5c:reen.

Variable5, like constants, can be One of two types: string or
numeric. The last character in a variable name identifies the
variable's type.

String variables must end with dc)llar Sign (S). Fc}r Example:

NamES
DayofweekS

Integer variable5 must end with the perc:ent sign (./.). For example:

Age./.
Answer./.(2,3)

Real variable5 Can End with any c:harac:ter except a dollar Sign (S)
or pE.rcent sign (./.). BRiDBA§IC assi`meE all variable5 are real
variable5, unless told otherwise. Thus the fallc}wing are real
variableg:

Re5ult5
Forecast 1983
al23.O
Rad i ans* 1. 8

2-6 6F3iDBA§IC Refererice Manual

u

u

lil

lil

iii

AFtRAY VAFtlABLES

An array is a qroiip of vali`es referertced by a single `/ariable name.
Individual values ln the array are called "elements." Eec:au5e each
elenent i5 itself a variable. you c:an plac:e an element in an
e}:pre5sic]n. You can al5c] operate on it with ariy func:tion or
statement that takes variables a5 argiiments.

Elements within an array are named with the array name Eombined with
a niimber(s) enclosed in parentheses. For example, if an array name
is Months and Eonsist5 of String variables that are the names of
months, you might ref er to December (an element c)f the array) a5
HonthS(12) and January wc}uld be MonthS(i).

]n the example above, the array riamed Months i5 a c)ne-dimensional
array with 12 elements. An array c:an have up to 2i5 dimensions and
a Single dimensic)n can have up to 65,555 elements. The ma>:imum
total number of elEment5 yc}u can place in an array is 65,5:`5.

Thus you Could have an array with 1 c]imension and 65,555 elements
and yoit could have an array of 255 dimen5ion5, each dimension having
257 elements. When you ac:ces5 an element in a multi-dimensional
array, you must Specify the element.`s pc)sition within each dimension
c)f the array.

The I)IM Statement Specifies the number of dimE]nsiDn5 that an array
c:an have and the number of elemE>nts within each dimension. You do
not have to dimensicin (DIM) variables, iinle5s they have mc)re than
one dimension c)r more than ten elements. 6RiDBA§IC automatically
e>:pand5 the stc}rage Space required fc}r String variables. All arrays
start at 1 (one). nc)t zero. Chapter Three describes the I)"
statement in detail.

ExpFtEssloNs Ai`II) OpEFtATas

ln)ts Simplest form, an expre5sic)n cc}nsist5 of a constant or a
variable. You can also connect con5tant5, variable5, and functioii5
with operators. GRil)BASIC has three types c}f operatc)r5: ni`meric:,
String, and logical.

trder of Precedence arid NhI.eric aperator5

6Ril)BASIC siippt]rts the numeric operators listed below. We have
li5tecl them by their order of precedence, that is, by the order in
which GRiDBA§IC evaliiates them when they appear in an e>:pres5ion.

General lnformatic]n 2-7

() F'arenthese5

Functions (SIN, LOG, etc. --see Chapter Six)

Unary minus (the negative Sign)

Ex ponen t i at i on

I / \ MOD Multiplic:atic}n, i loating point divisic}n, integer
di vi si on

Addition, Subtractic]n

Relational Operatc)rs (See below)

Logical operators (See belc)w)

Fielatiofial Operators

The relational operators are a Spec:ial Sub-c:ategc)ry of numeric
operators and have the lowest precedence c)f all tlie numeric
c]perators. These are the relatic}na] operators. NOTES All of thesE
operators have equal precedenc.e.

< Less Than

i Greater Than

<= Le55 Than or Eqi`al To

}.= Breater Than or Equal To

= EqL,al TO

<} Not Equal To

Logical Operators

The logic:al c}peratc}r5, listed in order of precedence, are:

NOT

ANI)

OR

XOR

2-8 6RiDBA§IC Reference Manual

u

u

I-.

In GRiDBA§IC, logical c)perators perform logical (Boolean) c)peratic)n5
t}y acting on every bit in the 16-bit integer value presented to it.
Tc} do this, 6RiDBA§IC follc"5 three 5tep5:

Cc)nvert valile to an integer

Perfc)rm a bit-wise logical operation

Convert the integer back to a real number.

With the exc:Option of NOT, a logic:al operator connects two or more
operands and returns a true or false value. NOT i5 a unary I)perator
(like the Signs plus and minus) and simply cliange5 the truth value
of its operand. The re5iilts, ''true" (not zEra) or "false" (zero)
value, form the basis for the Computer tc) make a deEi5ion,

For example, in an IF statement, the computer takes one course of
action when it i ind5 a zero and another coLlr5e ir` the case of a
nan-zero value. Yol(must be carefiil in stating your lc)gic. A5 an
example, here are four programs, all of which try to trap any
unwanted user res|]onse5. Their commor` theme is to act as an input
filter. The prc}grafll only accepts a re5pon5e cif "Y" or ''N." If the
user types any other character(5), the filter says "Sorry" and loops
back to the INPUT statement.

Look at the first program in Figure 2-1.

1000 RErl Logic I - Typ. .icoatch
1100 INPUT nY or N"; An.I.er.
12oo IF Ansrer. <> .V. en -N" TREN COTO lapo
1300 PRINT -Thank."
i4OO Ere
1500 PRINT -Sorry, "i: GOT0 llco

Figure I-1. Example of a Type Mismatch Failure

It fails at line 1200 and i5sues a "Type mismatc:h" error me55age.
Why? Elecau5e the program i irst evaluates the statement

Answers <::.~ "Y"

I)epending on the re5pon5e, it returns either a Boolean a or 1. The
OF{ than compares the Boolean to N, a string. And that c:reate5 a
type mi5match, because 6F{iDBA§IC won`t compare data cif differinq
typE>s (in thi5 case. EIoc)leans and 5tring5).

Beneral Imf ormation 2-9

\1

Eii

The prc}gram in Figure 2-2 won't f ind anything true. Nc) matter what
yc]u type, it Says "§c)rrv." Loot< closely at line 1200.

1000 REM Logic 2 -- ev.luate. nothing a. true
1100 INpllT "Y or N"i Answer.
1200 IF An.wer. <> "Y" OR Answer. <> ''N" THEN 60T0 1500
1500 PRINT "Thlnk."
1400 END
1500 PRINT "Sorry, "il cOT01100

Figure 2-2. Example c]f Faulty Logic:

In this case the logic Says, if the input is either riot Y ar ncit N
then Say "Sorry." But Y is not N and vic:e versa. Ttierefore. the
logic fails Y and N, a5 well a5 Everything else!

Now tor a working e!:ample.

1000 f`EH Logic 3 -- .v.luat.. correctly
1100 INPUT "Y or N"i Anewer.
1200 IF NOT (An.Her.-"Y" OR Anlwer.I"N") THEN GOT01500
1300 PRINT .Th.nk."
1400 END
1500 PRINT -Sorry, .i! GOTO 1100

Figure 2-3. A Working Logic

ln Figure 2-3, the logic 5ay5 if the response is neither "Y" or "N,"
thEtn say, "Sorry." That..s what we want, because if the re5pon5e is
one of thc)se, we have an appropriate input.

Thig i5 not to say that line 1200 in Figure 2-3 is the only way a+
presenting this logic. Line 1200 in Figure 2-4 also wc)rks.

2-10 GRiDBA§IC Reference Manual

u

u

EI

Zii!

iii

Zii

1000 F`EM Logic 4 --AND .I.a Nark.
1100 INPUT ''Y or N"i Answer.
1200 lF Answ.r. <> I.Y" AND Answer. <> `.N" THEN 60T01500
1500 PfuNT ''Thanl<."
1400 END
1500 PRINT "Sorry, "!! 60T01100

Figi`re 2-4. Another Working Logic

lt says if the input is not "Y" AND nc)t "N" gay ''§orry." That'5
what we want. because that'5 what wE See as an invalid re5pc]n5e.

Chapter Five disc:iis5es eat:h of the logic:al c)perator5 in details. It
also covers the two ElcJolean constants, TRUE and FALSE.

String Operators

String operators perfc}rm relatic)nE`l cc}mparison5 and c.ancatenation on
string expre55ion5.

The relational operators for 5trinq expressions are the Same as
those described for nL`meric: operators, becaiise you are actually
performing niimeri[operations. For E>:ample, if you use the Le55
Than (f``) operator to compare two 5trings. the A5CII values for each
[hara[ter in the twc) 5tring5 are compared to See chic:h has the
smaller numeriE value. The result of the operation is thii5 a
numeric result.

NOTE: 6RiDBASIC makes Eompari5on5 of alphal]etic charaEter5 without
regard tc) capitalization. Thus the characters "A" and "a" are
regarded a5 equal even though they have different ASCII values.)
For a list of the relational c}peratc)rs, see the disc.us5ion in the
preceding paragraphs.

The plLi5 Symbol (+) ''concatenatE5" or joins Strings together. The
e>:ample below illu5trate5 thi5.

AS="This i5 a "
EIS="c:c}nc.atenated 5tri ng"

Therefore. AS + BS bec:ome5

''Thi5 i5 a t:c)nEatenated string"

6enEral lnformatic]n 2-11

FILE NAMING CONVENTIONS

When your programs use the OPEN or k-ILL 5tatement= (disc:u55ed in
Chapter Eiqht), they milst Specify the name c)f the file to be opened
IJr deleted. Yoi` cannot perfc)rm these c)perat}ons with ttiE] Transfer
command (CODE-T). However, you c:an incorporate the file fc)rm used
by the Transfer tc) get the i ile name information yc}i` rieed. Tc) clo
this, use the 6ETFILES command (See [hapter E]ght). If yc}u chc}05e
6ETFILES, you c:an ignore the detail5 of the Compass Computer
ciperat:ing sy5tem's file naming conventions given below.

You identify a file by Specifying Its "pathname". A pathname
clefineg the rc)ute the computer ta}``es to a file. A complete pcithname
includes the device and 5itbject where the file 15 located plus its
title. and kind. The complete pathname schema is a5 follc)w5:

tdevi ce tsubject .ti t I e~k i nd

Thus to 5pe[ify a GRiDWFtlTE i ile with the title Fore[a5t, when it
resides i(rlder the 5i`bjec:t E`L`siness on the bubble, yoL. would enter,

' b ` Elii5 i n e55 ' For ec a5t ~TEx t

The system defaiilt5 to the cilrrent device, subjec:t. and kind. As a
re5lilt, you don.`t have to respe[ify them. If you were 5tayinq
within current defaults, you could open the e>:ample file by typing

1000 OPEN "I",2, " 'Forec:ast"

where 10()0 i5 the line number, Ill" indic:ate5 5equEintial inpiit. and 2
is the file tag number (See the OPEN Statement in Chapter Eight for
syntactic:al details.)

Note the ti.Io pathname delimiter Eharacter5: the left single qiiote
(') or "tick" and the tilde (fy). The tic:k mList precede devic:e.
subject, ancl title names. Press Col)E-' to print a tick. The tilde
(~) must precede the kind. Generate ttii5 c:haracter by pres5inq the
Col)E-: combinatior`.

If yc)u specify a pathname that dc]es not begin with the tick, the
5y5tem assL`mes that the first name it encoi`nters i5 the title and
that you have left off the clevice and sub`iect names. Thi5 limit5
the 5earc:h for the title to the ciirrent directory, that is. tc} the
current de`/1ce and Subject and makes file accE.ss quic:ker.

If yc)u pro`fide the c:c)mpletE pathnamE incli`ding devi[e, si(b.jet:t, and
title, the c:omputer f irst seE`rches all ac:tive devicE5 for the
subjec:t. From the 5iib.Tect it then searches for the title. If the
title is c}n-line, this proc:e551ocates it.

ThE ma}:imi`m lenqth of subject and title names is all charactErs eec.h.

2--1= 6F{iDEIAS]C Ref erence Mariual

EI

EE

EI

lil

iii

1

Subject and title names can c.on5i5t of any printing [harac:ters
(including spaces) except the following:

t left Single quc)tation mark ("tick")

~ tilde

- hyphen

: colon

File Kinds

Plac:inq the file kind (5ometime5 referred to a5 the file "type")
after a title 15 optional. It.:ind5 let you c.la55ify 5Everal related
f iles under the Same title while as5igning them different "}`.ind"
c:haracteri5tic:5. Interpretation of the kind i5 left up to the
applic:ation. For a thorough di5Eu55ion c)i file kinds refer tc] the
"CompE`ss [anputer Operating System ReferE.nee Mani`al. "

Dell,iter5

I)Elimiters are characters that set c)ff t:ertain programmirig elements
from others, so that the language's "interprE.tE>r" can separate
`/ariablE5 from operators from con5tant5 frc)in reserved words.
6FtiDBASIC has Only c)ne delimlter, the 5pac:E c:hdrac:tar.

Though vc)u needn't plac:e 5pac:e5 aroiind operators (with the exEeption
of MOD), you should place them arc)und variables and reserved worcls.
Imprc}per delimiting results in an "Improper 5vnta^`" message.

GenerE`l Information 2-13

u

-.I

EI

\1

n

lil

cHAp"R 3: AsslehrEhrT AhD oEFINITlou sTATErprs

The 5tatenent5 in this chapter a55ign values to variable5 and clEf ine the size
c}f arrays.

6RiDEIA§IC F{eference Manual 3-i

1} I Iq

F0funT

NOTES

This statement establi5he5 the dimensions c)f an array and allocates
Storage spacEi for thE 5pecified number of elements.

D" var i abl eName (si`bscri iJts) I , `/ar i abl eNamE. (5ub5cri pta) J . . .

You must dimen5ic)n (DIM) any array that cc}n5ist5 cif more than ten
elements or more than one dimension. If an array variablE name is
used withoilt the D" statement, the maximum valiie of its subscript
is 10.

A 9ub5cript i5 an expression that clef ines the maximum number of
elements in an array. It fc]llows the array variable name and i5
enclc)5ed in parentheses. Thli5,

Year (12, 31)

is a two-dimen5ic}nal array. The i irst Subscript can contain a5 many
a512 elements, the sec:and 31. The minimilm value of a subscript ig
one, not zero.

The maximl`m number of dimen5ic}n5 that an array can have is 255..
Dimensions can hold any number of elements a5 lc}ng a5 the tc)tal
number c)f elements for the entire array dc}es not exceed 65,5:`5.
Thus if yc}u dimen5ioned an array to liave one dimension Eontaining
65,534 elements, you would have limited yc)ilr program to having just
one other dimension, and a dimension pos5Es5inq only one Element, at
that I

If a program tries to reference more elenents than the 5ubsEript
allows, you will See the error message:

Array reference i5 c)ut of range

You Can e5tabli5h tlie dimen5ic}n5 of more than one vELriable array at
a time with a 5ingle D" Statement. Just separate the speEif ication
for each variable array with a c:omma. For example, the Statement

1{100 D" AN§WEF`.S (2,14,1(to) ,NAMES (20)

defines a numeri[variable array with the name ANSWERS having three
dimensions and 2800 elements (2 x 14 >: 10(1). The Same DIM Statement
defines a String variable array called NAMES with one dimension that
can ha`7e 20 elements.

3-2 Assignment and Definition

u

n

iiE

ZiE

ExflRE

A note on string arrays: With GRiDBASIC, you don't have to dimension
the actL`al strings, Just the number of elements.

Subs[ripts c:an be ni`meric `/ariable5. instead c)f c:cin5tants. Ee si(re
that yoit have previc)ugly dec:lared any such variable; otherwise. yoi`r
siibscript will amount tc) Zero. Fc)r example.

1llc)0 DIM 60NZO(25. A, a)

dimensions a numeric array. The i ir5t dimension has an absolilte
mat:imum number of elements. 25. The second two depend on what value
you (or the program) ha`.JE prEvic}uEly assigned the nL`meric variables
A and a. NOTE= If a variable should char`ge its valiie later, the
array will remain unaffec.ted. It holds the c)riginal `/Blue until you
redimen5ion it.

Tc) redimen5ion an array, just restate its DIM Statement with the
desired valiie5. Redimensioning autDmati[ally c:lEar5 the old array.

11-)00 DIM Array(4)
1100 FOR X=l TO 4

1200 Array (X)=X
1300 NEXT X
140CI FOR X=l to 5
15llc) F'RINT Array(X)
160CI NEXT X

20011 END

In this e}:ample, line 1200 assigns values frtJm the loop (the valiie
of X) tc) each element in the array. We assign fc)ur values to fc}ur
elements, 5o everything i5 f ine.

However, line 14(10 e}:ceed5 clur dimension by one, 5o the prDqram
halts when it tries to handle this larger number, leaving the error
mEssaqe:

Array reference i5 out of range
Program Stopped at line 1500

We can fix this protJlem by changing the 5 to a 4 in line 1400.

GRiDEIA§IC Reference rlanual 3-3

LET

FOFunT

veTES

EXAmLE

The LET Statement assign5 the value of an e}!pre551on to a Variable. (u

[LET] variableName=e}!pres5ion

LET is optional. You can write the variable fc)llowed by the eciual
Sign and then the expre5sic}n with the value to be a55igned without
the word LET.
The two following 5tatement5 perform exactly the Same; they both
Store the value 2 at the variable LoopCc)unter.

1rjo(I LET Loopcoi`nter=2
10011 Loopcoi`nter=2

If yoll assign a numeric: value to a String variable cir a String value
to a ni.merit value a Type Mismatch error oc:curs.

1000 LET X=2(I
lil-)(I Y=X*3
12110 PRINT X

15Cl(l PRINT Y

140(I END

The a,`:ample a55igns values to variable5 with and without the LET
statement. Lines 1200 and 1300 print each value, 5howinq that both
ways wc)rk.

3-4 Assignment and I)efinition

u

u

n

rl

Ziii

FtEf}D I}f}Tf} [F{E=TOF=E]

READ, DATA, and RESTORE [on5titute a trio cif statements that, a5 a
team, assign values to variables. NOTE: RESTORE i5 optional.

FOFVAT

FiEAI) variablE[,variableJ[.... J

[RESTORE [line#J]

I)ATA constant[.t:cinstant][,...]

NOTES

THE READ STATEMENT

The REAI) statemEnt I]egin5 with the word "FIEAD" and follows tl`at with
at least one variable. The following are legal READ statementg:

1000 READ NewNumber

1200 READ La5tNameS, Counter

1300 READ A, 8, C, D

The READ Statement assigns its variable(s) the value(5) it finds in
the program's I)A" statement(a).

FtEAI) cannot c}perate alone; its F)rogram must c:ontain at least one
I)ATA statement. Each time the program e):e[ute5 a FtEAD. it movE.a a
pciinter to the next item in the DATA statement list. When program
execution begins, REAI} has its i]ointer Set to the f irst item in the
f ir5t DATA statement. When no more I)ATA items exist, a

f3an Out of data

error oc:c:urg. You can reset this pointer with the RESTOE.E Statement
(see below).

When a program has more than or`e DATA statement, FIEAI) proc:eeds by
line number, reading all the data in each program line before
Continuing to the next line. Within each line, it reads eat:h item
of data in order.

A READ Statement tan have both numeric and String variable5. The
values read from the DATA 5tatemerit are assigned on a one-by-one
ba5i5 to the variable5. These values, hc)wever, must agree with the

BRiDBA5IC Reference Mani`al 3-5

variable types Spec:if led in the READ statement or a Type Mi5matc:h
errc}r OCC:Lir5.

One READ Statement c-an take constant5 from one c)r more DATA
5tatement5, becai`se BRiDBA§IC strinq5 the items in multiple DA"
statements togEther in one long list. §imilarl`/, more than one READ
statement [an Operate on a Single DATA statement. Each REAI)
statement takes the ne>(t item in the DATA statEment(5) list of
items,

u

THE DATA STATEMENT

A I)ATA Statement begins with the word "DATA" and follc]w5 it with a
list of nllmeric and/t]r string cc}n5tant.5. (A list can be a5 short a5
c)ne item.) A c:c)mma mli5t separate individual [on5tants, but should
not appear after the last item. For example,

290CI DATA 1492, "Nine, Pinta, §anta Maria". Columbus, 3.14

Ni`meric c:onstants c:ar. be integer, real. or short real nllmber5.
String cc}nstant5 can have up to 65,555 c.harac:ter5, the maximum
length for any DATA Statement. These strings reqi`ire no qi`otation
marks unle55 they c:ontain cc]mmag. colons, or signif i[ant leading or
trailing 5pac:es. NOTES Expressions are not permitted in DATA
5tatemEnt§.

A program can inEIL`de as many DATA 5tatemEnt5 E`s memc)ry permits.

:::yc::ep::::}::::`:a:::There wlthln a program (even after an END): u

THE RESTORE STATEMENT

RESTORE resets the REAI) statEment's pointer tc) thE beginning of the
spec:ified line. If you don't specify a line, the pointer returr`5 to
the f irst DATA Statement in the program and its f ir5t item.

EXArRE

ll-)OC) DATA agate, 365. boy, Cow. 3.14. dog, elbow, foot, girl,i()a
110Ct ftEAD AS

120(, PRINT AS.
13{10 60T0 10Clll
14(:)!:' ENI)

This example mixes both string and niimeric con5tants in its DATA
statements. When line 11C]t) reads line lot)0, it turns the numeric:
cc)ristants into 5tring5. The e}{Bmple immediatley below is exactly
the same program, but with its DATA Statement in a different
p05i t i C,n I

3-6 A55iqnment and Definition

EE

RIB

A

1

lc}CIO READ AS

1100 PRINT AS,
12CtcI B0T0 1Cloo

13Cto ENI)

14Clo I)ATA agate, =`65, bc]y, t:ow. 5.14, dog, elbc]w, foc)t, girl,10{1

The rE>sults are e>:actly the same. See Figure 3-I

Figure 3-i. Re5ult5 a+ a Simple READ I)ATA Program

ln the ne}:t example, the READ statement Contains both a String and a
numeric variable (see Figure 3-2). A5 the result of this program
show, the two variable5 take turns draw)ng from the DATA statements.

lot)0 DATA agate, 565, ball.125. cake, 3.14, clc}]l,1{)a
1100 READ NounS, Number
1211() PRINT NounS;" i5 a nc}un"
1300 F'FtlNT Number;" i5 a nilmber"
14(:10 GOT0 100Cl

150Ct END

agate is a nouri
365 is a number
ball is a noun
123 is a number

e ls a noun
4 is a niunber

is a noun
is a number

Figure 3-2. Results of a REAI} with Two Variables

The e>:ample below contaiils three READ statements. In each case, a
loop controls the number c)f times the READ Statement aEt5.]n this
way, none of the 5tatement5 runs out of data.

GRiDEIASIC RefErence Manual =`-7

1000 FOR [ounter=l TO 3
1100 fiEAI) X
1200 PRINT ''X = ";X,
13C)0 NEXT Counter
1400 PF;.INT: PBINT: RESTORE 2600: PRINT "A RESTORE 5tatenent
here " : PR I NT
1600 LET Loopcoiint=O
1700 WHILE LoopCount {:i 9
1800 LET LoopCount=Lc}opCount+i
1900 F{EAD Y

2000 PRINT "Y = ":Y.
2100 WEND
2200 PRINT: PRINT: RESTORE 2600: PRINT ''A RE§T0BE statement here":
PRINT
2300 FiEAD Z
24()0 IF Z.{} 11 THEN PRINT `'Z EI "iz, ELSE END
25()0 80TO 2300
2600 DATA
2700 DATA

3-a Assignment and I)efinition

RE

EE

u

F=E11

FORmT

veTES

EXAHPL£

n

Ziil

This Statement lets you insert e}:planatc]ry remarks intc) a program.

{REM remarks i 'rEmar}{s}

GRiDBASIC does not Execute REM statements. They c)nly appear when
you display or print the program listing.

6RiDBASI[also recognizes a 5inqlE quotatic)n mark or apostrophe (')
a5 a REM statement. If you branch into a REM Statement (frc)in a
€OSUB or GOTO Statement) , e}{ec:i`tion continues with the first
executable statement af ter the REH statement.

You can pi`t a REM statement on a multiple statement line lJy
Separating it from preceding 5tatement5 in the normal way. with a
colon. NOTE: Program execiition ignores any 5tatement5 that follow a
REM Statement within the same prt]gram line. Note further that REM'5
take up memory 5pa[e and Slow prc)gram exeEutic)n.

loot) REM This text is a remark.
1100 'This text is a remark.
1200 REll The next statement won't print: PRINT "You're Right!"
1300 END

The f irst two statements are Eciuivalent. The f inal statement
demon5trate5 what happens to commands placed after a REM. Nothing!
If `/ou riin this program, all you will get i5 a blank screen.

GRiDBASIC fteference rlanual 5-9

u

EE

EEE

iiE

1

ZiiE

ciiAPTER 4= sTATEHEi`iT§ TiiAT cowTm FiiD6iiAii FLiN

This Chapter de5Eribes Statements that alter or halt normal
Statement-by-Statement execution and allow loopg and corlditional exec:iition of
Statements.

Program Flow Contrc)I 4-1

E= IV I)

F-T

NOTES

EXArRE

This statement terminates program executit]n and closes all files
that were opened. .

END

Yc]u can terminate program execution with either the END statement or
the STOP Statement (degcribed later in this [hapter). END differs
from STOP in that ENI) c:loses all files. Therefore. you cannot
resume program execution with the Continue command (CODE-C). When
an END is enceilnterEd, the following message is displayed:

Program Stopped at line nnnn

where nnnn i5 the line number where the ENI) wag encountered. You
can return tc} the program editor by pressing any key. You can begin
program Execution again by pressing CODE-R (the Run Command).

An END Statement at the end of a program i5 optional. If there i5 no
ENI} 9tBtement at the end of the program, files renain open until you
exit the program with the 8uit command (CODE-8).

Regardlega of when the END Statement i5 er`[auntered and executed, it
always [au5eg termination of program exeEutic)n.

1000 LET AE5
1100 INPUT "A equals 5. How much 9hauld a equal ":a
1200 IF A<>B THEN ENI)
1300 PRINT "Bc}od-bye for now...
1400 ENI)

The END statement tan live within a program a5 easily as it does at
the end. This example ct]ntains two END 5tatementg -- one at the end
and the other within another statement (line 1200), The logic sayg
to end if the variables A and a are iinequal. If they botli eqiial 5,
print a "good-bye" message bet cire ending.

4-2 0Ril}BA§Ic fteference Manual

RE

u

n

lil

1

FOF= TC] [§TEF1] IUE=XT

The FOR ,TO, and NEXT tric} c)f stEitEments c:reate a program lc}op.
In5tri`ctic)ns withln this loop repeat each time the loop e,`:ecutes.
These 5tatement5 help clef ine the rarlge, Increments. and niimber of
lc)ops. Programmers often refer to these as "For Ne>{t loops."

F0fVAT

NOTES

FOR variablel=expre55ionl T0 e:.(pre5sion2 [STEP exprE5sic)n3]

NEXT variablEl

The fc)llouiinq li5t describes the foLir parameters taken by FOR NEXT.

variablel: A variable that acts as a c:ountEir.

e>:pressic)nl: The Initial value c)r settirig for the cour`ter.

expres5ion2: The final or limit \Jalue of the countEr.

expression3: Trie increment value added to or 5iibtracted from the
c`ounter after each pass through the loop. This
expres5ion is optional. If you clon't 5pecify a vali`e,
GRiDEA§IC assigns a value of 1 (one).

When program e>:ecution encourtters the FOF{ Statement, it checks ta
determine if the Initial value (e}:pressionl) of the counter
(variablel) is greater than the final value (e,\:pre55ion 2). If it
is already qreE`ter, the bc}dy of the loop 15 skipped and the
statement follciwinq the NEXT statement is E;.:ec:uted.

If it is not greater. the prc)gram line5 following the F0ft statEment
are execitted iintil the NEXT statement is encc)unterecl. At that
pc)int, the counter (`,.`ariablel) i5 in[remented (or in the case of a
negative STEP. decremented) b\,J the amc)unt Specified in e}:pre55ic}n3.
Program E}:ec:ut.ion then branches-bac:k tc} the FOR statement and the
process 15 repeated.

If the STEP `,'ali`e (e>:pression3) is a neqative, the logic: just
described is reversed. The loc)p)a 5L:ipped when the c:oiinter
(e}:pres5ic)n2) is less thE`n the f inal vali`e and the coi`nter 15
decremented af ter each F)ass throitgh the loc]p.

If expre55ic]n3 (the STEF' Increment,';dec:rement) evali`E`te5 to zErc]] an
endless lc]op occurs. Linles5 you provide some method c)f 5etting the

F.rc)gram Flow Control 4-5

c:ounter greater than the f inal value.

You can "nest" FOR NEXT loops (place or`e FOR NEXT loop inside
another) to whatever depth \/c}u want; you are limited only by the
amount of available memory. When you nest loops. you mi\st Provicle a
i`nique variable name for each loop counter.

Mal'e Sure that that the NEXT Statement for an inside loop appears
before that of an outside loop. A loop like

1000
1 i a 11

12C'C)

131111

140(I

[au5es an

EXArfur

FOFi X=l TO 5

FOR Y=l T0 10
PRINT X' Y

NEXT X

NEXT Y

"Improper. loop ne5ting" error message. Reversing lines
1300 and 14011 would solve the problem.

NOTE: You c:an tiimp c}i`t of a FOR NEXT loop. but NEVER jump into the
middle of 5i`c:h a lc]op. The reason is that 5i`ch jL`mps u5uallv fail
to properly initiali=e the counter and loop limits.

1000 FOR Coi`nter = I TO 5
1100 PRINT "Counter nc)w equals ";Counter
12(10 Next Counter
1500 POINT "Counter equals ";Counter
140() END

This i irst e>:ample shc}wg a simple loop. The new value of the
counter prints each of the f ive times the program exe[ute5 the loop.
When the value of the counter reaches 6. the coiintEr fails the test
and e>:Ecution pasges oitt c)f the loop to print the End value of the
ceitnter (line lr`(lcl).

A5 with other e>:amples, feel free to modify this Example, playing
with yoiir own loop si=e5 and c:ontrol5. A more complex example
follows,

4-4 6Ril)BASIC Ref erence Manual

u

EI

n

n

Zii

loot) R.EM The outer Lc)c}p begins on the next line
1100 FOR 0iiterLoop=1 TO 5
12(trj PRINT: PRINT "Oiiter Loop number"i OuterLctop! " and cciiinting...
1300 REM The inner or "nested" loop is ne):t
140C) FOB InnerLoop=27 T0 0 §TEF. -5
1500 F.RINT Innerloop; " ";
16CIC} NEXT InnerLoc}p

1700 REM That's it for the iriner loop
lBOct PRINT

1900 NEXT 0uterLoop
200Cl ftEM And that'5 it for thE c]uter loop
2100 END

This e}:ample demonstrates ne5ted loops, use of the STEF. instri.Ic:tion
and negative STEPS. The outer loop begins at line 11(}0 and ends at
line 19()0. The inner loop beg)n5 at line 1400 and ends on line
16()0. Steps in the inner loc)p decrement by iinits of -3.

F'rc)gram Flc)w Control 4-5

GOBI,iEt r`.ETUFti`

The 60SUB statement trari5fers cc]ntrc)I to a Eubroiitir`e at spe[if led
line number. The F{ETuftN stEitement must appEar E`t the end of that
siibroi`tine artcl returri5 contrc)1 tc) the main F)rogram.

FORHAT

veTES

130SIJEl 1 irie#

sL`br c]u t 1 n e
BETUF[N

The line# is the line nilmber c)f the first lirie of the subroutine.
(A siibroutine is one or more 5tatement5 that pErforms a distinct
task). A 60§UEl jiimp5 prc}gram e>{e[ution to a 5i`brc)iitine. (This ig
Sometimes referred to as "mal(ing a si`brolitine call".)

When the F{ETURN statement i5 ericc)untered at the end cif that
subroutine, it c:ai`5es exec:iitic)n to return to the statement following
the most recent GOSUB statement. You Can have more than c)ne FtETUFiN
st.atement within a 5ubrc)i`tine for situations where you want to exit
the subroiltine at dif i erent points.

If the specif led line ni`mber c-ontains a nan-e}:ecutable statement
(for e`:ample a DATA. REM. or DIM), execution will begin at the first
sitbseqi`ent execLital]le Statement after line#.

Yell Can c:all a subroiLtine a5 many times as yc)u want. and you can
c:all c}ne subroittinE from within another. Your only limit on this
ne5ting c)+ siibroutines is the amaitnt of available memory.

4-6 6RiDBASIC Deference Manual

u

n

iii

Ziil

1000 605lJB 1900
1101) PRINT "Dive! Dive!"
12()a GOSUEl 19(I(1
lsoo GO§uB 1700
140(I 60§UB 1900
1500 PRINT: PRINT "At last. The END is in sight."
1600 END
17110 PRINT:PRINT "So this iE a '60SUB.' Time to Surface...
1800 RETURN
1900 REM The next line just loops far time
2000 FOR X-l TO 400! NEXT X
2100 RETURN

In this Example, we have two 5ubroutine5 --One l]eginning at line
1700 and the other at line 1900. We c:all the 5ubrautine three times
during program e>:ec:utian to put time between the execiition of the
print statements. Note that the 3ubraiLtine at line 1900 begins with
a HEM, not with an executable 5tateqtent.

Program Flow Control 4-7

Era-

GOTO

FOI"T

roTES

ExfpRE

This Statement c:au5e5 an un[onditic)nal transfer of Control to a
specified line number.

GOT0 line#

The GOT0 statement differs frc]m the GO§UB Statement in that it lacks
a RETUBN statement. Any return of program execi`tion to the line
follciwing the 60T0 line miist be forced by another 60TO.

If line# 5i]EiEifie5 a line containing an executable Statement, then
that Statement and those following it are exE[uted. If the
Specified line does not contain an exEci`table statement (for
example, a DATA 5tatcoent), then execution clJntinue5 at the flr5t
exe[utable Statement after tlie line 5pe[ified by line#. The
intervening lines are Simply ignored.

NOTE: Gpil)BASIC does not suppc}rt an "imi]lied OOTO" as in the example

2200 IF A=B THEN 1700

1000 PRINT "This line (1000) contains a 60TO Statement.": GOT01300
1100 Print "This is the line (110()) after the first GOTO."
1200 GOT0 1500
1300 PRINT "This i8 the first line (1300) you went to."
1400 60T01100
1500 PRINT ''The ENl). (See message belc}w.)": END

In this example, program e}(eciitic]n jumps from line 1000 down to line
1300. It then jiimp5 bac:k up to line 1100. E>:ecution moves 5traiglit
down from llCto to 1200 where the final 80T0 appears, 5Ending
execution to the last line.

To understand the term ''infinite" loop, remove line 12110 from this
program and watch what happens. Remember: Pressing ESC will stop
any such loop.

4-8 BRiDBA§IC Reference Manual

EI

u

U

ZiE

rl

ZiE

IF THElu [ELSE=]
These Statements allow the conditic)nal e}.:ecution of One of twc]
Statements or a 5erle5 0f Statements, based on the result of an
expression evaluation.

FofunT

NOTES

IF e>:pres5ion THEN 5tatementl[:5tatementla:5tatementlb ...][EL§E
statement2] [: statement2a: statement2b . . .]

If the expression following IF is true (nc}t zero), the statement
following THEN e>:ecLite5. If an ELSE statement e}:ists, execution
5kip5 it.

If the result of the expression Evaluation i5 false {zero), program
execution skips any statenent(5) following THEN and executes any
ELSE statement(s). If no ELSE statement e}{i5t5, exe[Lltion goes to
the ne>:t line number.

ELSE 5tatementg are clptional. An ELSE statement Only e>:ecutes when
the IF statement evaluates Bs zero (false).

Look at the fcillowing example:

1000 IF A=EI THEN PRINT ''Equal": 60T01500 ELSE PRINT "Unequal"
1100 60§UB 2000

If A does equal 8, then the computer will print the word "Equal" and
it will jump to line 1500. However, if A does not eq`ual a. neither
the THEN Statement nc}r the GOT0 will execute. Instead. the prc}gram
will e>:ecute the ELSE Statement and print thEt word "Unequal" befc)re
cc)ntinuing tc) line 1100.

You Fan follow the THEN and ELSE 5tatement5 with a5 many statements
as yoii want. The statements must be Separated by colons (:) and can
be either on the Same line or on a new line. If on a new line, the
statements cannot have a new line niimber; they are Eonsidered part
of the Same line a5 the THEN or ELSE statement.. Thus bc)th of the
fc)llowiriq sequences are valid:

1{111 IF A=B THEN C=D:

E=F
ELSE J=l,::

2(,0 . . .

1C)() IF A=B THEN C=I):E=F ELSE J=h:

Prc}qram FIE)w Control 4-9

NDtE the ab5enc:e of a c:olon between E=F and ELSE in the sec:end
example. The ELSE Statement (if present) i5 also considered to be
part c]f the same line a5 the IF and THEN statements and should not
be Separated from the preceding statement by a cc)lc)n nor 5houlcl it
have a new line number. Therefore, the following sEqliences are
i nva I i d :

lclo IF A=B THEN C=D:E=F
20ci ELSE .=r.<

and al5c)

1{lcI IF A=B THEN C=I):E=F:ELSE J=K

You can nest IF THEN ELSE statements to any depth: you are limited
c]r`ly by the amoiint of available memory. If the statement does nc}t
contain the same nlimber of ELSE and IF THEN c:lauses, Each ELSE is
matched witli the clc}5est unmatclied IF THEN.

NOTE: The word "THEN" miist always follow an IF clause. The
follciwing statemEnt, omitting THEN, is not valid.

2200 IF A=B 60T0 1700

10110 EvenS="Even §teven! ": OddS="Odd Badkins! "
1100 INPUT "Try Some Conditions (Y/N and confirm)";Answer$
1200 IF AnswerS="N" THEN PRINT "Whatever you say."i B0T01600
1300 INPIJT "Type any integer and confirm (E§C to stop):",NLimber
1400 If Niimber MOD 2=0 THEN PRINT EvenS ELSE PRINT 0ddS
1500 GOT0 1300
1600 END

This example contains two IF THEN statements --line51200 and 14{)0.
The line 1200 statement lacks an ELSE, but attaches a Statement
after THEN. If the c:ondition i5 true, both will execiite. The
me55age "Whatever you say, " pririts and the program jumps to the ENI)
Statement. However, if the statement evaliiates aB false. then
execution falls through to the next line (1300).

Line 1300 contains a straightforward IF THEN ELSE Statement. If the
module test yields a 0, print the string variable for "even." If
f al5e, ELSE prints the "odd" String.

NOTE: The E§C key function mentioned ill line 1500 comes frc)in the
5y5tem, nc}t from this program. Remember: You can press E§C tc} halt
execution of any 6RiDBASIC program.

ExfwRE

4-10 BRiDBA§IC Re+erenc:e Manual

RE

EI

n

Eiil

Zii

131` GOT0 and DN GC)SUE3

These Statements cause an L`nconditional transfer of c:ontrc)I to One
of several spec:if]ed line numbers. The partic:tLlar lines depend on
the resi`lt obtaiiied by evaluating the e>{pre5sion following the ON
Statement.

F0fvAT

NOTES

ExfpRE

ON express)on COT0 line#[,line*J...
and
ON expression GO§UB line#[,line#]...

ON GOT0 does in one Statement what IF Tt.lEN would take numerous
5tatement5 tc) achieve: it takes an expre55ion and u5e5 its value to
Send program e}{ecution to a particular line number.

In the example below, if the variable ANSWER evaliiates to 2, program
executic)n jiimp5 to the Second line number in the list, 15(10.

500 0N Answer B0T01000,1500,2000

NOTE: 6Ril)BASIC rounds thE e:.:pre55ion value to an integer, i+
necessary. If the expression value i5 zero, c)r if it i5 greater
than the number of line nulTibers in the list, e>:ecution Simply
continues with the next e}{ecutable Statement in the program.

LOGO INPUT "Enter a nilmber from I to 5 and c:onf irm",A
11()a 0N A 60T01200, 130C),14()C), 15C)0, 1600
lllcI PPINT "Your entry i5 out of range.'': B0T011100
12{)0 PRINT "ONE": 60T01000
1300 PRINT "TWO"= GOT01000
1400 PRINT "THF{EE": 60T0 1000
150{) F'RINT "FOUR": Gt]T010C)0

16¢0 PRINT "FIVE": 60T0 1000

This e}{ample prints the name of the number given the INPUT
statement. This is a typical use for ON 60T0 in that particiilar
values must connect with particular items. A more comple): e}:ample
might c:onnec:t a lJ.S. Pre5ident'5 order ill the Presidency witli hi5
name-

If you enter a number greater than f i`'e or less than c}ne, e}:ecution
will drop through the ON 60T0 statement to the ne>{t line, an error

Program Flow Control 4-11

mes5aqe and a GOTO Sending execution ba[l: to the INPUT Statement.

Note the 60TO 5tatemEnt5 follc)wing each of the line rtimber5 in the
list (120(I-1600). Withoi`t Such an ending Statement (you [ould use
END, toci) , executic]n [ontiniies and prints all sllbsequent ni`mber5.
Hardly our piirpcise.

When you riin this prc)gram. qive it 5Dme out of range nimbers and
some decimals to see what happens. An E.>:ample of ON 60SUB fcillows.

loot) INPUT "Enter a number frc}m i to 5 and c:on firm",A
ll()Ct ON A 00§UE 150C), 14()0, 1500, 1600, 17C)O
12(to IF A<1 0R A}5 THEN B0T0 1800 ELSE GOT0 i(I(to
1300 PRINT "ONE": RETURN
140{) PRINT "TWO": RETUF{N

lil:)a PRINT "THREE": RETURN
1600 PRINT "FOUR": RETURN
1700 F'RINT ''FIVE": RETURN
l8(to PFilNT "Out of range": GOT0 1000

This is the Same prcigram exc:ept that an CIN GOSUB Statement gulde5
excecution tc) the prc)pEir line number. And be[ause this i5 a 60§UB,
a RETURN statement must end the One line subroutine.

RETURN sends e}:ecution to line 1200. To accc}mc)date tlli5, and still
be able to i55ue an "Out c)f range" message, line 1200 contairi5 a new
logic. It c:hec:ks to See if the input is .Jithin range. If it is,
the program loops to the fir5t line again. If not, execution goes
to the error message on line 1800 before gc)inq to the fir5t line.

4-1£ GF:iDEIASIC F:eferEnc:e Manual

u

-.I

EI

ST0F'

F-T

veTES

ExfyRE

rl

•iiE

Zil

The STOP Statement 5usper`d5 program e}:e[utian.

STOP

The STOP Statement 5115pends program without clo5ing any files. STOP
serves as a good debugging tool; you can halt e}:ecittion, c:hec:k the
status of variable5, and then continue. You continue program
exec:ution by pre5sinq Cot)E-C (the Continue command). Pressing any
key return you to the program ed)tor.

When a §TOF' i5 encountered. the fallawing message appears:

Program stoF)ped at line nnnn

where nnnn is the line number where the STOP was encountered.

loco AS= "Hit the brake5! I I
1100 ES= " There's a STOP line just ahead."
1200 CS=AS+BS
1300 PRINT "Screeeeeeeeec:h"
1400 STOP
1500 PRINT CS

This example dec:lare5 and conc.atenates two String vari;bles. The
STOP at line 1400 gives you the Chance to preview the cancatenatic)n
before executing it. By enterirlg the direc:t mode and typir`g "PRINT
CS," you can see what CS looks like. Press CODE-I to continue.

Program Flow C:ontrol 4-13

WHILE WE=luD

These Statements create a program loop that continiies tc] e}:ecute as
long as the WHILE statement evaluates as true.

F-T
WHILE expression

statement(s) ancl/or func:tions

WEND

NITE§

EXArRE

If the result obtained IJy evalL`ating the expression is true (riot
zero). the statement c}r statements between the WHILE and WENI)
statements will bE exec:Lited. WEND returns e}{ecution tc) tlie WHILE
Statement for another evaluation of the expression.

The intervening statements exec:ute until the expre55ion evaluates to
zero (false). If the expre5sic)n evaluates to zero the first time it
is encountered, then the intervening statemEnt5 will not execute at
all. After the exprE55ion evaliiate5 to zero, e}:ecution continues
with the first executable Statement following the WEND Statement.

You can nest WHILE WEND statements tci any depth; you are limited
only be the amount of available mEmory. Program executic)n matches
eat:h WENI) with the most recent WllILE. If yc}u have unequal numlJers
of WHILE and WEND 5tatEmE.nt5, an error will occitr --"Improper lc)c]p
nesting error. "

If you write FOR NEXT lciops inside of WlilLE WENI) loops (or vice
ver5a), be 5itre the inner loop lies entirely within the oliter loop.

100[1 LET BiiessMe=TRUNC(5*END(l)+i)
1100 WHILE User6Liess {.i Gues5Me
1200 INPUT "Bue55 a nLimber between 1 and 5"iuser6ue55
1300 WEND

1400 PRINT ''You got it! The number was ";GuessMe
1500 INPIJT "Want tc} try again (Y or N)'';YesNOS
160{) IF YesNc)S = "Y" THEN 60T0100CI ELSE PRINT "Okay. bye.I": END

This e}:ample i5 a guessing game that asks you to enter a ni`mber.
The WHILE Statement then tests to seE if you que55Ed correctly. If
the number qualif ie5, program e>:e[iltit]n falls through the WHILE WENI)
loop to the message. If the Eompari5c]n fails. exeEutic]n 5tay5
within the WHILE WEND loop. a5king fc}r another input.

4-14 BRiDEIASIC Reference Manual

u

u

Riil

Zii

rl

ci+APTEFt FlvE: GFtiDBAslc ARITiRETlc AND Leslc

Thi5 chapter de5c:ribes GFi!il)BASIC.`5 arithmetic: Statements. functions, and
cc)nstants. Chapter Five also discusses the GRil)BASIC's four logical operators
--AND, NOT, 08, ancl XOR --plii5 its two Boolean constant5, TRUE and FALSE.

Additionally, it covers the two integer operators: integer division and M0I).

NOTE: Althougli not clocumented like other operators, 6RiDBA§IC hag the four
essential arithmetic:

+ (Addition)

• - (Subtractian)

• * (Multiplic:atian)

. / (Long I)i,`ision)

See Chapter Two for cletail5 on precedence among arithmetic, relational, and
logical operators.

This chapter opens with a disc:i`sgion of 6FziDBASIC'5 six integer functions. It
also di5cusse5 them individually within the chapter.

Arithmetic and Lc)gic: 5-I

INTEGER FLMTIO^l§

GRiDBA§Ic has six ways of converting floating point numbers to |J
lnteger5:

CINT

FIX

INT

R0lINI)

TRUNC

I Assignment of a value into an integer variable (§ymbalized a5
VAR./. below) .

Table 5-1 below illu5trate5 how 6RiDBA§IC applie51t5 variolls
functions to converting f loating point nLimber5. NOTE: To ensLlre
act:urat:y when converting dec:imal5 tc) inteqer5. choose either
ROUND or TRUNC. BRiDEASIC includes the CINT, FIX, and INT
func:tit.ns for compatibility with other BA§IC's. The table below
shc"5 that FtouND pert Drms the same as CINT ar`d TRUNC acts like
FIX.

c[NT F]xFUNCT::¥ RouND TRUNc VAR./. L'
__--_--__-------------------------r.------------___

-3. 50 -4 -3 -4 -4
INPUT -5. 49 -S -3 -4 -3

3.49 3 3 3 3
3.50 4 3 3 4

33000. 00 -32556 -32536 -32536 53000

Table 5-i. A Table of Integer Func:tion5

-3-4
-3-3
`3S

34
33000 -32536

A discussion of each of 6F{iDBA§IC's arithmetic fitnctions begln5
on the next page. NOTE: 6Ftil)BASIC cannot guarantee a[c:itrate
integers whenever you give it a number that e}:ceed5 the
IJoiindarie5 c}f integer aritlimetic: -32768 tci +32767 inclu5i`/e.

5-2 GRiDBASIC ReferencE Manual

u

f>8§

Ft"T

InoTE§

EXA-

ZiEi

rl

n

This function returns the absolute value of its expression.

AB§ (ex pr e59 i on)

The absolute value of the expression is the value un5igned. ABS
strips away the minus sign of negative numbers. The ab5alute
value of a number is always positive or zero.

1CIO0 INPUT "Enter a number and conf irm",A
1100 B=ABS(A)
120CI PRINT "Absolute value i5 ":I
1300 60T0 1000
14110 END

Arithmetic: and Logic 5-3

fiC0S

FORmT

NOTES

EXA-

Tlie arc: cosine fi`nction.

ACO§ (ex pressi on)

This function takeg an expre55icin repre8er`ting an angle in
radiang and returns its arc cosine (in the range of 0 to pi)
BRiDBASI[evaluates thig e>ipres5ion in full prec.igion. To
convert fran degrees to radian5, multiply by pi/loo.

1000 INPUT "Enter a number between -1 and l"iNumber
1100 PBINT
120Ct Rad5=AC05 (Number)
1300 Degrees=Radsl(lBO/PI)
1400 PRINT .'The arc Cosine of "; Number; " is ";Degrees; "
degrees"
150(I PRINT: PRINT
1600 GOT0 lcloo
1700 END

5-4 6F{i DBASIC FiefE.rence Manual

u

u

u

f>ND

FOFVAT

veTE§

iii

rl

n

Exf-

The logical operator far Conjunction

expressionl AND expre5sion2

The AND function unites elements, calculates their combined truth
valile, and issues a Elot)lean true or false. A5 the AND truth
table (Table 5-2 below) shows, ANI) only issues a true (nan-:era)
when both elements are trite.

A ANI) 8

Table 5-2. The ANI) TrLith Table

1000 PRINT "Separate the twc) numberg with a comma'':PRINT
ilo() INPIJT "Type two numbers between 1 and 5"; A,B
1200 IF A=3 AND 8=4 THEN PRINT "You win!" ELSE PRINT "Try again"
150(t PRINT:60T01100
14CIO END

A51ong a5 you enter t]oth elements correctly (5,4), yc]u win. Any
other combination fails.

Arithmetic arid Logic 5-5

f}S I N

Font

NOTES

EXAmE

The arc sine flinction.

A5IN(expression)

This func:lion takes an expre5sian representing an angle in
radians and returns tlie arc sine of that angle. 6Bil}EIA§IC
evaluates this e}:pression in full precision. Arc sines f all intc)
the range of -pi/2 to pi/2. To Convert from degrees tc) radians,
multiply by pi/180-

1000 INPUT "Enter a number between -1 and I"iNumber
1100 PRINT
1200 Rad5=A§IN(Number)
1300 Degree5=Rads* (loo/P])
1400 PRINT "The arc.Sine of "; NLlmberi " is ";Degrees; " degrees"
1500 PRINT: PRINT
160Ct 80T0 lcloo
1700 END

5-6 GRiDBASIC Ref eren[e Manual

•-.I

u

u

f}TN

FofunT

NOTES

EXArfu

•-,

Rii

a

The arc tangent f unc:tion.

ATN (ex pr essi cin)

This functic)n takeg an expression representing an angle in
radian5 and returns the arc tangent of that angle. 6Ril}BASIC
always evaluates thig expression in full precision. The result
falls in the range of -pi/2 to +pi/2. Tc) convert from degrees tiJ
radians, multiply by pi/loo.

loco INPUT "Enter a number ";Number
1100 PRINT
1200 Rad5=ATN(Nimber)
1300 Degreeg=Rads* (loo/PI)
140C) PF2INT ''The arc tangent af "; Nunber€ " is ";I)egree5; "
degrees"
1500 PRINTS PRINT
1600 60T0 1000
1700 ENI)

Arithmetic and Logic. 5-7

C=1}EIL

FORAT

NOTES

EXArRE

The convert tc} double precision Statement

CDBL (ex pressi c)n)

Because BRiDEA§IC performs all t]perations in doublE pre[i5ion,
this Statement does nothing. It exists only for [ompatibility's
Sake. See C§NG belt)w.

1000 LET §ome=CI)BL(4)
1100 PRINT Some
12CIO END

Put any number you want in the parentheses. Line 1100 di5play5
it just a5 you entered it.

5-8 BRiDBA§IC Referent:e Manual

u

u

u

C I IUT

FORAT

NOTES

. EXAtne

ill

ill

n

The C]NT (Convert tc) integer) fi`nction c:c)nverts an e}.:pre5sion to
an integer.

C I NT (ex pe55i c}n)

CINT pert arms the c:onversion by rounding the fractional portion
of the number.

NOTE: This fiinction i5 identical to the 6Riz)BASIC'5 ROUND
func:tion described later in this chapter. The existence c]f bc)th
funt:tions enhanc:es the compatibility of BRil)BASIC with other
BA§IC's. See the di5cu55ion of integer functions at the
beginning of this chapter.

1000 INPUT "Enter any number and conf irm", Deciil`al
1100 Answer=CINT(Decimal)
1200 PRINT "The CINT integEr is ";Answer=;PRINT
1500 GOT0 1000

Arithmetic and Logi[5-9

COS

FunT

NOTES

EXAmu

The cosine fiinc.tion.

COS (e}: pr ess i c)n)

This function takes an expression representing an angle in
radian5 and retitrns the cc)siiie of that angle. 6RiDBASIC always
evaluates this expre55ion in full precision. Tc} convert from
degrees to radians, mi`ltiply by pi/leo.

1000 INPUT "Enter angle (in degrees) and confirm",Angle
1100 ftad5=Angle*(PI/180)
1200 Calculation=CO§(Rads)
13CIO PRINT ''The c:osine of ";Angle;" degrees i5 "i Calculation:
PRINT
1400 GOT0 1000

5-10 6RiDBA§IC Reference Manual

EE

BE

u

CSIVG

F-T

EXArFLE

rl

Zii

ZiiE

The convert to single precision Statement

C§NG (Ex pr eg5i c]n)

Eec.au5e 6FtiDBASI[performs all operations in double preEi5ic)n.
this statEment does nothing. It e>:i5ts only fc)r c:ompatibility.`s
sake. SEE CI)BL abc)ve.

1000 LET §ame=C§NG(4)
1100 PRINT Some
120CI ENI)

F'ut ally number you want in the parentheses. Line lltlo displays
it just a5 yoii entered it.

Aritlimetic: and Logic 5-11

EXP

FOFmT

veTE§

EXAmE

The Exponent)al function. referred tcl in matliemati[5 a5 "e."

E X P (e}: press i c}n)

In 6RiDBA§IC, a natural logarithm hE15 a base of

2 . 71 8281882845905

The EXP function raises this base number ta the pc]wer given as
its expre55ion. Thus

EXP(2)

equal s 2. 7182818828459{15 Squared.

LOG is the inverse function c)f EXP, as demonstrated by the
example program below. Far this reason "the Exponential of " and
"the natural antilogarithm of" are Synonymous phrases.

If the expression evaluates to greater than or equal to
approximately 200, an overt low oc:Eiirs.

1000 INPUT "An exponent please":Anex
Ill.10 LET Answerl=EXP(Anex)
1200 PPINT "The natural log's value raised to the pc}wer ";Ane}::"
is":. PF{INT Answerl: PRINT
1300 Answer2=LOG (Answerl)
14(10 PRINT "The natural log c}f this number i5 ";Answer2: PRINT
1500 An9wer3=L0BIO (Answer i)
1600 PRINT "Its log tc) the base 10 is ";Answers:PFtlNT
17Clo GOT0 lot-10
180(I ENI)

5-12 GF`.il)BASIC fief erence ManLial

u

rl

1

lil

Ff}LSE
The Bc}olean Constant for false.

FORMAT

lvaTES

EXArfLE

FALSE

The Eon5tant FALSE has a `/Slue of 0. State.i}Ents c:an lot,Erac:t
with it in a number of ways. You can as5ign its `/Blue to
variable5, operate it on it logiEallv. iJrint it. The program
below dc)e5 all tllE5e things.

i(:Icl{l F.ftlNT "True=":TRUE: " and False=":FALSE
1100 INPUT "T`,,'pe the number :`"; A
l£C){l IF A=3 THEN B=TRUE ELSE El=NOT TftljE
1=`00 F.ftlNT a:
1400 IF B=FALSE THEN PRINT " means `/c)u didn't type 5" ELSE POINT
" means you typed 5"

15(.1CI PRINT:GOT011{10

16®0 END

Line i()(:10 prints the values c}f GRiDBASIC's two Doc)lean c.on5tarits.
Whenever you use TRUE c)r FALSE. you use the constant`5 `/alue.
For e.¥ample, depending on the `/ali`e of A, line 12(1(I does one of
two things. It either assigns -I tc) E` (TRUE) or applie5 NOT to
TF{UE, chanqinq tlle -1 tc) its opi]osite. a Zero (0). Note that
although the program never assiqn5 "FALSE" to the varlable 8. it
can evaluate a as "FALSE" (line 1400}. if in line 12()a EI proves
to be "NOT TRUE."

Arithmetic and Logic 5-13

F-IX

FOFunT

NOTES

EXAMPLE

The FIX +i`nction cc}nvert5 an e>(prEs§ion tc) an integer.

F I X { ex pre5si on)

This filnctic)r` Converts an e}:pre55iort to an integer by removing
all nL`mbers to the right of the decimal point. The difference
between this fL`nctic}n and the CINT and INT fuilctic}ns is that FIX
clc]es not rctund negative numbers dowr`. Thus -2.5 and 2.9 both
bec:one -2.

Thi`s FIX (an "impc)rt" from otlier EIASI['5) wc]rks like 6ftiDEIA§IC..s
own TRUNC func:tion. See the Section at the bEqinning of this
c:hapter, c.omparing the different intecier functions. Also See the
TRUNC fi\nc:tion later in thi5 c.tiapter fc}r more details.

1CICIC) INF'UT "Enter any rii`mber and con+irm", Dec:imal
1100 Answer=FIX(Decimal)
1200 F`RINT "The FIX integer is ";Answer :PRINT
150(t 60T0 lot:t(I

5-14 GRiDBA5IC Ref erence Mani`al

u

u

INT

FORMAT

NOTES

r

n

Eii

EXAMFu

The INT functic}n converts an e;:pre55iDn tc] an Integer.

I NT (i,`: i]e55 i c]n)

8RiDBASIC pEr{orm5 the I:onver5ic)n by rc)undina dc}wn the i ractional
portion of the number. Thus a po5itive whc)le number remains the
Same regardless of the value of the nLimber to the right cif the
decimal pc)int.

In the c:age of negative numbers, however, INT rc)und5 the number
tc) the ne}:t Smaller whole number. Thiis with INT -2.5. -2.Fj, -I.9
all bet.one -5. Eec:au5e of thi5 ac:tic)n[INT i5 5c}metime5 refer-red
tc} as a ''floor function."

GRiDBASIC incliides INT for c:c)mpatibility with other BASIC.`5. Sea
the artic:le c]n integer functions at the beginning c]f this c:hapter
fc}r more informatlon.

10Clt:I INPUT "Enter any nLimber and c:tjnf irm". Decimal
11{10 An5wer=INT(I}ecimal)

120C) PftlNT "The INT integer is "i Answer: PFl.INT
13,JC) 60T0 i('C)0

Arithmet}.= anc] LOQlc 5--15

IN|-E=6EF: DIVISION {\)

The inteaer di`tisicin operator.

FO"T

roTES

EXA-

dividend \ cl)visc}r

Integer divi5ic}n acts like ordinary division (/`) in that it
delivers a quotient. Urtlilf.e, ordinary di`7ision. it dc)e5 not
issue a remainder. Thus the operation

PRINT 5\.I

yields 2, not 2.5. NOTE: You mar`e a back slash, the inteqE)r
division Sign. by pressinq the CODE-SHIFT-' [c)oblnation.

The MOD funEtic)n is jtjst the oppc)site of integer division; it
Firints the remainder, but not the qiLotlent. (See MOD later in
this c'hapter.)

loot) INF'UT "Divide 51 by what ni`mber"; Divi5c]r
ll(to LET 0uc]tient=51\Divisor
12Clo LET F{emainder=51 M0l} Divisc)r
1=`f)t) .PRINT "The qiiotient i5 ":Cilotient; " with a rEmairider of
" i Renal ncler

14Cto PRINT: B0T0 1000
1500 ENI)

This example 5hc)ws the integer cllvl5ion quotient and the MOD
remainder that result from clividing 51 by yoiir input divisor.
The second example a5k5 `/ou for both the dividend and the
divisor; it then calciilates the re5ult5 from f loating pc]int
divi5ion. Integer clivi5ion, and MDI).

10(JO INPUT; "I)ividend":N
11Cl{l INPUT " Divisor":D
120{) PRINT "FPDiv=";N/I).
13C)C) PRINT "IntDi`/=";N\I),

14(:){) PRINT "M0I}=";N MOD 0

15f:t() PFilNT: 60T0 10(10
160{) END

5-16 6f`iDBASIC Reference Hanual

u

u

u

LOG

FcmT

NtrTES

EXAMPLE

i

1

EiEl

The (natural) logarithm fun[tion

LOG (ex pre55i on)

This functicin returns the natural logarithm of an expression.
The value of the expression must be a positive nuol)er greater
than zero.

lctoll INPUT "An exponent please";Anex
1100 LET Answerl=EXP(Ane>:)
12()0 PRINT "The natural log'5 valile raised tc} the power "iAnex;"
is": PRINT Answerl: PRINT
1311(1 Answer2=L06 (An5werl)
1400 PRINT "The natural log cif this number is ";Anal.ier2: PRINT
1500 An5wer3=L0610 (Answerl)
1600 PRINT .'Its log to the base 10 is ";An5ner3=PRINT
1700 GOT0 1000
loo(' END

This example calculatEg the exponential of a nilmber, its inverse
(the LOB), and finally, the common logarithm (ta the base 10).

Arithmetic and Lc)gic 5-17

LOE51 C,

Lc}garithm to base 10.

FOFVAT

NOTES

EXAtRE

L0B1 {l (ex pre55i on)

This function rEtiirn5 the lc]garithm to the base 10 of an
e){pre59ion (NOTE: Natural logarithms have a base cif 2.718). The
lcig to the base 10 is the number to whic:h yell have to raise 10 to
get a particular nimber. Thus log of 1000 ig 3. because 103
yields 1000

The value of the e,`presgian must be a positive nimber greater
than zero.

1000 INPUT ''An exponent please";Anex
1100 LET An5werl=EXF'(Anex)
12011 PRINT "The natiiral log'5 value raised to the power ";Anex;"
is": PRINT Answerl! PRINT
1300 An5wer2=LOG (An5werl)
1400 PPINT "The natural log of this number is ";Aiigwer2: PRINT
1500 Answer5=L0Blo (Answer I)
1600 PRINT "Its log to the base 10 i5 ";Answers:PRINT
1700 GOT0 1000
1800 ENI)

This example calculates the exponential of a number, itg inverse
(the LOO), and finally, the common logarithm (tD the base 10).

5-18 BRiDBA§IC Referenc:e Manual

EEZ

u

rlDD

FOF"T

NOTES

EXA-

ZiEI

n

rl

The modulc} operatc)r.

dividend rl0D divi5c]r

The modulc) function (MOD) prints the remainder of a division
operatic)n, IJi`t not the qiic}tient. This makes it the Dppo5ite c)f
the integer divi5ian operation, whit:h prints the quotient. but
not the remainder. (See Integer Division earlier in thi5
chapter .)

MOD rounds its operands to integers. It then performs f loating
pc)int division and throws away the resulting quotient.

lot)O INPUT "Divide 51 b`/ what number": Divi5c)r
1100 LET Quotient=51\Divisor
12(10 LET Bemainder=51 M0I) Divi5or
1300 PF{INT "The qiiotient is ";CulJtient; " with a remainder of
" ; Remai nder

1400 PRINT: GOT0 1000
150C' ENI)

This e,`:ample 5how5 the integer divi5ion quotient and the MOD
remainder that result from dividing 51 by yoiir input divi5or.
The Second e}:ample a5k5 you for both the dividend an`d the
di`/i5or; it then c:alc:ulate5 the results from f loatinq point
clivision, integer divi5ion, arid MOD.

1000 INPUT; "Dividend";N
110{1 INPUT " Divi5c]r":D

1200 F.RINT "FPDiv=";N/I).
131:)1') F'F3INT ''Intl)iv='':N\D,

14!:Jt:I PRINT "MOD=";N MOD I)

15CIJ`-) F`RINT: GOT0 lcl(10

16C)0 END

Arithmetic: and Lc)c]ic. 5-19

luoT

F-T

NDTES

EXAMPLE

The lc}gi[al operatc)r fc)r negation.

NOT expreg6ion

NOT is a unary aperator that reverses the truth value of the
operand (e}{pre5sian) it addresses. The NOT truth table (Table
5-S) l]elow illustrates this.

Table 5-3. The NOT Truth Table

1000 PRINT ''§eparate the two numbers with a comma":PRINT
1100 INPUT "Type two numbers between I and 5'`; A,a
1200 IF NOT(A=3 AND 8=4) THEN PRINT "Try again" ELSE PRINT `'You
wi n ''
1300 PRINT:80T0 1100
1400 END

Compare this example to the e>{ample far ANI). To get the Same
evaluation, the results ("Try again" and "You win" are reversed.
This Suits NOT'5 ac:tion on truth valiie5. Also see the logic
examples under "Logical Operators" in Chapter Two.

5-20 BBiDBASIC ReferEnce ManL`al

u

EI

OF3

FOFRAT

IroTE§

EXArfu

1

iiE

a

The loqical operator for disjunction.

e}:pres5ionl 0R expression2

OR linh's two expre55ions and i55ue5 a true when both expre55ion5
evaluate as true or when jii5t one evaluates as true. Both
expres5ic)n5 must be false for OR to issue a false. See Table 5-4
below. Cc]mpare this action with X0ft (Described at the end of
this chapter), which yields a triie ctnly when just one af tlie two
e}:pre5sians is trile.

A 0F' 8

Table 5-4. The OR Truth Table

1000 PRINT "Separate the two numberg with a comna'.:PRINT
1100 INPUT "Type two numbers between I and 5"; A,8
1200 IF A=5 lJR 8=4 THEN PftlNT "You win!" ELSE PF{]NT .'Try again"
13(10 PRINT:60T01100
1400 END

You win if you type 3 as the first number of the pair, c)r if you
type 4 as the se[or`d number, or if you type both correctly (5,4).
Also see the lcigic examples under '.Logical Operators" in Chapter
Two,

Arithmetic and Logic 5-21

F]I

FOFunT

NOTES

EXArfu

The pi constant.

PI

PI is not a fiinction, but the mathEmatical constant repre5entinq
the ratio of the circumference to the diameter of a circle.
GFtiDBA§IC keeps PI eqilal to

3.14159265358979

1000 PRINT "Note: Pi equals "i F.I: PRINT
1100 INPUT "Enter the radius cif a circle and conf irm"; Radius:
PRINT
12Clo Cir[=2*PI*Ftadiu5
13{10 PRINT "The c:ire:umference of the circle is "icirc: PRINT
1400 Area=PI*Radiu5^2
1500 PRINT "The area of ttie circle ig "i Area: PBINT
1600 B0T0 1100

This example puts the PI function to work in two Common formulae,
those for the cir[unference and area of a circle. It also prints
the value of pi (see line 1000).

5-22 6Ri DBA§I[F{eference Manual

EI

u

`J

n

n

A

F=f}ND0II I Z E

RANDOMIZE 5eed5 the RND nllmber generatc}r.

F-T

veTE§

EXAtRE

RANDOMIZE [exprE5sion]

This statement gives the random number qeneratcir a spe[if ic: Seed
to work with. END takes each seed and from it c:reates a known
9erie5 of numberg. Therefore, placing RANI)OMIZE bet ore a RND
statement yields a repeatable series of numbers.

RANI)OMIZE without an expre55ion, Sends the ENI) function bat:k to
the realtime Clock for its Seed. See the RND statement,
described next, for further details c)n random numbers.

1000 RANDOHIZE 101
1100 INPUT "Loop times";Number
1200 PRINT: PRINT
1300 FOR X = 1 T0 Number
1400 PRINT ,lo*RND(i)
1500 NEXT X
1600 PRINT: PRINT
1700 B0T0 1{100
1800 END

In this example, the expre59ion "101" cau8eg the Same series of
random numbers to print, no matter when or where you use it. Try
other expressions. Yoll can treat these expressions a5 if tliey
were labels for certain 5erie5.

Arithmetic. and Logic 5-23

FIlu1}

FI"T

NOTES

The RND function retiirn5 a random number between 0 and 1.

RND (ex preg§i on)

The RNI) fun[tic]n tan generate three types of 9erie5 ef randc)in
number each time you FUN a F)rcigram, depending c)n the type of
expregsian you give it. The three eh'presgion8 and their products
are:

I A number less than zero (-1). This expre85ian reseeds the
random number generator every tenth of a second f rc)in the
realtime clock. Thus it has the effect of producing groiips of
twc} or three random numbers. See Figure 5-i.

I Zero. This takes the mci5t ref:Erit number generated in the
current 5erie5. If produced by a lc]op, the 9ame number ot:curs
repeatedly.

• A number greater than =erci (+i). A 5eqiience af random
numbers.

Figure 5-I below 5hciw§ a typical run of the three types. Yt]u can
f ind the program that gerierated these numberg irt the Example
Section below.

I.h.n the ap-ounn¢ < e . . .
a ee3i i589227i3
0 . 99esee4.2s I I 6.
a . 9986ee4425i i 64
0 . 99®6ee4425 I I 6.
a 898eeg73373oo7

I-hen th. .rguei.nt - a . . .
a . 89c06?73373ee7
a 8geeeg73373ee7
0 . eg886g73373co?
a I 8gso6973373ee7
e I 898es9733?3OO?

l`hen th. .rouoent > 0 . .
0 . 675394827 i 9 I se
e . 1 3 I 8532ce20935
a 74769207293812
e 4i6i8982223239
e . 8 I 4s62287327ee

Figure 5-1. Three Types of Random Numberg

NOTE: To Create a repeatable series of randc}m nLimbers, place the

5-24 GRil)BASIC Reference Manual

u

EI

ill

1

RIB

RANDOMIZE Statement (See above, this c:hapter) with the RND
function,

To c:reate a random whc}le number. simply multipl`/ the F{NI) {unEtion
by Some intEger. The Integer qi`/e5 the uppermc}st vE`1ue the
functic)n c:an return. Remember: RNI) returns numbEr5 between Cl and
i. Ten times one equals tan, the largest number that line 1=.a(I
below permits. The iJrcigram in Figure 5-2 retiirns the c:olumn of
figlires at its right.

lcIOO INPUT "Loop times";Number
1100 PRINT: PRINT
1200 F0l] X = 1 T0 Number
1300 PRINT, 1(l*RND(1)
1400 NEXT X

15C)0 PRINT: F.RINT
160() 60T0 10('0
1700 ENI)

1 . ©[1343]2?99£'676
4 . a2 i 5 i 522©g7434
9 . S29556?2541 39
7 . 92690928511482
6.C1456244754?112
I . 5i72©4547i8a53
I . 858854®4?45556
6 . 4:,£s87?69eg3g5
a . €952B 1 0376 1 349
5 . 4s76©2@447©a93
a . 4489=@4£428881
8 . 7191 :.77019913
4 . 73:.34e5923E,52=
9 . 83S864?2S7?88S
4 . 130617227435?2
2 . 3a 1 78@7£'7g:I:,34
? . 441519?9E:59091

Figure 5-2. A Program and Series of Random NumbErs

To turn a whole number intl] an Integer, we recommend submitting
the RNI) function to either the F{OUND ar TRLINC function. In
particular, when you want a range extending from I to n, try

TRUNC (ex pressi on) + i

lf you want a number in the range of a to n or in a range af
numbers (nl to n2), choose

R0llNI) (ex press i on)

These two func:tions act differently to I:reate an integer. ROUND
rounds all decimals of .5 or greater L`pward. TRUNC, t]n the other
hand. just cuts the declinal portion off . Table 5-5 below gives
several examples yc}Li can use as models.

Arithmetic and Logic 5-25

Range tJf Integers

0 to 10

i tc) ill

i to 11

87 to P5

EXArRE

Example Func:tiori

ROUNI) (10*F{ND (1))

ROUNI)(9*RND(1)+1) or

TRUN[(i C)*RND (i) + i)

ROUND(lo*F{ND(1)+1) or

TRUNC (11 *FtND (1) + 1)

ROUND (8*RND (1) +87)

Table 5-5. A Table of Integer flanges and Functions

The E>:ample sEction ct}ntains a program illLi5trating ranges a to
10 and 87 tc} 95. In the last range (87 tc) 95), we didn't
multiply RND by 137, because that wol`ld produce all
from Cl tc) 87. Instead, we multiplied by the width
(8) and added the beginning nLimber of the range.

1000 PRINT: PRINT "When the argument {: a ...
1100 FOR X = 1 TO 5
1200 Pft]NT RND(-i)
1300 NEXT X
1400 PFilNT: PRINT ''When the argument = a ..."
1500 FOR Y = 1 TO 5
16C)O PRINT RND(0)
1700 NEXT Y
1800 PRINT; PRINT "Wlien the argument i. 0 ..."
1900 FOR Z = I TO 5
2000 PRINT RNI)(1)
2100 NEXT Z

the numl]er5
of the range

Running the above example shows the difference that RND'5
expres§ic}n makes. FigurE 5-i Shows a typic:al prir`tout produced
by this program. Yc}u c.an change the lengths of any of the loops
to create larger ar smaller sample Sizes. The secc)nd example
(See below) shows how yc]u can achieve dif f erent ranges of
integers by manipulating RNI) with TRUNC, ROUNI), and additional
numerals.

5-26 GRiDBA§IC Ref erence Maniial

u

u

u

a REM This pgm creates RNI} integer ranges
a PRINT: PRINT ''For the range i to 10 ...
0 FOR X = 1 Tl] 12
0 PRINT TRUNC(10*RND(I)+i),
a NEXT X
0
a
a
a
0
0
a
a

PRINT "For the range 0 to 10...
FOR Y = i T0 12
PBINT ROUND (lo*ENO (I)) .
NEXT Y

PRINT "For the range 87 to 95. ..
FOR Z = 1 T0 12
PRINT (ROUND(BtRNI)(I))+87) ,
NEXT Z

This program produceg the outpilt like the one in Figure 5-3.

Rii

n

For the range I to 1® . .
63

34

74

For the range 0 to 10. . .
98

09

67

For t,he range 87 t.a 95. . .
8e94

9487

9391

Figure 5-3. OutpLit of RN0 on Three Numeric Banges

Arithmetic and Logic 5-27

F=0UND

The ROUNI) f unction.

F-T

roTES

EXArRE

ROUND (expre55ion)

The ROUND f unctic)n takes a dec:imal riumber and converts it to an
integer. If the deEimdl portion is .5 ar greater the integer
iiic:reases by c)ne. If it is less, it drops to the next lower
integer. Negative numbers are rounded (-3.5 becomes -4).

NOTE: This +unction is identical to the 6RiDBASIC's CINT function
described earlier in this chapter. The existence of both
fun[tion5 enhances the compatibility of GRiDBA§IC with other
BA§IC'5. See the 5e[tion at the first of this chapter on Integer
Fllnc t i ons ,

100() INPUT "Enter any number and confirm", Decimal
1100 An5wer=F{OUND(Dec:imal)
1200 Pl]INT "The POUND integer is ";An5wEr :PRINT
1300 60T0 1000

5-28 6RiDBA§IC Reference tlanual

EE

u

u

§Gru

F-T

veTES

EXAtm

1

rl

ZiE

The sign fiinction.

§GN(expre55ion)

This funEticin returns the algebraic Sign ef an expreEi5icin. A
positive expre55ion retiirnB I, negative e>{pre55ion6 return -1,
and zero returns 0.

1{'00 PRINT
11(10 INPIJT; "The Sign of "; Niimber
1200 0N SON(Number)+2 GOT01300, 1400, 1500
1300 PRINT " i5 miiius {-)": 60T01(loo
1400 PRINT " i5 zero (no Sign)": GOT01000
150{1 PF`INT " is plus (+)": GOT0100()
1600 ENI)

This example tegts for 5iqn of number given it. Tlie §EN function
returns the appropriate niimber. The "+2" rai5e5 tliis number to a
I, 2, or 3 --all numbers that the ON t30T0 statement can Lise.
The result pciints to the [orrec.t answer line.

ArithmetiE and Logi[5-29

SIN

F-T

hDTES

EXAAFLE

The Sine f unction.

SIN(expression)

This function takes an expre5sit]n representing an angle in
radiaris and returns the Sine of that angle. CF3iDBA§IC always
evaluates this expresgii]n in fiill precision. To Convert +ron
degrees to radianE, multiply by pi/loo.

1000 INPUT "Enter angle (in degrees) and confirm'',Angle
1100 Rad5=Angle.(PI/loo)
12cO Calculation=SIN(Rad5)
1300 PRINT "The sine of ";Angles" degrees i5 "; Calculation:
PRINT
1400 80T0 1000

5-=0 0RiDBA5IC Ref erencE Manual

EI

Bu

u

SG!f=

F0unT

NOTES

EXA-

n

n

n

The square root function.

§QR (ex preg5i on)

This function retiirn5 the sqiiare root t]f an e}:pres§ion. The
value of the expre55icirt must be zero c}r greater.

1Cloo INPUTS "Square root of "; Number
1100 PRINT " is "; SGR(Number)
1200 PRINT: PRINT
1300 B0T0 1000
1400 END

Arithmetic: and LogiE 5-31

Tf}N

F-T

NOTES

EXArRE

The tangent function,

TAN (e%pres5i on)

This function takEs an Expre56ian representing an angle in
radians and retLirns the tangent of that angle. 6RiDBA§IC always
evaluates this expre55ion in full precision. To convert from
degrees to radians, multiply by pi/180.

1000 INPUT "Enter angle (in degrees) and conf irm",Angle
1100 Rads=Angle* (PI/lBO)
1200 Calc:ulation=TAN(Rad5)
1300 PRINT ''The tangent of ";Angle;" clegrees i6 "; Calculation:
PRINT
1400 60T0 1000

5-32 6Ril)BASIC ReferEnce Manual

BE

u

u

TRLJE=

FORAT

NOTES

EXArRE

r

rl

Ziil

The Floolean c:ongtant fl]r true.

TRUE

The constant TRUE has a value of -1. Statements can interact
with it in a number of ways. You Can assign its value te
variables, c}perate it on it logically, and print it.
below does all these things.

The prc)gram

1CIOO PRINT ''True=":TRUE; " and FalsE=";FALSE
1]00 INPUT "Type the ni`mber 5": A
12011 IF A=3 THEN El=TRUE ELSE B=NDT TF[UE

13{)a PRINT 8;
1400 IF B=FALSE THEN PFilNT " means you didn't typE 5" ELSE PRINT
" means you typed 3"
1500 PRINT:GOT0 11(10
16C)0 END

Line loot) prints the vallies of t3Ril}BASIC'5 two Boolean constar`ts.
Whenever you use TRLJE or FALSE. you use the [onstant's vali`e.
For example, depending on the value of A, line 120(I does one of
two things. It either as5ign5 -1 to a (TRUE) or applies NOT to
TRUE, changing the -1 to its c}ppl]5ite, a zero (a).

Arithmetic and Logi. 5-53

TF=UNC

The trunc:ate functicin.

F0fVAT

IUTES

EXArqlt

TBUNC (expression)

u

The TRUNC function converts a nunl)er (whether positive or
negative) into an integer not by rc}unding it, but by chopping off
anything to the riglit af the decimal pciint. TRUNC acts like
another integer funEtion`, FIX. See the article on integer
functicin5 at the f irst of this Chapter. Also [oopare TRUNC to
the FIX and ROUNI} functions.

1000 INPLIT "Enter any number and conf irm.., I)eEiiiial
1100 Answer=TRUNC (Deci mal)
12()0 PRINT "The TRIINC integer is ";AnBner :PRINT
1500 GOT0 1000

5-54 GRiDBA§IC Referen[e Manual

u

u

X0F=

F-T

NOTES

EXArfLE

ill

Zii

n

The exclusive-OFZ logical c)perator.

expressior`l XOR expres5ion2

XOR yields a true if just one jList one of the expressicin5
evaluates as triie, but not if bc)th c)r neither are true. Table
5-6 Shows this.

A XOR El

Table 5-6. The XOR Truth TalJle

1000 PRINT "Separate the two numbers with a cc)mma":PRINT
1100 INPUT "Type two numbers between 1 and 5"i A,B
1200 IF A=3 XOR 8=4 THEN PRINT ''You win!" ELSE F'RINT .'Try again"
1300 PRINT:GOT01100
1400 END

With XOR you can c]nly win by getting just one of the pair t]f
numl]er5 EorreEt --either the 3 in the f irst place or tlie 4 in
the second. If ylJu type "3,4" the program tells you to "Try
aoain. "

Arithmetic and Lc]qic 5-:`5

u

u

u

n

ZiiE

CHAPTEF! §IX= §TRIN6 FLAVTIO^B

This chapter de5cribe5 6F`iDEIASIC'5 string furictions. String functions perform
operations c)n sequences of characters 5pecif ied in programs. A String is any
5equenc:e of characters. All of these fllnction5 reqiiire an input parameter c)r
argument enclosed in parentheses.

A word on nomenclature. A number of the String functicln names end with the
dcillar sign (S). rlost proqrammer5 "pronounce" this symbol in either of twc}
ways. Some Say "dollar"; others say "String." Thus the Statement LEFTS i5
called both "left dollar" and ''left string." Take your pit:k.

String Fl`nc:tions 6-i

f}§E

FofvAT

NDTES

EXA-

The A§CII function.

A§C(stringS)

A§C takes the i ir5t [harac:ter of stringS and returns that
character's A§CII code (a decimal, nLimeri[value). This is the
inverse of the CHRS function, which c:cinvert5 an A§CII code to a
character (See below). "A§CII'' stands for "American Standard Code
tor Information Exchange. "

If the String has a length of zero (no charac:ter5 in the String), an
error oct:urg.

1000 INPUT "Press a key and cc]nf irm",TextS
1100 LET Code=A§C(TextS)
1300 LET LetterS=CHRS (Code)
1SOO PRINT "The A§CII code for ";LetterS;" is "!Code
1400 PRINT
1500 B0T0 1000
1600 END

u
ThlB example convert. text (including nuober5, and pun[tuatien, and
other characters into their ASCII codes. Note that though the inplLt
variable (TextS) i5 a String variable, A§C returns a numeric value,
be[ause each A§CII code is a nilmber.

EE

6-2 0RiDBA§IC Reference manual

C=HRS

F-T

NOTES

EXAMPLE

ZiE

1

EiiE

The character String function.

CHRS (ex pressi on)

This function [anverts an expression representing an ASCII code (in
decimal) tc} its one charac:ter equivalent. The expre55ion must be a
value in range of a to 255. This function is the inverse of ttie A§C
function, which perfarmg ASCII-to-riumeric conver5iorL.

1000 INPUT "Enter an A§CII code and [anf irm", Ascc)de
1100 LET LetterS = CHRS(A5code)
1200 PRINT A5cade;" i5 the A§CII code for "iLetterS
1300 PRINT
1400 60T0 1000
1500 END

This program tal(e5 any Asell code (in decimal) from a to 255 and
prints the c:haracter represented by the code. Note that line ilo(I
assigns the resulting character te a String variable, LetterS
(iwhether I]r not it'5 a number).

String Functic)n5 6-3

I lusTF=

The in string function.

FOFVAT

veTES

EXAJRE

IN§TR (I expre55i on ,] 5ource§tr i ngs , f i nd§tr i ngs)

The lNSTR (ciften called ''in string'') function locates a specif iecl
string (f ind§trinqS) witliin another string (source§tringS) and
retilrns the character position cif the f irst act:urence of the string.
IN§TR differentiates between upper and lower Ease; specify
characters acc:ordingl y.

The Optional E}:pre55ion tells the funEtion how many characters tlJ
5h'ip (from the left} before before beginning its 5ear[Ii. Include
this expression when you want to move past the String just located
to f ind another occuren[e af the Same string.

IN§TR retl`rns a zero (0) iwhen:

I The value of expression i5 greater than the length of
5our[e§trin9S

I §c}ur[e§tringS is null

• It cannot f ind f ind§tringS.

If find§tringS ig null, INSTR return51 ar expresgion (if included).

1000 LET §ami]leSa"The dollar the Snowman the Cat"
1100 LET AS="he": Let BSB"the": Let C.g''man'': LET D.=`'dall'': LET
ES="cat": LET F=6
1200 LET Po5itionl=INS"(13.§amF)1es,BS)
1300 LET Position2=IN§TR(''weather",BS)
14Clo LET POSITI0N3=IN§TR(F, ''Woebegone" , "e")
1500 LET PO§ITI0N4=lNSTR(§ampleS, ''now")
1600 PRINT Po5itionl
1700 PRINT F'cisition2
180rJ F'ftlNT Positions
1900 F.FuNT Position4
=OC'O END

6-4 GRi DBA§IC Reference Manual

`-`

EE

EI

a

rl

Ziil

This program yields fc}ur numberg:

The example illu5trate5 two facts. First, expression, find5trings,
and sourEestrir`gS can occiir a5 variable5 and/or values (whether
string or numeric) in the game 5peci+ication. §ec:and, expresgion
views the nLimber of [hara[ters in 5oilr[e5trings a5 absolute.

For example, the expression in line 1400 tells]N§" to position
itself at the "g" in "Woebegone" and search far "e" (oiie character
past the second"e"). In this cage, it returns 9 --the position of
the last "e" --not 3, which it woilld if it Started counting at one
from each position.

Note too, that if you Searched for ES (cat) within Samples, INSTR
would return a zero. The reason: The "Cat" within SampleS has an
upperca5e "C. "

String Functions 6-5

L.EFTS

The left 5trinq function.

F-T

NOTES

EXArFLE

LEFTS (5tr i ngS , expre5si on)

This function returns the leftmo5t Character(s) from a specified
string. The function c:oiint5 in from the left end of the string by
the number of characters 5pe[if led in the e>:pres5ion. For example,

LEFTS (Compass Computer System, 7)

yields the string "Compa55."

If the value of expre55ion is greater than the length of the string,
the entire String i9 returned. If the value of expre55ion i5 zero,
a null string (no characters) is returned.

1000 LET §ampleS="dollar toy pizza book tree home"
1100 PRINT ''The String i6 ";§alnpleS;I""
1200 PftlNT
1300 INPUT "Take hciw many letters from the left"i Number
1400 LET Someletters=LEFTS (Samples, Number)
1500 PBINT "LEFTS(§ampleS, "!Number;") ig "; §t]meletters;""
1600 60T0 1200

6-6 GRil)BASIC Reference Mariual

u

u

LEIu

FofunT

ExfuRE

rl

A

EiEI

The length function.

LEN returns the ni`mber c}f charac:ter5 in a Spec:if led string and
thereby its length. All characters in the String, including 5igng,
c!ecimal points, blankg, and nan-prirltat)lE characters, are counted.

LEN (str i ngS)

lo{lc) INPUT "Type Some characters and conf irm'`; §tuffS
1100 PRINT "You entered "; LEN(§ti`ffS):" charBc:ter5 that time."
1200 PRINT
1300 GOT0 1000
140{' ENI)

This example 5how5 that the LEN function coilnts the niimber of
characters in a 5tring. (Also see the e}{ample for the §TRS
function.)

Strir`g Functic)ns 6-7

rl I DS

F-T

neTE§

EXArRE

The mid string function.

MIDS (9tri noS, I I , J J)

u

The MII)S function returns a spe[if led portion of a 5tririg. The
parameter I specif ies the first charac:ter (c:ounting from the left
end of the string) that MII)S returns. The optional parameter J
specif ies the total number of characterg the function Should return.
Far e}.ample.

MIDS ([copa55 Computer system,9,a)

yields the 5tring` "Computer''-

If J is omitted, or if there are fewer than J characters to the
right of the lth character, all characters from I to the right erid
of the string will be returned.]f I is greater than the length of
the string or if J is zero, HIDS returng a null String, that i9, a
String with no c:haracter9 in it.

I-,I

B1

11100 LET §ampleS="dc}llar toy pizza boc}k tree home"
1100 PRINT "The String is "';§ampleS;""
1200 F'RINT
1300 INPUT "Go how far in from the left"5 Number
1400 INPUT "And take hcw many letters"iLetterg
15110 LET SomeletterS=MIDS (Sampl eS,Niimber,Letters)
1600 PFINT "MII)S(§amplES,"iNumberi ", "; Letterss") is ";
§omel etterS= " a "
17(10 B0T0 1200
1800 ENI)

6-8 GRil)BASIC Referen[e ManL`al

a

n

Ziil

F= I GHTS

The right String function.

FqfvAT

veTES

EXA-

R I GHTS (5tr i ngS , ex pres5i on)

This function counts frc)in the right end of a string of charac.terg to
return a number of characters. The expressic]n returns the number of
characters specified by expression. If the `taliie of expre55ion i5
greater than the length cif the String, the entire string is
retiirned. If the value of e}:pres5ion is zero, a null String (no
characters) i5 returned.

1000 LET SampleS="clollar tc]y pizza book tree home"
1100 PRINT ''The string i5 ";§aoples;""
1200 PRINT
1500 INPUT ''Take how may letters from the right"; Number
1400 LET §omeletterS=R16HTS (Samples. Ni`mber)
1500 PRINT '`R16HTS(SampleS,";Number; ") i5 ": Sc}melettErs; ""
1600 B0T01200: REH if you..re going to do this a lot, 60T011{)a
instead

String Func:tion5 6-9

SFJf}CES

The space string function.

F-T

NDTE§

EXA-

§PACES (ex press i on)

The §PACES f unction returr`5 a string consisting of spaces. The
expression 5pecif ie5 the number of 5pace5.

lcIO0 INPUT .'How many 5pa[es'': Number
1100 LET BlankS=SPACES(Number)
1200 PRINT Nimber; " 5pace9 lie between the asteri5k5`': PRINT
" I " i 81 anks! „ I „

1500 PRINT
1400 GOT0 1000
1500 ENI)

6-10 GRiDBA§IC Reference Manual

EE

u

u

STF=S

FOFVAT

veTE§

EXA4RE

fl

n

Ziil

The §-T-R String function.

§TRS (Ex pressi on)

The STRS function converts the value of a numeric expression intc} a
String, so that you can perform 5tring5 (rattler than numeric)
Operations On it.

lcIO0 INPUT "Type a number"i Numberl
1100 INPUT "And ant)ther to ml`ltiply it by"; Number2
12110 LET CS=§TRS (Numberl *Number2)
1300 PFINT "Ttle answer i5 .';CSi". Length of this string is ";LEN(CS)
1400 PRINT
1500 60T0 1000
1600 END

This example takes two riumber5 and converts their produc.t to a
string (line 1200). The fact that LEN, a String functic}n operates
on prc]diict, proves this i5 a string, not a numeric, constant (line
1300) .

String Functions 6-11

STR I ItlGS

The string functic)n.

Fa"T

hoTE3

EXArfLE

§TRIN6S(expression, A§CIIc:ode)
§TBINBS(e>:pres5ion. 5tringS)

This function returns a string whose chara[ter5 all have the Same
A§CII Code. The value of expre55ion defines the length of the
5trin9.

You Specify the character returned by giving its A§CII col]e (in
decimal) or by giving a string. §TftlNOS returng only the first
character c)+ this String.

1000 Cc]de§ampleS=STRINGS (lo, 42)
1100 PRINT "The String uging an ASCII code i§ ''icad.§ampleS
!200 PRINT
13(10 LET A.="Hello"
1400 Firgtchar.-§TRINOS (10, AS)
1500 PRINT "The Sample taking the first character ig ''i FirstcharS
1600 ENl)

The example 5howg the §TRINGS function with both arqumentg. Line
1000 takes the ASCII argiment arid prints 10 agteri9kg ln line 1100.
Line 1400 takes the firgt character of AS (liellc)) and print. it 10
times in line 1500. NOTE: tlie 10 in bc]th print statementg i§ the
f irst argument in eat:Ii STRINGS clef initian.

6-12 8PiDBASIC Beference Manual

u

RE

U

Vf>L

FtrmT

NOTES

EXArRE

n

n

Ziiil,

The valL`e func:tion.

\/AL (5tr i ngS)

This func:tion returns tlle numeric: value c)f a Spec:if lid string. The
String 5hoi`ld c:ompri5e nothing other than leading blank(5). a sign,
and a niimber (the blank(s) and sic)n needn.`t be present).

VAL strips of f any leadinq blanks from the 5tring. If the f irst
non-blank c:haracter i5 anything except a plus Sign (+), minil5 5iqn
(-). or a ni`meric digit, VAL returns a zero (11). If the String
contains anything besides numeric digits, it also returns a Zero
(0).

lot:)0 INPUT "Type a number"; Numberl
1100 INPIJT "And another to multiply it by"; Niimber2
1200 LET CS=STRS(Numberl*Nlimber2)
1301-) PRINT "Ttie answer is ";CS:". Length c}f this string is ":LEN(CS)
1400 LET Re5iilt=VAL(CS) /Numberl
150C) PRINT "I}ividing by the flrst ylelds the second: ";Result
16Clo F.F{INT

1700 GOT0 1000
18':10 END

This example tL`rns a number into String (line 1200). and engac)E.5 \,/'AL
in line 1400 to turn the String ni`mber bat:k Into a nilmber that
numeric ciperators can handle. NOTE: lJAL.`5 coiinterpart is STRS (See
line 1200).

Strinci FLinctions 6-15

u

u

iii

iiE

ZiE

CI+AP'TER SE\AENI Il`FUT/OUTptJT STATEHEI`lTS

The input/output 5tatement5 discussed in this chapter transfer data tc) and
from memory, the realtime EloEk, the I(eyboard, and the sc:reen. For
information en Sequential file I/0. see Chapter Eight. For random a[Ees5 +ile
I/0, See Chapter Nine.

Input/'Output Statements 7-i

C0IqllA
The comma character (.) formats output tc] the screen.

Fqf"T

veTES

expression, expre65ion[, I

Whether in an INPUT Statement or a PRINT statement, the ct]mma
Simultaneously links Blement5 in a series and keeps them Separate.
The comma differs from the senicolon in that it [aii5e9 each element
to print at predetermined tab position. The Comma i]lacEs each
expression in one of four absolute fields --at columns a, 15, 311.
and 45.

Within a PRINT statement, a cc)mma following the last elelllent in a
list caiise5 si`ppre5sion of the Carriage return and line feed
characters that the PRINT Statement nc]rmally issues after its
expres§ion{s). Instead, the expres5ion5 print at the apt)ropriate
tab f ield.

Placing the comma before the first e^'pres§ic)n in a PRINT Statement
Causes the e^.pre5sion to print at the 5ecc)nd field. Likewise, two
commas preceding an expression cause printing at the third f ield,
and so Dn. Fc)r example:

1800 PFuNT „"Third tab"

Placing the ccimma between all INPUT string and its variable,
9uppre5se9 the qiie5tion mark (?) normally issued by the INPUT
5tatenent. For example:

1500 INPUT "Yoiir name please", NameS

You can request multiple ltemB with an INPUT Statement, if you
e®parate the State/nent'e vAri.blel with comma.. For example,

1600 INPUT "Pl.I.e .nt.r thr.e numbers", A, a, I

NOTE! Th. re.ponle to thi. must .leo Separate each item with a
coma. For example,

54' 98.01, I

When Sending data to the Epson printer, yoi` must supply tab position
information for the Comma to work correctly. Otherwise, you won..t
get the 5pa[e§ between Eoluon6 that you expec:t.

7-2 GRiDBASIC Reference Manual

u

u

EI

n

n

n

EXARE

You must follow the PRINT# Command with the file tag number, an E§C
D (represented by CHRS(27)+"D") and the cc)lumn number of each tab
prec:eded by the [HRS statement. Concatenate these tab ptJ5itic)n5
with the plus sign (+). All such statements miist end with the null
cliaracter, CHRS(0). Do NOT exceed an 80-character linE.
t:ommand assigning 15 character-wide tabs follows:

PRIN" 1, CHRS(27)+''D"+CHRS(15)+CHRS(30)+...+CHRS(0)

1000 INPUT
1100 INPUT
1200 PFilNT
130t' PRINT
1400 PRINT
1500 PRINT
1600 PRINT
17C'O ENI)

"Yoiir name please: ", Names
"Three numbers", A, a, C

"Hellc} there", NameS, "3", "AlbErt"
•'A very long string", ''of ",

A' a, E
"Third tab"

An example

Ttii5 example illustrates what commas Can do irt both INPLJT and PRINT
statements. The comma in Line 1000 siippres5es INPUT'5 question
mark. In line 1100, c.ommas separate variables fc]r INPUT.

Line 1300 Shows the tab zones set up by the comma. Note in Figi`re
7-1 belc}w that when a String Exceeds the 15-Character width set lip
by the comma that the next string appears in the ne}:t zone over.
The first String does nc)t c:c)llide with the 5Econd.

The comma at the end of line 1400 suppre5se5 the Earriage
retiirn-line feed at the end of that line, sc} that line 1400 and
1500.`s tab zones become continiloil5. The two [omma5 before the
expression in linE 16Ctll pi`sh the expression c}ne tab each ao that the
string "Third tab" prints at the third tab.

Your name please: John
Three numbers 8,-912765, .©8al243

liel lo t.here John
f] i.erg long string
-912?65 0. 0@B1243

Third tab

fllbert
8

Figure 7-1. Examples of Colrma Fermatting

Input/Output Statements 7-3

DflTES
The date function.

FrmT

NOTES

EXAbpLE

DATES

I)ATES returns the current date from the Conpa3s Computer 5y5tem's
real-time clock. The date i5 an eight character string in the form
mm/dd/yy where mm is the month (00 tc} 12), dd is the day of the
month (00 through 31) and yy i5 ttie year (00 through 99). NOTE:
These charac:ters are string, not numeric c:haraEters. For the
program to use them numerically, you miist convert them to numbers
(see Chapter Six, the VAL statement and the example below).

1000 PFilNT "The date is "; DATE$
1100 LET MonthS -LEFTS(I)ATES,2)
1200 IF LEFT®(MonthS,1)I"O" THEN LET Month.gRIBHT.(ManthS,i)
1500 PRINT "The number of the month is "i Month$
1400 LET MONTH=VAL(MonthS)i LET AS="The name of the month is "
1500 0N Month B0T0
1600 ,1700 ,1800,1900, 2000, 2100, 2200, 2300, 24011, 2500, 2600, 2700
1600 PRINT AS; "January":END
1700 PF(]NT AS; "February"=ENI)
1800 PRINT AS;"March":END
1900 PRINT AS;"April":ENI)
2000 PRINT AS; "May":ENI)
2100 PRINT AS;"June":END
2200 F'RINT AS;"July":END
2300 PRINT AS; "Augii5t":END
2400 PRINT AS; "September":END
251)a PRINT ASi "October'`:ENl)
2600 PRINT ASi "November":ENI}
2700 PRINT AS! "December":END

This example prints the current date in line 1000. It then remave5
the ''0" from the front of all single digit month rii`mbers and prints
the number of the month (lines 1100-1300). The rest of the example
u5e5 the ON GOT0 statement 5o that the month's number can c:ause the
month..s name tD print.

To dc) this, we c:onvErt the month nllmeral-a5-String charac:tar to a
numeral with the VAL Statement (see Chapter 6). You Can incorporate
this program as a 5ubroutine where you want a nicely formatted date.

7-4 GF{il}BA§IC Referent:E Maniial

u

u

-.,

-.

Ziil

I Nr<EYS

The inkey function.

F-T

IroTE§

EXArfu

INKEYS

INKEYS reads the keybc}ard and returns whatever value it f ind5 there.
If you pre55 a key at the fnoment that INKEYS reads the keyboard, the
function returns that kE.y'5 value as a one-character string. It does
not display that ctiaracter on tlie Screen. Instead, it passes the
string to your program. When INKEYS reads the keyboard and f ind5
nothirig, it returns a null string (length zero).

NOTE: INKEYS does not of itself wait for a keypres5 to occur. If
yc}u want to monitor the keyboard continuously, you mList put INKEY.
in a loop (see example below).

1000 LET Loop=O
llc)O LET KeyS=INKEYS
1200 IF I<eyS=" THEN Lc]op = Loop+I:PRINT " "; Loc}p; " "; ELSE PRINT
" *** "; KeyS; " *** ";

1300 60T01100
1400 END

This example prints a Sequential number c]n the Screen each time
INKEYS reads the keyl]c)ard. When you press a key, it prints the key
slirrounded on either Side by " *** ".

Input/Output statements 7-5

IIHPuT

Tlie INPIJT Statement asks the user to enter data. It then a65igrls
the datd to specifed variables.

F0f"T

NDTE§

INPUT [!J["promptstring"I {; ;,} variable5List

When an INPUT statement executes, it prints the Eontentg t]f the
prompt§tring. If you fellow the prompt§tring with a 5emi[olon, a
question mark will follc)w this String. For example,

1000 INPUT .'Yoiir namE"I NameS

prints on the Screen a5

Your name?

)f you put a [omma at the end of the String no question mark
appears. If you do not include a promptstring, the program only
displays the question mark. You must enclose the prompt9tring in
quotation marks; it can contain any printable characters.

Program execution 5top9 after dLgplaying promptstring and question
mark (if Specified). Exe[ution waits for yap to enter data and
pre55 CODE-RETIJRN. If you plac:e a semicolon directly after the wl]rd
INPUT, the [ilr5or will remain on the same line as the user'5
response af ter conf irming.

Multiple variable5 must appear at tlie end of the INPUT statement.
You cannot place variables within the input string. The following
example places a variable (Coiint) in the input string to describe a
range of choices. This i6 an illegal Statement.

1500 INPUT ''Pick a niimber (from 1 to "icounti ") "i ChoiE.

The INPIJT .tatement wants to pilt your data into Count, be[au.e Count
comet at the end of a prompt String. To put €ilEh an inforlliational
variable in an INPUT titatement, write twc) lines, one a PFtlNT
statelTient, the other an INPIJT Statement.]n the example below, we
break the illegal line 1500 into two lines. The semic:olori at the
end of line 150Cl cai`5e5 the two to print like one statement.

1500 PBINT "Pick a numl]er from 1 to "icount;
1600 INPUT Choice

Data entered via the keyboard i5 a55igned to the variable(s)

7-6 CRiDBASIC Ftef eren[e Manual

u

u

EE

Ziiil

ill

n

EXAtRE

specif led in the variable5Li5t. The number of data items enteret]
must be equal ta the nilmber of variables 9pe[if led in variable5Li3t.
Yoi` mii9t 5Eparate mi`ltiple variables in variablesLlst with ct]ma5.

Each data item entered must be of the Same type a5 that 9peclfied by
the corresponding variable name. The variable names in
variable5Li5t Can be any mix of nilmeri[and String variable names
incli`ding 5ubst:ripted variables. However. each input mi`5t be of the
Same kind as its variable.

NOTE: INPUT does not accept a comma cir a 5emicolc]n a5 valid inpiit.
You must start yoiir string with the double quotation mark (") i+ you
want to include either cif these characters.

If yc)il respond with the wrong kind c}f cc)n5tant (giving]etter6 to a
numeric: variable or inc:luding a comma or semic:olon in an inpi.t
string, for example), you will see the me55age

IrfSalid input: F±E-enter data

1(loo INPUT "F'leafe enter yoLir i irst name", Fir5t$
110C) PRINT "Okay, "; FirstS;
120() INPUT ". what i5 your last name"i Last$
15Cl() INPUT; "Your areE\ code": Area$
1400 INPUT " And phone ni`mber"i Phone$
1500 PF}INT "We can reach you at ("; AreaS; ")"; " ";Phc)nee
16Cto F.RINT

17C)0 PRINT "Type three niimbErs...'': INPUT "(Put a c:omma between each
one)"' A' E' C
1800 PRINT: PRINT "Thc]5E numbers arE: ": A, a, C
19Cto END

This exami]le illustrates the variou5 po55ibilities inherent in the
INPUT stE`tement. In line locIC). the comma at the end of prompt§tring
suppre55e5 a que5tion mark. whereas the Semicolon at the end of
prc}mptstrjng in line 1200 prints a que5t]on mark. However, in line
15CIcl the semicolon following INPIJT 5uppre55e5 the carriage
return-line feed character at the end of the line. A5 a result,
line51300 and 1400 print on the same line. See F.igure 7-2 below.

Line5110() arid 12()() c:olTibine a variable that gives information and
One that asks fc)r input. Finally, lines 17(10 and 1800 show how to
gather milltiple items of information with one INPUT statemE.nt.

Input/t]utput Statements 7-7

Please enter uout- f irst iiame John
Okay, John, what is t)our last name? Smith
Your area code? 415 And phon. nuniber? 961-¢800
We can reac:h t|ou at. (415} 96l-48eo

Tt)pe three numbers. . .
(Put a comma betueen each one> 12.06,-3.14,+.00eel

The.se nuiiibers are: 12.®8 -3.14 0 . OBcol

Figure 7-2. The INPUT Statement Illustrated

7-a 6RiDBA§I[Referent:e Manual

u

`-

U

Ziil

rl

-.

LOCATE
This Statement positian5 the cilrgor to a specif led dot or pi}(el
lo[ation on the screen.

FOFunT

NorE§

EXAtRE

LOCATE x,y

The horizontal coordinate (x) miist be in the range of i to 320 and
the vErtical Coordinate must be in the range of 1 to 24(1. The
[oDrclinatEs describe the position of the top, left pit:el of the
f ir5t Character in the String that follc}ws the LOCATE statement.

When a program ruris, it doe5n't normally display the cilrscir. When
yc)u follc)w a LOCATE State.ment with an inpi`t/output Statement siic:h a5
INPUT, the cur5or appears at the 5c:reen lc]cation specif led by the
last preceding LOCATE statement. Similarly. a subsequent PRINT
Statement will oiitpilt its clata beginning at the previou5ly spec:ifiEd
s[reEn location.

Alsc} see tlie DRAWCHAR§ Statement in Chapter Ten. DRAWCHARS does not
position the Ei`rsor. but rather spe[if ic: c:haraEter strinq5.

1{10CI LOCATE 140,110

lloct INPUT "Hori=i]ntal a}:is (0-320)". Ht]ri=
1200 LOCATE 140,1211
1300 INF'UT "Vertic.al axis (0-24(1)''. Vert
1400 LOCATE Hori=, Vert
150(, PRINT „.
1600 ENI)

This example shows the power c)i the LOCATE statement by po5itioning
its INPUT 5tateinents (lines 100(I and 1201-}) ancl then by letting yc)u
display a dot at your own c:oc]rclinate5 (line 14C)C)).

Inpiit/'Output Statements 7-9

F' F= I lu T

The PRINT Statement displays data on tlie screen.

F-T

NOTES

PRINT [exiJres5ic)nJ[{, i:}][exprE55ion] ... [{, ;i}]

The PRINT statement displays any e,¥pre5sion that follows it and
sends a carriage retLirn-line feed coml]ination at the end of that
expression. When deprived of an expression, PRINT displays a blanl:
line, the result of the Carriage return-line fee.cl characters. The
following expressions are all legal. Line 11(10 yields the product
of 5 x 6, 30.

1000 PRINT "Hello"
1100 PRINT 5*6
1200 PRINT

You must enclose string constants in quotation marks ("). Yc]u can
omit the f inal quotation mart€ from any String appearing at the end
of a program line. Only the size of the screen limits tlie number of
expre55ions a Single PRINT statement can handle.

To place multiple expre55ions after a single PRINT statement, you
must separate the inclividual expres5ion5 with Either a comma (,)
a 5emic:o]on (;).

If yoi` place a semicolt]n between two Expressicins, tlie two
expressions will print with nc} intervening Characters. See
"SEMICOLON" later in this c:hapter.

u

oru

If you place a comma between twc) e}!pression5, PRINT displays the
valiie c)f the 5ec:and expre55ic)n at thE. beginning of the next "print
Zone". GRiDBA§IC divides each line into print zones of 15 spaces
each. Commas llsed as expression Separators cause a "tabbing" Ef f ec:t
so that the next expression value ig displayed in the next print
Z On e ,

The zones begin at columns 0, 15, 30, and 45. If a String has more
ttian 15 characterg, PFilNT will Skip the zone that has bEen
overwritten and begin the next display at the next =c}ne. Thus the
Comma never causes conc:atenation. See "COMMA'' earlier in this
chapter.

Terminating a list of e}:pre5sic]n5 with a comma or semic:olon, c:ancels
the carriage rEturn-line feed pair so that a sub6eciuent PRINT
Statement [ontinue5 printing on the same line. If a printed line i5

7-10 6RiDBA§IC Fieference Manual

u

a

n

ZiiE

EXAmE

longer than the display.5 line width. printinci cc)ntiniies on the ne:(i
line. Gf{il)BASIC breaks strings at the riqht. edge of the s[reeri.

F.rinted nL`mbers are alwav5 followed by one space ar`d positi`.'€.
numbers arE a]sc} preceded by one space. A minus sign prec:E]dEs eE`ch
negative nLlmber.

I(lc)CI LET A=5: 8==.: CS="6eorqe": DS="Wa5hingtc]n"
lit:)(:) F.RINT A

12t:to F.RINT I(

13l[H) PRINT "A+B=";A+E
14t:ICI PRINT 5+3

15()a F.RINT

1600 PRINT C$
17(10 F'FtlNT I)$

181111 F.RINT CS+D$

190(1 PRINT
2Ct(l{l PRINT TAB(0) .'Cl"; TAB(1{l) "lc)": TAEl(2Cl) "2Cl"; TAB(=,t:)) "3(Ill:

TAEl(4Cl) "4(l"i TAB(50) ''50"
Zloct F'RINT "A". "a". "[", "D". "E". "F". "G"
2;'00 PRINT "All; ''8": "C"i "D": "E"; "F": ''G"
33('') END

Line51100 and 1200 print the values Stored at variables A anc] a.
Line 1300 prints a string constant and then the result of adding f}
and 8.

Lir`e 14011 shows that PFilNT c:an operate on numeric: constant5 by dc)inq
math for yoit. Note in line 180C), a plus Sign between string
c:onstants conc:atenates (or joins together) 5tring5.

Line 2000 Shows hc)w the TAB statement operates with PF{INT. Line
210(I the c:omma's tabbinq effect and line 22C]O the semicolon's
c:oncatEnating effet:t.

lnpllt/output statements ,7-I i

F>F=INT USING

The PRINT U§IN6 Statement formats 5tring6 or numbers, depending on
the punctuation that follows the Statement.

FqFunT

PRINT U§IN6 format Symbol:{li5t of expre5sion!list c]+ stringS}

EI

Nt)TE§

PFtlNT U§IN6 takes a9 its arguments a format symbol and a list either
of numeric or 5trinq expressions. The fc}rmat symbol shapes thE
Expressil]n into their format.

For example, the format Symbol ("###.X*")

" #*# ' ## " i A

tells GRiDBA§IC to piit the number 5tc)red in variable A into a fc)rmat
with three digits to the left of the decimal point and two digits to
the right. Thiie the number 34.14735 appears in the formatted form

34.15

Thi. 9e[tion explores ea[h format .ymbol and its results. u
§TRINB EXPRE§910N§

YOU can modify string expreg8ions with any onE a+ three +cirmat
symbol s:

I The ex[lamatic)n paint (I)

• Double back slash enclosing Space(a) (\n space\)

• The ampersand (&)

EXCLAMATION POINT (i)

The e}{c:lamation point returns Only the first character in each
String argument that follows it. See the example belc)w.

I)OUELE BACK SLASH (\\)

When yc)u don.`t put space(a) between the two back Slash
(Col)E-SHIFT-') characters, the double back slash prints twci

7-12 6F{iDBA§IC Reference Manual

u

n

rl

n

charac:ter5 frc}m its string arqiiment(5). Each space between the bacl
slashes caLises another c:haracter from the string(s) to F)rint.

DoiiblE bac:t`. slash prints one spat:e character for each character `y`ou
Spec:if v over the nL`mlJer c)f [haractErs in the string. Thit5 if a
string e}{pres51on has i ive charac:tars. ancl i ive E,pace c:haracters
5eparEitE the two bat:k slashes, two spat:Es will follc)w the printinq
of the i ive character strinq. See the e>:ample below with its
cc)mpanion printout.

AMPERSANI) (8{)

The ampersand [aii5e5 tlie string to print exactly as it i5 stored.
See the e:,(ample below.

EXAMPLE (§TFtlNGS)

1t:t()(:t LET AS="Input"

1100 LET BS="OiltpLlt"
12(lt) FF{INT USING "!"=AS;B$

1500 PRINT USING "\\";AS;BS
14t)() F'FilNT USING "\ \";ASiBS
15Q() F'RINT U§IN6 "\ \";AS;El$
16()CI PRINT U§IN6 "\ \";AS;B$
1700 PRINT U§IN6 "\ \":AS:B$
1800 F.RINT USINB "&";AS:
1900 ENI)

NUMEftl[EXF`RESSI0NS

l-he numEric. format Symbols incli`de:

a The number or "pound" sign (#)

• The dEc:imal point (.) and Eomma (,)

I The plus (+) and minus (-) signs

• The double asterisk (**)

I The doiible dollar (SS)

I The dc)uble astEri5k~dollar (**S)

• .rr-ie c:haracter strinq

10
Inou
lnpD,Jt
I nF.uoutp
lriF.utoutFiu
Input O|'tput
Input

Input,J0utpitt Statements 7-1?`

NUMBEB SIGN (#)

Each number sign re5erve5 one digit of Space f or PRINT USING. Thus
tc} reserve spat:e for a five cligit number follc)wed by three dec:imal
plac:e5, you write

#*### . #*#

Such a format handles numbers like

12345.567 and -2345.987

Note that the minus Sign takes one of the character positions. If
you try tD print a number with more digits than yoiir format allows,
a percent sign (%) will prat:ede the first character (whether it's a
sign or a niimber). We c:all this the ''overflow symbol." See Figure
7-3 below. Thi`s trying to put the number -99999.01 in the fc]rmat
###*##.## would result in

I/.-99999.01

Whenever a number has fewer digits than the PRINT uSIN6 format,
PRINT USING puts these extra spaces at the front of the number.
Figure 7-5, shows a five digit format (to the left of the decimal)
and three numbers in that format. Both the f ive digit positive
number and the four digit negative number take ilp all alloted
digits. The extra two dlgitg pad the three digit number to its
left.

#X***.**
23468.91

576.08
-34ls.99

Figure 7-3. How Fc]rmat Characters Pad Digits

COMMA (,)

If you want yoitr number to display a cc)mma every tlireE digits, yell
can includE the comma anywhere to the left of the decimal point.
The c:omma also 6pecifie§ another digit in the string. The +allowing
e}:ample6 are all legal.

**#####„## ##,##*##.## ,#######.##

7-14 GF{i l}BASIC F3eference Manual

•-I

u

A

Zil

If you place a cc]mma to the right c)f the decimal pc)int, the c.omma
prints a5 a literal at the end of the number. For e>:ample=

2=`45.56,

You can pad numEric Output with surrl]iinding spaces by putting space
characters between either end of the string and the nearest
quotatic)n mark. See Figure 7.4 belc)w fc)r an example.

The prc}qram below with its output illustrate these factg.

LET A=.912545
LET E=7
LET C=-1234.567891
PRINT
PRINT

1500 PRINT
1600 PRINT
17Cirj PRINT U§IN6 "###tl#.##'';A,
1800 PRINT U§INB "#####.##
19CIO PRINT u§INt3 "#####, .##";A
2000 PRINT USING "*#-*#";A, 8,
2100 END

A = 0.912345
8=?
C = -1234.567891

8.91
©.91

©.91
©.91

7.80
7.8a

7.®®
7.©0

-1234 . 57
- 12.34 . 57
-I, 234 . 5?
:,;-1234 . 57

Figure 7-4 Basic +ormatting fcir PF{INT U§IN6

PLUS (+) ANI) HINU§ (-) §IBN§

BRil)BASIC ac.[epts a format with a plii5 or a rilinus sign at either the
front or rear of the format String. All the following are legal:

Input/Output Statements 7-15

+#### . ##
-#### . ##
####.##+
####. ##-

F'lac:ing the plus Sign on either end of the format gtring [au5es
po5iti`/e numbers tc) display the plus 5ic)n in the position indicated
by the format. Negative numbers print the minus sign in this Same
PC)5ition. Either 5iqn adds an e}:tra Space to its number. See
Figlire 7-5 belc}w, it Shows a program with farmattEd output.

11-loo LET A=-213.14
1100 LET E=Z130.14
1200 LET C=-2150.14
1300 PBINT
1400 PBINT
15Ctc) PRINT

1600 PRINT
1700 PRINT
1800 PRINT
1900 PRINT

lJSIN6 „#####.*#„;A'
U§INB ''+####.##„;A'
USING „####.##+„;A.

2000 PRINT USING "####.##-";A,
2111CI PRINT USING "-####.##":A,
22Clo END

Fiqure 7-5. The PRINT IJSINt3 Format with Signs

DOUEILE ASTER'ISKS (**)

Plac:ing two a5teri5*.5 in front c)f the format String fills leading
spaces I.jith asterisks, NOTE: Leading spaces appear when the number
of digits tat.:e less spat:i than the number c}f positions Spec:if led b.`,`'
the format. The program and printout in Figure 7-6 illustrate
double E\5teri5l:,t dcJiible dollar, dolible a5teri5k-dollar formatting.

7-16 GF{iDBASIC Reference Manual

u

EE

EE

a

.-,

ZiiEI

DOUBLE DOLLAR (SS)

Plac:ing two dollar signs before a format String caii5e5 a dollar Sign
to print to thE left of the formatted number. Double dollar creates
two format spaces. one of whit:h the printed dc)llar sign takes. See
Figure 7-6 for e}:ample5.

DOUEILE ASTERISK-DOLLAR (**S)

Dc]uble asterisk-dollar combines tlie effec.t5 of double a5teri5k and
double dollar: It prints a dollar Sign ta the left of the number and
i ills the field with agterisks whenever the nLmber cc}ntains fewer
digits than the format Spec:ifies. See Figure 7-6 immediately belt)w.

EXAm£ (,ftJ-)
1000 LET A=.912345
1100 LET 8=7
1200 LET C=-1234.567891
1300 PRINT "A = ";A
1400 PRINT "8 = ";a
1500 PRINT "C = ";C
1600 PRINT
170(I PRINT U§IN6 "SS##*#*.*#"iA,
iBoo pF{INT uslNG "SS##*#.in-":A,
1900 PRINT U§IN6 ''**S####.##";A,
21100 PRINT U§IN13 ".*S###.##-";A.
2100 F'RINT U§IN6 ''**####.##";A, a, C
2200 END

= 0.912345

= -1234.567891

S® . 91
S© . 91

*****SO . 91
t:'*'.SO . 91
*****8 . 91

$7 . 00
$7 . ®a

*****$7 . 80
*:I.**$7 . ©0
*****7 . 08

S-1234 . 57
S 1234 . 57-
*S-1234 . 57
*S 1234 . 57-
*-1234 . 57

Figure 7-6. A5terisk and Dollar Formatting

CHARACTER STftlNBS

You can also include character 5tring5 between either set of

Input/Oiitput Statements 7-17

quotation marks and the format string. Remember: The spat:e i5 a
character. All the follc}wing are legal:

„ N#„##.*|„
"#####.##

. #,
"Your account cc)ntains SS#####.##"
''#####.## af ter deductions"
" You get ##I##.## shares for each hundred"

7-18 Bf{il}BASIC Reference Hanual

u

EE

EI

r

iE

r

sErlIcoLgN
The 5emic:olon c:haraEter fc]rmats PRINT and INF.UT data.

FOFueT

veTES

EXArRE

e}:prE5sion: expression[:]

The semicolon character (:) 5erve5 tc) linl¢ e>(pre55ions follc)wing
PRINT and INPUT statements. Placed bEtween e}:pre55ions, the
5emi[olon Can link variable5 and Strings. IJnlike the comma. it
provides no space between e>:pres5ions. Placed at the end of a
progrE`m line, the 5eml[01cln 5llppres5e5 the c:arriage return-line feed
EharactEr5 is5iied by PRINT.

When a semicc}lon follclw5 an INPUT statemEnt, it 5uppre5se5 the
c:arriage return-line feed pair. As a resitlt, you can request
multiple items far INPIJT an the Same line.

loco INpljT "Yc)ur i irst name is"; Names
1100 PRINT
120{) INPUTi "Your City.'i CityS
1300 INPUT; " §tatE."; §tS
1400 INPUT " ZIP''izIPS
1500 PRINT
1600 PRINT ''Ahhh, you mean "a CityS; '', "; StS; " "; ZIF'S: " and not

1700 PRINT NameSicityS;§tS; ZIP$
1800 ENl)

In lines 1000, 1200, 1300, and 1400 the sE]micolons fc)llowing the
prompt string c:ause a question mark to print immediately after the
prompt. The 5emicolcins after INPUT an lines 120{) and 1300 5Lippress
the carriage return-line feed pair, so that the program requests
city, State, and ZIP Code information all on the same line.

Line 1600 shows how you can place semic:olons to link a mi>: of
5tring5 and variables. Line 1700 prints as one lclng line, because
semicolons provide no spacirig.

Input/Oiitput Statements 7-19

Tf}8

FofVAT

NDTES

EXArpLE

This fiinction c]perate5 with tlie PRINT statement to tab horizontally u
a specified niimber c}f [hara[ter positic)ns or Spaces.

TAB (ex pressi on)

TAB understands expre55ion ag the column number where it should
position whatever item follows it. Far example,

1000 PRINT TAB(17) "Tap I)rawer"

prints the String "Top Draner" at the lBtli column of the currelit
line. NOTE: The first display positic)n on a line i5 0; TAB(I) is
the Eec:and character position on a line.

The expression mi`st be a positive number. If the current print
position i5 already beyond that specified by expression, TAEl goes to
the Specified e>:pre59ion on the next line. If the spec:ified value
i5 greater than the length of a display line (52 [haracter5), TAB
simply keeps counting character pa5itiong an silb9equent lines to
arrive at the specified column Position. Thu59

PRINT TAB(52) "Here"

would print HERE beginning in the f irgt character position of the
next display line.
TAB operates only witli the PRINT Statement -- it does not work with
the PRINT# statement.

1000 PRINT TAB(11) "Cl"i TAB(ill) "1{1"i TAB(20) "2Ct"i TAB(30) "50":
TAB(40) "40"i TAB(50) ''5C)"

1100 FC}R Pc)5ition=O T010
1200 PRINT TAB(Position) "Tab ";Position
1500 NEXT Position
1400 END

Thi5 program prints the word "Tab" and the tab's number at cc)lumn5 a
throuoh lc,.

7-20 GRil)BASIC Reference ManLial

u

-,

rl

rl

T I rlES
The time fiinction.

F-T
TIMES

veTES

EXAMPLE

TIMES returns the c:urrent time as a 1=` character 5trinq i ron the
Compass Computer s`/5tem'5 real-time clock. The string takes the
form hh:in:55 a.in. or hh:mm:55 p.in. where hh is the hour (a() throiigh
12), mm is thp minutes (00 through 59) and 5s is the seconds (C)C)
through 59). NOTE: These characters are String. not numeriE.
characters. Fc)r a program tc) use them numEri[ally, you must c'orivert
them to numt]ers (see Chapter Six, the VAL Statement).

100CI PRINT "The time i5 ": TIME$
1100 FOR Loop=1 TO 5
12C)0 FOR Re5t=l T0 128: NEXT Rest
1300 LET §econdS = MIDS(TIMES,7,2)
14Cto PRINT: PRINT "The current 5econd5 are ": §ecc}nd$
1500 NEXT Loop
1600 ENl)

After printing the time in line 1000. the program illustrates that
you can take any particular element from the time string and work
with it separately. In this c:age, the current secc]nd5 print Every
second, f ive times. The lapp at line 1200 provides a one Second
(approximately) paii5e between |Jrintout5.

Input,JOLitput Statements 7-21

u

u

u

n

A

EiE

[i+AFTER EIGHT: sEG!uENTlfu. FILES STATErGhrT§

Thi5 chapter describes the Statements net:Essary for writing, rE.ading, and
manipulating sequential files. Many of these c:ommands also come into play
when dealing with random act:e55 files (described in Chapter Nine).

The PRINT# and INPU" 5tatemEints, described in this Chapter, transfer data tci
aiid from Sequential f ile5. The files created by the PRINT# statement are in a
{armat called "interchange file format" and the INPUT# statement e#pEcts files
it reads to be in this Same format.

The interc:hange file fc}rmat enables 6RiD app]ication5 to plac:E data in columns
and r.ows for tabular or c-ell-lJa5ed applicatic)n5 Such a5 GRil}PLAN, 6FtiDFILE and
6RiDPLOT. Becait5e GRiD applic:atic)n5 c:an read file5 in interchange format,
they can process data generated by 6f{iDBA§IC programs.

NOTE: Many of the examples in this boot: write or read data from a i loppy drivE
and a si`bject called "Testing`." For e>:ample:

1[locl OPEN "0".1, " <fo'Te5ting`Weekly"

If yoii prefer to pL`t yoi`r test +ile5 on your bubble. rEi]lace "tfo" with "tbo."
Fc)r the hard disk, 5ubstitL`te "twcl." The BRiDEIAslt: OPEN command c:an c:reate a
title (like I"WEiekly") biit not a subject. If you want tc) create a special
5ubjEc:t ftJr your examples and test programs. you mll5t dc) this beforehand.

If you prefer not to deal with pathname Syntax, put the GETFILE$ 5tatE.ment in
your program. It presents the standard application f i]e form. See the
GETFILES statement later in this chapter.

NOTE: You need only Spec:ify a file.'5 device, 5iJbjec:t, and/c)r kind when any of
those designations change. Fc)r examplEi, if you set usage (CODE-U) to the

Sequential Files a-i

f loppy drive and then select the subject "Testing" to write a BASIC program
in, you could write

1000 OPEN "0",i,"tweekly"

instead of

1000 OPEN ''0",I, " .fo'Te5ting .Weekly~Text"

Like BRiDWRITE, GRiDBASIC asgigns "Text" ag the kind for file'5 created with
the OF.EN and PftlNT# statements.

8-2 GRil)BASIC Reference Manual

RE

EE

EE

n

A

O

CLOSE
This statement clo5e9 a i ile or files previeuBly enabled fc)r program
ac:ces5 by an OPEN statement.

FORmT

NOTES

EXAJRE

I:LOSE [[#JfileTag][,[*]fileTag][,... I

The OPEN statement assigns a file tag nimber to a particular file
name. The CLOSE statement digassociate5 the tag from this f ile
name, 5o that you can reassign it tci another file. With sequential
files, you must close a file to change its made.

For example, you have to close a program operating a file in the
output mode before you tan append to it. You can reopen the Same
f ilE again with its previous tag or a different tag. Far a further
disc:us5ic)n of fileTags and modes, refer tcl the OPEN Statement later
in this Chapter.

If you +ail to givEi the CLOSE statement a fileTag, GF{iDBASIC clc}ses
all open files. NOTE: An END statement autc)matically closes all
files, but a STOP statement does not. GRil)BA§I[allc)w5 the optional
number Sign (#) that preEede5 the fileTag to provide cc}mpatibility
with other versions c)f EIA§IC.

1000 OPEN "I",1,"fo`Testing'Weekly~"
1100 WHILE NOT EOF(I)
1200 INPUT# 1, Day$
1=00 PRINT DayS
14C'O WENl)

1500 CLOSE i
1600 PRINT: PRINT "Those are the days of our lives."
1700 END

In this example (taken fran the OPEN statement below) line 1500
closes the ."Testing" file opened in line 1000. You c:an also close
multiple {ile5 with the Same statement for example:

1000 CLOSE 5,4,15

Sequential File5 a-3

EOF

F0funT

10TES

EXAtRE

The end of file +unction.

EOF (i i I eTag)

The EOF function returns . value that indicates lf an End of file
hag been reached on a specified file. If the end I]f file has been
reached, EOF returns a -I (true) value. If the end of f ilo haf] riot
been rea[hed, a 0 (false) is returned.
The i ileTag parameter ie the number you epeclf ied wh.n you opened
the file for input.

1000 OPEN "I",i,".fo`Tegting'WEekly~"
1100 WHILE NOT EOF(i)
1200 INPU" 1, I)aye
1300 PRINT Day$
1400 WENI)
1§00 CLOSE 1
1600 PRINT: PRINT "Those are the days of our liv.s."
1700 ENl)

NOTE: This Example is one of three illustrating the OPEN [odmand.
Ta make this work program work, you will have to type and rLin the
OPEN Output example f irgt (See the OPEN statement later` in this
chapter) .

8-4 6RiDBASIC Reference Manual

u

EI

EE

EC'LN

FofvAT

veTE§

n

n

EXAmE

The and of line function.

EOLN (i i I eTag)

The EOLN function returns a value that indicates if an end of line
within a Specified filE hag been reached. An end of a line within
a file is indicated by the c:arriage return-line feed combination.
If the most recent Character read from a i ile is follc}wed by a
Carriage return-line feed, or if the encl of file has been reached,
the EOLN func:tion returns a -1 (true) value; c)therwi5e, it rEturns a
0 (zero),

This fiinction is E5pe[ially itseful whEn reading intErc:hanoe files
from other GRID applications.

The filETag parameter is the number you spec:ified when the file was
opEr`ed for input.

1(JOG) OPEN " I " .1, " .fll .Testing 'Al lchec:ks~MyKind"
1100 INPUT "Take balance from what riJw (2-13)"; Row
1200 LET Lines=O
1300 WHILE NOT EOF(1)
1400 IF EOLN(i) THEN LET Lines=Line5+I
1500 INFUT# 1, Re[ordS
160C) IF Lines = Row THEN LET 6oalS = Ftecord$
170CI WENI)

lBCIct PF{INT

1900 PFilNT "The balanc:e at row ";Rc)w;" is ":Boal$
20110 END

This program lets you take any number from thE balarice column of the
worksheet Shown below in Figure a-i. Fcir Example, if you Select row
5, the program will retL`rn ttle amount 479251.43 (the amount after
tlie l-t2/{13 DEpo5it) .

If you want to set up Figure a-1 in a worksheet, make all biit the
first item in the balancE c:IJlumn a formula that adds current line'5
Amount to the previc)u5 Balanc:i c:c)1umn amount. The f irst item is the
absolute amount, 491084.()0. The 5ec:and Balanc.e item (4786{)5.47)
resLilt5 from adding -12478.53 to the absolute amount.

Seqiiential Files 8-5

Check no Payee
start balance

1000 Ac:me Realty
loot Lc]cal Power
1002 Tel ephone

25457 02/05 Deposit
loos Fas5 Freight
1004 Ace credit
loos Fleet Rents
1006 Personnel
1007 A-1 Cleaning
1008 §tarlnsurance
loop Heavy Equip

Amc)unt

-12478.53
-5601. 89
-3016. 92

9264 . 77
-lc'32.14

-15629 . 01
-4912.30

-35971 . 95
-856. 75

-1478.42
-25819.66

Bal anEe
491084 . 00
478605. 47
473005. 58
469986 . 66
479251. 43
478219 . 29
462590. 28
457677 . 98
421706 . (13
420849.28
41957(I. 86
3935§ i. 20

Figure a-I. Worksheet Figures for Example Program

The EOLN function works by searching for the carriage return-line
feed combination. In the case of this example prc}gram, line 1400
increments a line [aunter (the variable "Line'') each time it
encounters an EOLN. When the value cif Line equals the value of Pow
(input by the user), the program prints the last field.

NOTE: Re[c)rds reads one recorcl at a time, not one)ine. One cell,
begun and/or ended by tlie Tab Character constitutes a record.

8-6 6ftiDBA§IC Reference Maniial

`v`

u

u

rl

iii

Ziii

6ETFILES
The get file statement.

F0rmT

veTES

Exf-

5tr i ngS=BETF ILES (" prc}mp"e55age'')

Normally, programmers Specify file pathria/ne5 with the program
development Syntax --

' I)evi ce `§ub j ect ` Ti t I e~Ki nd~

For e}:ample: 1000 OPEN "I",I,"fo`Te5ting.Weet(ly~Text~"

The 6ETFILE¢ Statement lets you bypass this synta>: by bringing you
the Standard file form. Filling in the form and c:onfirmlng it
brings you the desired file.

Yc)u may prefer 6ETFILES over the pathrlame Syntax if you have trouble
understaiiding pathname Syntax or if you want your program to work
with different files. On the c)ther hand, i+ your program u5e5 just
one f ile (or only a few --you cc)uld change a parameter before
running the prciqram), go with pathname Syntax. Likewise, if you
value quick access time, choose pathname syntax.

1000 MyFileS=6ETFILES("Select file and confirm'')
1100 OPEN "I",1, MyFile$
1200 WHILE NOT EOF(1)
1300 INPUT# i, I)aye
14('0 PRINT I)ayS
1500 WEND
160C' END

In this example, line loco assigns the 6ETFILES fun[tion to the
string variable, MyFileS along with the prompt

Select file and confirm

The prc]mpt appears in the me55age line when you run the brogram.
Once you give the file information to the form and confirm, the
string variable deli`/er5 that information to the program (See line
1100) .

Seciuential Files 8-7

IIuF'UT#

This statement assic]ns values to program variables by reading data \u
items from a sequential file.

FqFRAT

NOTES

INPU" fi leTag,variablesLi5t

The {ileTag parameter is the number yc}u specified when the file was
opened for input.

Data Items reacl from the f ile are assigned to the variable5
spec.ified in the variBblesList. Eat:h data item read from the file
must be of the same type a5 that specif ied by the corresponding
variable name. The variable names in variable5List can be any mi>:
of niimeri[and String variable names, iricluding 5ub5cripted
var i at) I e5 .

INPU" expects the file to be in GRiD'5 standard interchange file
format: data items are Separated by Horizontal Tabs or [arriaqe
Return-Line Feed pairs. The PRIN" c:reates this interchange file
format, as do BRiD's cell-based applications sllch a5 BRiDFILE and
BRi DFIAN .

If the end of a file is reac.ned while an itEm is being input. the
item i5 terminated. If a type mismatch o[curg betweeri the data item
and the variable ttiat it i5 being assigned to, c)r the file has an
in5Lif f ic:ient number of items, the program halts and an api]rc)priate
errc)r me55age appears.

The INPUT# Statement c:an obtain data frc)in the keyboard; you open the
}<eyboard just as you would any otlier file. The keyboard's filename
i5 "CI" (for Console Input). For examF]le,

OPEN „I„'1.„CI„

]f yoil c:hoo5e keyboard input, you must write a prompt for your
user(5); unlike the INPIJT statement, the INPUT# statement dc)es not
print a qilestion mark c)r a prompt me55age.

a-8 BRiDBASIC Reference Maniial

EE

EE

ExfpeLE

Zii

iiil

rl

OPEN " I " ,1, " .fo .Testing 'Weekly"`
WHILE NOT EOF(1}
INPL'T# i, Days
PFilNT DayS

PRINT "Tho.e are the days of our lives."

NOTE: This exadtple ig One of three illustrating the OPEN [omiiiand.
To make tlii9 work program work, you will have to enter and run the
OPEN 0utpiit example f ir5t.

§equential Files 8-9

I Iu FI U T S

Prefer INPUTS over INPU" for handling communications i ile5 or for
reading large se[tic)ns of files.

FofVAT

lveTES

ExfvRE

INPUTS(tag#, bytes)

INPUTS fetches the number bytes (or characters) a55igned to it in
its argument from the file repregented by the f ile tag number. You
can assign part or all c}f the characters read from a communications
cir c}ther file into one string with INPIJTS.

NOTE: If you give the Statement a greater number of Characters tc}
fetch than et:ist within the file, INPLJTS quits when it reaclieg the
end of file Character.

1000 OPEN "I",I, "fo.Testing'AnotlierDay~"
1100 INPUT `'8et how many characters from this file"; HowMany
1200 WantTo§ee.= INPUTS (i. HowMany)
1300 PRINT
1400 PRINT WantTosee$
1500 END

This example has the INPUTS Statement fetch as many c:haracter from
the file of weekdays a5 the user spec:ifies. Unlike INPUT#, INPUTS
does not convert the end-of-line chara[ter5 (Carriage rerturn-line
feed). Rather, it prints the entire string of characters without
breaking at the end of lines (e>:cept for the right margin).

NOTE: The OPEN output example creates a text file with the days of
the week in it. You can create the same file by invoking GRiDWRITE
and typing the days in a vertical list. The INPUTS program above
fan read it, a5 it can read any text file.

a-10 6fiil}BA§IC Reference Manual

u

u

`-.

1{= I L L

FO"T

lnlTE§

EXArRE

rl

Zii

Ziii

The t{ILL Statement era5eg a file.

KILL filename

Follow the KILL 5tatemerlt with the file name of the file you want tci
erase. You can present tlii5 in the form of a String variable. In
fact, the mc)5t efficient way ta i55iie a KILL i5 with a file form
created with the GETFILE$ Statement (discussed earlier in this
chapter). 6ETFILES delivers its data to a String variable.

1(loo OPEN "0",1, ".fo`Te5tirig.NewFile"i CLOSE 1
1100 PRINT "NewFile created!"
12Cto PRINT "KILL NewFile by selecting it."
1500 LET JoyS=GETFILES ("Select Floppyl)isk-Testing-NewFile-Text and
cc)nf i r in ")
1400 KILL JoyS
150(I PRINTS PRINT "NewFile KILLed. SEE if NewFile 15 Still there."
1600 §earc:hS=GETFILES ("Pre55 ESC after viewing file5")
1700 PRINT: PRINT ''f:ILL erased the file.''
lBC'O ENI)

Line 1000 Ereate5 a file. In line 1300, the 6ETFILES statement
pre5ent5 a file fc}rm. We recommend GETFILES c)vcr typing file name
syntax. Line 140(I erases the i)le named in the fc)rm. Line 16l)C)
presents second f ile form. so that you can see for yc)urself that
KILL indeed erased the f ile.

Sequential Files a-11

LOG

F-T

veTE§

EXAtfu

The loEatinq statement.

ex pre55i on=LOC (tag*)

LOG locates a portion of a file by retilrning a number from a file.
What that number represents depends on the type of file invc)lved.

Randc)in The reEord number of the last record read ar
written,

Sequential The number ®f recordg read or written Since the
last OPEN.

Communications The number of characters waiting to l]e read in the
input buffer.

1000 OPEN "I",I, " `fo'Tegting`AnotherDay~"
1100 PRINT "Record","Byte":PRINT
1200 WHILE NOT EOF(I)
15CIO LET MyByte=LOC (I)
1400 INFUT# 1, Days
1500 PRINT DayS, MyByte
1600 WEND
1700 CLOSE i
1800 END

This a,`:ample reads a sequential i ile, This exam|]le gets the byte
number of each record in a days-of-the-week file. If yoii want ta
riin this file, you can c:reate a text file Called "tAnc}therDay" by
typing in the days of the week in 6FiiowRITE, putting each day on its
c'wn line.

When you riin this example, the "§" beginning Sunday appears a5 the
byte i. ThE "H" in Monday a8 the ninth character. Why? Because in
addition tc) the Six characters in "Sunday." LO[also [ount5 the two
invisible characters at the end of the line --c:arriage return and
liiie feed. Remember: Lot returns the absolute pc]5itit]n c}f each
byte.

8-12 6RiDBASIC ReferEnce Manual

EI

EI

EI

LCJF

Fount

veTES

EXA-

Zii

Rill

Ziiil

The length of +ile Statement.

ex preggl an=LOF (f i I eTag)

LOP returns a file'9 length in bytes. You mugt Supply the f ile's
file tag in parathe5es.

1000 OPEN "I",I, "+O'Testing'AnotherDay~"
1100 Length=LOF (I)
1200 P13INT
1300 PRINT "The length a+ this +ile is "; Lengthi " characters."
1400 ENI)

Sequential Files a-15

OF}EN

F-T

roTE§

This Statement opens a +ile fcir a particular kind of access.

OPEN ''acce59Mc]de"[*]fileTag, "fi leName"

Here is a typical OF'EN Statement:

1000 OPEN "I", 3, "wO'Ta^'es`January"

ThE accessMode parameter spec:if ie5 the way that subsequent PRINT#
and INPU" 5tatement5 in a program can ac[esB tlii9 file. Further,
we tan make subsequent referenceg to this program with the number
three, instead of with tlie pathname ".wO`Taxes`January."
GRiDBA§IC has three acce55 modes:

''1" 5pecifieg Sequential input
"0" 5pecifie5 Sequential output
''A" specif leg sequential output to be appended

Note that a Single OPEN 9tatemerit Can I]nly establish acc:egs for one
5eqiiential activity at a time. A sequential file cannot be OPEN for
both input and oiLtput at the Same time. Tc) change the type of
access yoii have assigned to a file, yc)u must f ir5t CLOSE the file,
then execute another OPEN Statement §pecifying the new type of
access.

The fileTag parameter is a number tllat yc)u Specify tc) be a5soc:iated
with this fileName for a particular OPEN operation. Sub5eqlient
ac:cesse5 to the file with PFtlNT# or INPUT# Statements can tllen refer
to the file Simply by the fileTag number; you need not 5pe[ify the
f ile name or type cif access. NOTE: GRiDBASIC allows tlie optional
niimber Sign (#) that precedes the fileTag for compatibility with
other versions of BASIC.

A file can be open under only one fileTag number at a time. Yoi`
cannot have a file Simultaneously OPEN for input and output, for
multiple inputs, or for multiple outputs. To perform two ac:ces5
operations, you need two open operatic}n5 and two tag numbers. For
example:

1000 OPEN "I.I,1 I"MyFile"
1100 OPEN "0",2 "tYourFile"

Thi5 opens the file titled "tMyFilE" for inpiit and give5 it tag
number 1. Line 11011 opens a second file to rec:give thi5 data
(olltplit). "YourFile," with the tag number 2.

8-14 6RiDBASIC Reference Maniial

EI

u

u

EiEI

n

n

The fileName parameter carl be any name yc]u have specified up to 80
c:haracter5 in length. For details, See "File Naming Cenvention3"
near the end of Chapter 2. You can alsc) iige the standard Compass
file form to get file names fc}r your BASIC programs; see the
6ETFILE$ Statement earlier in this chapter.

EXAm>LE touTpuTi

lcIO0 OPEN "0",1, " ..fo`Te5tina 'Weekly~"
1100 DATA Sunday, Monday. Tuesday, Wednesday, Thursday, Frlday,
§atl,rday
1200 FOR Week=l TO 7
1300 READ Day$
140C) PRINT DayS
15110 PRIN" 1. Day$
1600 NEXT Week
1700 CLOSE I
1B{)t:) PF{INT: Pf`INT "The Weekly file i5 Closed."
1900 END

This e}:ample crEates a file with the title ".WEekly" and writes the
names of the days of the week into it.

EXAnpLE (II`puT)

10(,{, OPEN „
1100 WHILE

1200 INPUT#
1300 PRINT
1400 WENI)
1500 CLOSE
1600 PRINT:
1700 END

I " , 1 . " < i 0 ` Test i ng ' Weel< 1 y~ "
NOT EOF(i)

i, I)aye
Days

1

Pf{INT "Those are the days of our lives."

This example opens the previc)ug f ile, retrieves the days of the week
from it, and prints them on the Screen.

Sequential Files E]-15

EXArftE (AppEI\IDi

1000 OPEN "A",I, " .fo.Tegting'Weekly~"
1100 DATA Yesterday, Today, Toaorrow, The Day after that
1200 FOR Now = 1 TO 4
1300 REAI} Days
1400 PBIN" i, DayS
1500 PFtlNT DayS
1600 NEXT Now
1700 CLOSE i
1800 PI]INT: PRINT .'Tha5e were the days, my friend."
1900 END

This example appends foiir lineg to the original file -- Yesterd.y,
Today, Tomorrow, and Tlie Day after that. If you re-run the INPUT
example, you will See thege new additione.

8-16 6ftiDEASIC Reference Manual

u

EI

ZiEI

n

rl

PF= I NT*

The PRINT* Statement writes data to a Sequential file.

FtrmT

hDTE§

PRIN"fileTag,ey`presgion[{, i;}][expre55ion) ... [{. :;}]

The fileTaq parameter i5 the number you spec:if ied when yoil opened
the f ile for c}utpi`t. It identifies the Sequential i ile ttiat i5 to
rec:eive the data.

PF3INT# writes the data contained in the e;`'pe5sion(5) tc} the file
with appropriate delimiting c:haracter5 aiitomatic:ally inserted. Your
choice of puncti`ation (either a comma c}r a semicolc]n) between
e}:pre55ions determines the delimitinq [haracter5 written to the file
to Separate the items in each expre5slort. Yoi` can use either cc]mmas
(,) or semicolor`s {;) as separators.

NOTE: If you intend tc) print to an Ep5c)n printer and want your
c:omma5 to perform a tabbing function, See the "Ep5on Notes" E\t the
ertd of this disc.u5sic)n.

I+ you place a 5emic:c)lan between twc) e>:pre55ion5, PRINT* writes the
values o{ the two e}{pres5ion5 with no delimiting Ehara[ter between
them.

If yoil placE a c:omma between two e>:pre5sion5, a horizontal tab
character is written to the file separating the contents of the
i irst expre€5ic}n from the contents of the 5e[ond expre55ion.

If a list of expre5sions terminates without a c:omma or semicolon.
PRINT# writes a carriage retlJrn-line feed at the end of the list.
If a cc}mma terminates a list c)f e}:pres5ion5. PRINT# places a
horizontal tab c:haracter after the last e}:pressic}n. If a 5emicolon
terminates a list of e}:preEsion5, it suppresses any delimiting
charac:ter. Thils a subsequent F.FZIN" statement begins writing data
to the file beginning at the polnt where the last F.F{IN" left off .

NOTE: The fc)rmat of the f ile created by the PRINT# Statement i5
compatible with the inter[hanqe filE format. A5 a result,
tell-based 6Fzil) applications such a5 GRiDPLOT. GRiDFILE and GF{il)PLAN
can worl: with these files.

Choc}se thEi INPUT# Statement to input data from a f i]e that yoi`
c:reated with the F.RINT# statement.

Seqiiential File5 8-17

EP§ON NOTES

For the Epson to interpret GRil)BA§IC's commas correctly --providing
tabs --you must follow the PRIN" c:ommar`d with the file tag number,
an E§C D (represented by CHRS(27)+"D'`) and the column number of each
tab preEeded by the CHR$ Statement. Conc:atenate these tab positions
with the plus sign (+). All such Statements mugt end with the null
character (CHftS(O). Do NOT exceed an 6{)-character line. An exanple
command ag5igning 15 character-wide tabs follows:

PRIN" 1, CHRS(27)+"D"+CHRS(15)+CHRS(30)+...+CHRS(O)

EXArFu

1000 OPEN Ilo",I,'"fo`Te5ting'Weekly~"
1100 DATA Sunday, Monday, Tuesday, Wednesday, Thurgday, Friday,
Saturday
1200 FOF` WeekEI TO 7
1500 fiEAD 0ayS
1400 PRINT Day.
1500 PRIN" I, Day$
1600 NEXT Week
1700 CLOSE 1
1800 PF`INT: PRINT ''The Weekly file i§ closed."
1900 END

This example (from the OPEN Statement) writes the days af the weeks
to a file called ".Weekly." The PRIN" Statement in line 1500
transmits thig data one 5trinq (or day!) at a time.

8-18 GRiDEASIC Reference Manual

u

EE

u

Ziil

a

Zii

F.I=IrviT# u§IluG

The PRINT# USING Statement writes data tc) 5equential i ilEis or tc) the
prirTter in a 5pe[if led format.

FORAT

ueTES

EXAmE

PRINT# fileTaq, USING; forJ7iat5tring; {ni`mericvar:5tringvar li5t}

PRINT# USING takes the Same arc]ument5 a5 PRINT USING. The only
syntactical differen[e bE.tween-the two is the presence of the niimber
sic|n (#) and tag number following the wc}rd "FFilNT." For details on
this statement'5 many fc)rmattinq pc}5sibilitie5, See PF(INT USING in
Chapter Seven.

1000 OPEN "0''.1. "<ep5on"
1100 FOR Times = i T012
1200 LET Number = 100Cloo*RND(1)
1300 PRINT Numl]er;" ";: PRINT U§IN6 "SS#*####,.##"; Number
14(I(I F.RINT# 1. Number;
1500 F.RINT# 1, USING " SS###*##,.##";Number
1600 NEXT Times
17l-lc) CLOSE 1

1800 END

This example generates 12 randc)in numbers and then prints and formats
them --to the Screen and to tlie printer. Line 1400 prints the
iinformatted number; line 1500 does the formatting. In this c:asp, we
have tiirned the number into a dollar amount and preceded that with
spaces to Separate the unformatted and fc}rmatted nilmbE]rs. Figi`re
8-2 below i5 a typical printout.

Note that tci print, yc}il must open yoilr printer as a filE (line i()0(1)
and give it a tag number. The PPINT#, PRINT# USING and CLOSE
statements all taL'e advantage of this tag number.

This e>:ample creates a printc}ut to the screen and on paper that
resembles the printout below in Figure 8-2. The left column
displays the random number we generated. The right column 5how5 how
PF{INT# USING f ormatted the same number.

Sequential Files a-19

6`-101. 3733119707
62092 . 0119020371
38194 . 8577096208
82920 . 5767? 10277
7277 . 02754255452
81 165 . 7892729076
3288 . 31921873808
88273 . 4416723888
89706 . 2638284886
52875 . 5626764S24
65941 . 8631265736
5529S . 6598764019

•6, 001. 37
•62, 092. 01
$38,194. 86
•82, 920. 58
•7.277.03
81,165. 7,
$3, 288. 32

t88 , 273 . 44
•89. 706. 26
•52 , 875 . 56
$65, 941. 86
$53 , 293 . 66

Figure 8-2. PRIN" USING farmatting of Random Numbers

8-2(I GRil)EA§IC Reference Manual

u

u

u

lil

1

Ziil

Ci+AFTER NINE: RAveoH FILE §TATEMENITs

Random acce55 (al5c} called "direct access") files differ from sequential files
in several important ways. First, each data unit or recc}rd is of a fi}:Ed
lerigth (Spec:ified by the programmer). Sec:and, you can go direc:tly tt] E\ny
record within a random ac:ce55 f ile, rather than having tc} go through the
entire file. This is true for bc)th read and write activities. Third. random
files have a buffer ln RAM memory. Your program interac.ts with the buffer,
rather than directly with your storage devic:e.

Random act:ess files share statements with sequential files. Note, however,
that some of thEse statements don't behave e}:actly the samE. For example. the
LOF. statement in a sequelltial file retilrns the length of that f ile in bytes.
In a random file, LOF returns the tc)tal number of records in the i LIE. These
two numbers only equal each other when a random file has one-byte long
reEords !

Anc}ther example. ThE OPEN statement has only c)ne access mode for opening a
randc)in acEe55 file --"R" (Sequential files have three). With raridom files,
it dc}e5n't matter whether yciu are c}pening the file for INPUT or OUTPIJT.
Further, the OPEN statement in a random access file also takes an optional
argument after the +ile name, the bilffer length.

AlthoLIgh this chapter contains plenty of working examples, you may want to
look at the bE`sic: steps involved in creating random aEEe5s write and read
files. First to create a rE`ndom aEce5s file arld write data to it, follow
these 5tEps.

Random Files 9-1

>
©

A RANDOM ACCESS WRITE FILE

OPEN the file with an "R" and an optional buffer 5ize Spec:ification.

1000 OPEN "R.I,1, " `fo .Te5ting 'Demograf .1~" , 50

Def ine the sizes c}f the f ields in your recc)rd buffer with the FIELI)
statement.

1100 FIELD i, 12 A§ NameS, 3 AS AgeS. 15 A§ City$

Bather the data you want to write. You Can do this by reading from other
files, with INPUT and/or READ DATA §tatement5, for e:.:ample.

1200 INPUT "Name"; NS

Put this data into thE buffEr with the L§ET or R§ET Statements. use the
variable nanes you assigned to fields in the FIELD statement,

16il0 L§ET NameS=NS

Write the clata to tlie file with thE PUT statement.

20011 PUT I

Clctse the file.

2200 CLOSE 1

Here'5 an clutline for reading data from a f ile.

®A RANDOM ACCE§§ READ FILE

OPEN the i ile with an "R" and an c)ptional buffer Size 5pecificatian.

100Cl OPEN "R" ,1, " `fo 'Tegting 'I)emagraf .1~" , 30

Def ine record buffer f ield 5ize5 in with the FIELI) Statement.

1100 FIELD 1, 12 A§ NameS, 5 A§ AgeS, 15 A§ CityS

USE the GET Statement to read your data from t.he file.

1500 GET 1, RecordNo

Process this data and send it tc) the sc:reen or other devic:e.

1600 PRINT NameS;

Close the file.

2400 CLOSE I

9-2 BRiDBASIC Re{erEnce Manual

EE

EE

u

rl

Zii

Ziili

C=VI. t=V§. C=VD

The [on`/ert strlnq to integer fitnction.
The c:on`/Ert strinq to sinqle-preEi5ion function.
The c:on`/ert 5trinq tc) double-preEision filnction.

FORIIAT

veTES

EXAtRE

CVI (2-byte String)
CV§(8-byte String)
CVD(16-byte string)

Programmers of ten convert numEric `/alue5 tc) strings 5o they c:an
format these values with the L§ET or F{SET statements. However. the
system car`not perfc}rm mathematical operatic]ns on String valiies.
Only on nL`meric values. Therefore. they convert strinq values back
to numbers. CVI c:onverts a 2-byte string, C`/S converts a 4-byte,
and CVI) c:onverts an 8-byte String.

Choose the CV f iinction that matches the Mks f unction that made the
original number into a String. Table 9-1 below illustrates this.

MKS Farm CV Form No. of Bytes

Table 9-i. Choosing MKS and CV Functions

loocl OPEN "R",1, " <fo`Te5ting'MyNumber5~".8
1100 FIELI} 1, 8 A§ Number$
1200 FOR Cciunt=1 TO 3
1500 INPUT "Any number"; N
1400 LSET NumberS=MKDS(N)
1500 Pl'T 1
1600 NEXT Count
1700 PRINT:PRINT "11r`DS Fc}rm"; TAB(15) "After CVI)": PRINT
1800 FOR Count=l TO 3
1900 GET 1, Count
2Cloo PRINT NumberS;
2100 PRINT TAB(15) [VD(NumberS)
2200 NEXT Count
25Clo PRINT
2400 END

Random Files 9-3

This program asks you to enter any three numbers. It then converts
them tc} 5trillg format in line 1400. It then writes these numbers t;:h:u

u

u

the Screen and shows them in the f arm in which tliey are starecl
"HKDS Form") and the numeric farii` they take after ccinver5ion to
double precision (CVD). See the MKDS functic)n below for details on
itg c)peration.

9-4 eRiDBASI[Reference Manual

r\

n

jEiil

F I ELI}
FIELD 5et5 itp a random file buffer.

FOFiMAT

NOTES

EXArRE

FIELD [#] tag#, nllmber AS stringS [, number AS stringS] ...

The FIELD statement l]reak5 the bu+fer into individual f ields. Thus
the buffer is the length of the re[c)rd that comprises these f ields.
To maximize eff icient uge of memory and storage space, add the
nLimbers of characters for each f ield together and give the resulting
sum as the optional but i er length parameter.

The A§ statement assigns buffer space in characters (indicated by
the number pre[edinq A§) ta a variable (following AS).

1()tlo OPEN "R" ,I, " 'fotTe5ting tDemograf .1~",30
1100 FIELD i, 12 AS NameS, 5 A5 AgeS, 15 A§ CityS
1200 WHILE NOT EOF(i)
130C) BET I

141)a PftlNT NameSi
150Ct PRINT AgeS;
1600 PRINT CityS
1700 PRINT
181:'0 WEND

190Ct CLOSE 1

20011 END

This program reads in all the records from the tl)emoqraf.1 file. It
allots space in the (random) bl`ffer fc}r its three fields as follows:
12 Characters for the string variable Names, 3 characters for the
string variable AGES. and 9 to the String variable ZIPS.

Random Flies 9-5

GET

Fu"T

-§

EXAIRE

The GET Statement retrieves data for random file access.

GET [#] tag*[, nilmberJ

The GET Statement reads c}ne record at a time into the buffer. If
you do not Specify a number, any reacling c}f these rec.ords [aiise5
their c:c)nterit to appear in the c]rder in which they exist in the
file. If you Specify a number, the rec:ord belonging to that reEord
number appears. Tlius if you ask for

1500 GET 1,3

line 1500 will get the third rec:ord from the file you assigned the
tag number of 1.

lcloo OPEN "ft" ,1, " tf o tTesting `I)emograf .1~" , 30
1100 FIELD I, 12 A§ NameS, 5 A§ AgeS, 15 A§ [ityS
1200 LET Items=LOF(i)
1300 PRINT "Recorcl number (between I and "; Itemsi
1400 INPUT '') please", Rec:ordNo
1500 GET 1, RecordNo
1600 PRINT NameS;
1700 PRINT AgeSi
1800 PRINT City$
1900 INPUT "This person's triie age", A$
2000 PF(INT
2100 L§ET AgeS=A$
2200 PUT 1, Re[ordNo
2300 GOT0 1300
2400 CLOSE I
2500 END

This example reads whatever record number yclll specify (in line 1400)
ar`d prints the appropriEite data t)n the Screen. The program then
gives you the opportunity to change the age parameter.

9-6 6fiiDBA§IC Reference Manual

I-.I

u

L0t=

FORrIAT

NorTES

EXArflt

n

1

Zii

LOO locates a record.

LOG(tag#)

LOG returns the re[ord number of the next record that you can either
GET ar PUT. When this function sees the EOF marker, it looks no
further.

1(loo OPEN "R`. ,1, " `fo tTe5ting 'Demograf .1~".30
1100 FIELD 1, 12 A§ Names, 3 AS Ages, 15 A§ CityS
1200 WIJILE LOO(1)<=B
1500 PRINT LO[(1);" ";
1400 6ET I
1500 PRINT NameS;
1600 Pf}INT AgeSi
1700 PF[INT CityS
1801-) PftlNT
190() WEND

2000 CLOSE I
21011 END

This example uses LOG to test whether the WHILE WENI) Should EDntinue
{line 1200) and to print Sac:h rec:ord's number before printinq the
contents o{ the record (line 15(10).

F{andom Files 9-7

LOF

F-T

-S
ExfuRE

Tlie length of f ile Statement

LOF (f i I eTag)

LOP returns a f ile'5 length in records.

1000 OPEN "R" .1, " `fo .Testing `I}emograf .1~" , 30
1100 FIELI) 1, 12 A§ NameS, 3 f`§ AgeS, 15 AS Citys
1200 WHILE LOG(i) <= LOF(1)
1300 PRINT LOG(i);" ";
1400 BET 1
15Clo PRINT NameS;
16Clo PRINT AgeSi
1700 PRINT CityS
1800 PRINT
1900 WENI)
2000 CLOSE i
2100 END

]n this example, line 1200 we test whetlier to continue the WHILE
WEND loop by c:omparing the f ile record number (LOG) with the number
cif records in the file (LOF). If the record iliimber i5 less than c}r
equal to LOP, the WHILE WENI) loc)p continues.

9-a 6RioBA5IC F:ef erenc:e Manual

u

u

LSET and l=SET
The LSET and R§ET 5tatEment5

FOFunT

NOTES

n

n

EXAMPLE

L§ET i ield§tring=programstring
R§ET f ield§tring=program§tring

LSET and R§ET statements a55ign a String c:reated within the c:urrent
program to I]ne of the string varlables clef ined in the FIELD
statement. In the event that a value does not take up all the
string Space allotted to it, L§ET will left-justify the value within
the Space. Similarly, RSET right-justifies when Space remains.
NOTE: Yc)u must convert numeric variables to string variables before
doing thi5. Either the MK$ Statement {5ee bElc)w) or the §TFis can do
the job.

CAUTION: Do not USE a f ield variable in an inpiit statement nor put
it on the left side of an assignment (LET) statement. Either
prac:tic:e caiises the varial]le pointer to pc}int nc)t tc) the random file
biiffer, bi`t to String space. The result: garbage in your f ile.

1000 OPEN "R",1, " 'fo `Testing .Demograf .1~'' ,3C`
Ilo() FIELI) 1. 12 A§ NameS, 3 A§ AgeS, 15 A§ lit:yS
12(10 INPUT "Name"i N$
1300 IF NS="=" THEN 60TO 2200
14C}O INPUT "Age": A$
15{to INPUT "City": CS
16Clo LSET NameS=NS
170CI LSET AgeS=A$
1800 LSET [ityS=C$
19CIO F.RINT

2QCICI F'UT 1

210() GOT0 1200
=201-) CLOSE i
2.3()0 PRINT: PRINT .'Thi5 input 5es5ion i5 over"
2400 END

This e>:ample writEs5 data to a random access file. The LSET
Statements (lines 1600-lBclo). it assign the values in the input
varial)lee (lines 120(:),1411t:). and 15C)0) tc) the field variable5
(assigned in line 11(I()). If you wanted your oi`tput right-justified
instead c)i left-ju5tif led, `,lou woitld substitiite RSET fc)r each
occurence of LSET.

Fiandom Files 9-9

riKIS, mK§S, iii<DS
The make string function.

Fount

veTE§

ExfvRE

MKIS (e>:pression)
Mk:§S {expression)
MKI)S (expression)

The MKS function [I]nvert5 numeric expre55ic)ns (including variables
and numberg) intc) 4-byte Strings. You mllst convert arty niimeric
expressions before 5itbmitting them to the L§ET or RSET. (Yoi(miist
choose alie of these two to piit data into the bu{fer).

A8 a general rille, choose MKI}S to convert your Strings. At 8 byteso
it yields the greatest precision and, with its corollary CVI),
minimizes the pc)s5ibility for returning an inaccurate number from
Storage.

1000 OPEN ''R" ,1, " .fo `Te5ting .MyNumberg~" , 8
1100 FIELD 1, 8 AS Niimber$
1200 FOR Count=1 TO 3
1300 INPUT "Any r`umber"; N
1400 LSET Niimbers=MKI)S (N)
1500 PUT 1
1600 NEXT Count
1700 PRINT:PRINT "MKI)S Form"; TAB(13) "After CVD": PRINT
1800 FOR Count=l TO 3
1900 GET i, Count
2000 PRINT NumberS;
2100 PRINT TAB(15) CVI)(NumberS)
22()0 NEXT Count
230{) PRINT
2400 END

This program asks you to enter any three numbers. It then converts
them tc) string format in line 1400. Note that we put the rE5iilt of
oilr rlKl)S function in the string variable] Numbers. Line5 19C)0 to
21C)O bring the numbers back from storage --in the MKS string form
and in the converted form. SEE the CVD funEtion abo`/e for details
on its |lse,

9-10 6RiDBA§IC Reference Manual

u

EI

EI

OPEN

F-T

veTES

Eii

rl

lil

The OPEN statement creates a but fer in RAM memc}ry and prepares the
system to write data to or read data from the Specified file. If
the file doesn.`t e>:ist, OPEN creates the file title. It cannot,
however. c:reate a Eubje[t.

OPEN "F:" [#]f i I eTao, ''f i I eName" , [biif ferLength]

Here is a typic:al OPEN statement:

1000 OPEN "R", 3, "wO.Taxe5`January". 63

When placed in tlie context of random access files, OPEN has only c}ne
acEe5sMode parameter --"R" for Random. This spe[ifie5 the kind of
file manipulation activities the fill allows. NOTE: where
sequential files have three po55ible letters --`'1," Ilo." and "A,"
random files have ji`9t one act.e5smode --"Ft. "

NOTE: Unlike 5Equential files that must CLOSE and issue a new OPEN
Statement before Changing it5 a[Ees5 activity, random files c:an do
both input (GET) and outpllt (PUT) under the Same OPEN statement.
See the example under the Mk:DS command. Fc)r details on Sequential
files, See the OPEN statement in Chapter Eight.

The f ileTag parameter i5 a niimber tliat you Specify to be as5o[iated
with this fileName for a particular OPEN operation. Subsequent
a[cesses c}f the file with GET or PUT statements can then refer to
the f ile simply by the fileTag number; you need not specify the file
riame ar type of access. In the e>:anple above. this niimber ig 3.

A file carl be ctpen Llnder only cine fileTag number at a time. NOTE:
GF3il}BASIC allows the optitJnal number sign (#) preceding fileTag for
cc}mpatibility with other ver5ion5 af BASIC.

The fileNamp parameter can be any name yclu have Specified up to 80
[hara[ter5 in length. For details, see "FILE Naming Conventic)n5"
near the end of Chapter 2.

The optional bufferLength |Jarameter 5et5 the Size of the buffer.
For greatest efficiency, you should assign this the same number of
bytes a5 the total number I)ytes in the f ield statement. In the
e>:ample above, we clEf ined the length of the bi`+fer a5 6= charat:tars.
The default length for the but+er is 12El bytes.

Random Files 9-11

EXArRE

1000 OPEN "fi" ,1, " 'fo `Tegting .Demograf . r" , 30
1100 FIELD I, 12 A§ Name., 3 A§ Ag.., 15 A§ City.
1200 INPUT "Name"i N.
1500 IF NS.'`g" THEN 60TO 2200
1400 INPUT "Age"; AS
1500 INPUT "City"; CS
1600 L§ET NameS-N$
1700 L§ET Age$2A.
1800 LSET CitySEicS
1900 PRINT
2000 PUT I
2100 60T0 1200
22(10 CLOSE 1
2300 FFtlNT: PFtlNT '`Thi5 iriput ses5ian ig over"
2400 END

This example inputs data to a random access file. Its OPEN
statement a55ign5 this file the acEe55 mode parameter, ''R" and file
tag number "i."]t then Specifies the floppy drive ag the device.
"Testing" a5 the 5ul]ject, and "Oemograf.1" a5 the title. Finally,
it 5etg aside 50 bytes for the file's buffer length. Note that 30
if the Sum of the lengths of the three re[ards given in the FIELI)
statment (line 1100).

9-12 6RiDEA§IC Reference Manual

EI

U

u

F=UT

FaRrIAT

veTE§

EXArfu

-.

rl

I-,

The PUT Statement writes data to a random biif fer.

PIJT [#]fileTaq [, e}:pre55ion]

The PUT Statement writes data tc) a random flle buffer for transfer
tc] the appropriate storage medium. F'UT understands the optional
e>:pres5ic)n (whether a constant or a variable) a5 a record number.
If another rec.ord already has the number you specify, PUT will write
over it. I+ you fail tcl specify a r`umber, PUT assigns the ne}:t
available number.

10(10 OPEN "R". I , " .fo<Testinq .DEmoQraf . I~",3Ct
1100 FIELD i. 12 A§ NameS, 3 AS Ages, 15 AS City$
1200 INPUT "Nane''; NS
1500 IF NS="=" THEN B0TO 2200
14(to INPUT "Age"; AS
1500 INPUT "City": CS
1600 LSET NameS=N$
171)0 L§ET AgeS=AS
181-10 L§ET City¢=C$
19('11 PRINT
2|10t' PUT 1
2100 GOT0 1200
22{lcI CLOSE 1
2:`00 PRINT: PRINT ''Thi5 ini]ut session i5 over"
2400 END

This prc)gram puts data intc) a file c.alled tl)emoqra+.i. Each time
through the loop, it puts a record with three i ield5 --Names, Ages
and CitvS.

Random File5 9-15

u

EE

ZED

rl

A

Ziil

ciiiAPTEF} TEN: GRAplilcs sTATErENTS

This c:hapter di5[itsse5 6RiDEIASI['5 qraphic5 5tatement5. With these statements
you c:ari draw, invert. erase. and fc)ilr f igure5:

The bo>:

The circle

The dc't

The line

Thi5 maniial has one example eat:h for the c:ir[le. dot, and line statements (for
I)FtAW, INVERT. and ERASE). Each example shows hc)w the graphiE appears after a
partiEillar statement by placing part of the graphic: against the 5c:reen and
part against a white bo}:. See Figure510-1. 10-2, and 10-5 below. We place
these e;.:E`mples at the front of the Chapter for easy acce55 and comparison.
The programs that generated these figures are listed later in this with eaEh
relevant statement.

You c:an also positic)n Eliaracter strinq5 (Drawchars), create menus, mo`/e boxes.
and plE`ce prompt messages.

In graph]c:5 5ynta;i, ,v. and y represent (respectively) the horizontal and
vertical cc)c]rdinates of the point being de5c:ribed. These points E\re screen
bits or "pi}:el5." The 5Ereen is 52() pi>{els wide and 24C) pixels deep.

Graphic5 Statements lc)-l

Figure 11-)-1. The ThrEe Circle 6raphic5

Figure lcl-:. The Three Dc)t 8raphlc:s

10-2 6F{iDBA§IC Reference Manual

•-I

EE

.-I

lil(

Ziill

Ziil

Fiqure ill-3. The ThreE Line 6raphics

6raF]hi c:5 Statements 1Cl-:`

I L E fi F= 11 S G

The c:lear message statement.

FmrlAT

NOTES

EXAmE

CLEAF`.MSS

CLEARMSG clears an`/ prompt previcliisl`,J specif iecl b`,' the STACKMSG
Statement. If \/ou inc:li`cle a 5TA[r.`rt5G prompt inEide a lc}op or illant
to mc]\Je cin tc] a new message. you must clear the c)ld message with
CL.EAF:M5Li. If you don`t, mes€aqeE stac:l` i`p. as Ehc)wn ln Figure 1(t-4.
See STAck;MS6 later ln this chEipter fc)r details.

1()(:)() F.R.INT "F'res5 a l'e`/"

11()() STAct!:Mst3 ''F'reE5 ESC to e;:lt"

12(:)() STActi`MS6 ''The StEic+.M5g F.rc)gram"

1:`11(I LET k`En,'S=INt:`Ey'S

141,:tll IF. I.`eyS="" THEN 60T0 l=`r.It:` ELSE F.RINT "key 15: "; he`,`S

15(:)11 CLEARMS6

16C)() STAch`MSB "End

17()() STAct!`MSG "The

If it weren`t for line 15f:li.:`. the F)rompt wc)iild lot)I.11t`'e the one in
Figure lt:)-4. CLEAftMSB clears the f irst prompt so that the f inal
prompt loolrs]il.`e trie one in Fic]Lire 1(J-5.

Figiire li.)~4. E(ef ore CLEARM56

Flqiire l`:i~5. After CLEAF:M56

ill-4 BRiDEIASIC F!ef erenc:e Mani`al

u

EE

u

n

rl

rl

I)0MEIHLJ

This statemEnt creates a menu.

F-T

NOTES

EXAIRE

\/arlable=DOMENU(prc]mptS. c:hc)ic:es;choicES[:choiceS] ...)

The DOMENIJ Statement draws a menu at the bc)ttom c]f thE 5c:reEn. This
meriu resemlJle5 the ones yoL` havE seen in GftiD applic:ation5. I)OMF.NIJ
asks you to specif y the prompt message (prc)mptS) at the bottom c]f
the sc:reen and the varioi`5 choice5 the menu will c)ff er.

Separate each choic.e with a bar (:) b`r` prEssinQ CODE-SHIFT-: .
DOMENu assic]ns a number tc) eac:h c:hoicE. the fir5t c:hoicp iF,1, the
second 2. etc. In this l.Ia`/. yol` c:an e;.:ecLlte the chc)ICE with an ON
6[)T0 or ON G05UE(statement. Only thp size of the screen limit`s the
number of choices yc]u can present.

I(:)I:)CI LET F'icl:yS="Make `,Joiir pla`/"

11t}O LET Yours=DOMENU(Plct`'yS. "Stand ancl fiqht!Flee and retreat;Bii\J
'em c)ut")

120[1 IF Yc)ur5=rJ THEN LET Pick:yS="Dh no you clon't: Choose"
13Ctll 0N Yours 60T0 15{)I).160C).17C)l-I

141-)0 ENI)

15C)0 F'F:INT ''Fire when ready. Gridley'':END
16{)11 PRINT "Come bacl<. c:one back, c:one ":ENI)
1711.I) PRINT "Okay. Let..5 tall:. turkey":END

This E}:ample presents a menu a5 shown in Fic]ure ltl-6. "F'i[kyS" is
string variable to chic:h we a5sign thE prompt .:"Make yoiir pla`/").

Flc]ur.e lc)-6. A Menu Created with DOMENU

Graphic:s Statements li:)-5

D F= fi W E± q X

The Df{AWEI0X statement c]rai.js a 50l]d (lic]ht-c:c)lorec]) rectanqle.

FORAT

NOTES

EXAtpLE

DR'AWElox tc)F)Left (;.:.y) e,`:tent (}:.`/)

DF}AWB0X needs +oi`r cciordinates. The i irst two describe the tcip let t
c.c)rner c)+ the bc)>(. The set:ond ti.tc) descr}be thE] hori=c)nta] and
vertic.al e>:tension5 from the 5tartinq pc)int.

1[lf:)() INF.UT "Tcip left hc)ri=ontal c:oordinatE":A
llr:l(.i INF'UT "Top left `,'ertical c:oordlnate":B
12(.1(:I IMF.UT "E>:tend how far horizc)ntally'':C
13(:lt:I INF'UT .'E;<tend how f ar vertic:ally":D
14(lt:l EraseEox l.),{). :2C). 240
15(-)J.:I DrawBo}(A. Et. C. D

16C)0 FOR Pau5e=l T0 1{)t:): NEXT F.aii5e

17l-)(J LOCATE 5.21(:t

181:)(1 PRINT "Thi5 bo>: has c:oordinates ": 4}:''. ":El:". ";C`;". ":I)

19{10 FOF{ Pau5e=1 T01t:t{t: NExr Pause
2C'0':I END

Thi5 prc)gr.am a5k5 yc)u to c]eEEribe a bo;: and then draws that bo>:.
See Fiqure llJ-7 for an e,itamp}E.

Figiire lt:l-7. An E;`(ample of DRAWElox

1()-6 6RiDBASI[. F(eference Mani`E`l

EI

EI

u

Eiii

iii

ZiE

[} F= f2i W I H f} F{ S

DRAl.Jl`HC`hs plac:es characters on the screen at the state.d coordinates.

FORMAT

NOTES

EXAMPLE

DRAWCHARS strinq ;.:,y

The cc]orclinates in I)F`.fiwcHARS c]Eif ine the iipper left Fli;{El c)f the
f ir5t character in the string. This statEment. ac:c:epts st.rinqs
surrouncled b`/ quotation marl's. strinq5 clef iriEc} b`,' the CHF:¢ statement
and ASCII numbers. or a combinatior` c)f the two. you cannot ioln
5triricis t.jith trie sEmicolcin (a5 with thEi PRlr`JT staterrient. InstEad.
yc]u m[`5t alwavs c.oncatenatE them with the plus 5iqn (+).

1t:l[l{! DF:AWCHAF!S "What.5 that rinc|inq?".10,1(:I

111:I.:) FtJF: Start5=1 TtJ lt)l:): NEXT Starts

I:I)() FOR' F'hc)ne=1 TO 3

13Clt:I LET Rinc]=1

14l-lcI WHILE Ring..3Cl

15C)t:) PRAWCHARS CHRS (14£) +CHRS (143) , 4i:). 4¢

16`.:lt:I DRAWCHARS CHRS (142) +CHRS (14:`) , 4:. 4t)

17l-tt:l LET Rina=Rina+1

18Ct{l WEND

19(I(:I FOR Time=1 Tt] 1{11:1: NEXT Time

2llc)a NEXT Phone
211-1{) DRAWCHAF`'S "Onl`/ the phc]ne".1i:I, 711

22{l(I FOF(Pau5e=1 T0 lc)(): NEXT F.au5e
33f:lcI DRAW[HAFl'S "Anc]thEr ''+ [HRS (137t+CHR`S (1=,B)+[HRS (1:`t?.+CHRS `'14{l)+
" pre5entatlon".1t), 9()

I4(:'C) END

Lines 1(l{)C\ and 21{)11 demonstrate placement c)i a string enclosed in
ciuc}tatic)n mat-l`s. Lines 15llt:) and lbc)Ct Show [oncatenation a+
indi`/idi`al ASCII charac:ters (Line 16l:lcl the string repo5itic}r`5 the
String for an arilmatlc`n effect). Line £3l:lct c:c)mblnes both quc}t.es and
ASCII c:c)de5 to print tr;e program.`5 final message. The loops at
line511{11:) and 22{:tl:I dE.la\J E;<ec:iitic}n of the prc]gram for anothEr
effect. See Flql`re lJ:)-B for a plc:tL`re c)f this proc]ram.

Graphics statements lJ:)-7

Nhat`s t.hat` ringing?

ffi

[Irilg +..he F.hone

Anot.her Gi)ia pi-esent.at.ion

Figure lcl-8. The DF!AWCHARS Example

1J:I--8 GF`.1 D[1A5IC F`.eferenc:e Manual

u

u

EI

rl
1} F= f} Led [I F= t= L E

This Statement positions and draws the oi`tline of a c:ircle.

FO"T

NOTES

EXArfRE

DRAWclftcLE x.y, radius

The x,y coordinates spec:ify the center of the circle. The radiiis is
measured in Screen bits.

loco I)RAWB0X 120, 31-1, 9(I, 140
1100 I)RAWCIRCLE 120.60,20
1200 LOCATE 10. 60: PRINT "Drawcircle"
1300 INVEftTCIRCLE 120,loo,20
14110 LOCATE 10, loo: PRINT ''Invertcircle"
1500 ERA§ECIBCLE 120, 140, 20
1600 LOCATE 10,140: PftlNT "Erasecircle"
1700 ENI)

Graphic5 §tatement5 lcl-9

DF=fit~1)0T

The DRAWDOT Statement turns c}n one screen bit (algo known as a
''pi>:el ") .

F-T

NDTE§

EXArfu

I)RAWDOT x.y

The two arguments are the dot's horizontal and vertical coordinates.

1000 DRAWB0X leo, 30, 90, 140
1100 LOCATE 10, 55: PRINT I.OrawDot"
120CI LOCATE 10. 95: PRINT "Invertl)ot"
131-10 LOCATE 10, 135: PRINT ''Era5eDot"
140(I REM The I)rawl)ot Routine
1500 LET X=80: Y=60
1600 WHILE X<=160
1700 I}RAWDOT X,Y

1800 LET X=X+5
1900 WENI)
ZOO(I REM The InvertDot Routine
2100 LET X=BO: LET Y.loo
2200 WHILE X<=160
2300 INVERTDOT X,Y
2400 LET X=X+5
250(I WEND
2600 REM The Era5EDot Routine
270(I LET X=BO:Y=140
280(I WHILE X<=160
2900 ERA§E00T X,Y
3000 LET X=X+5
310{' WENI)
3200 END

Thi5 program differs from i]ragrams for the Other i igure5 in order to
put f ive pi}{elg bEtwEen the dots. Withoiit these 9pace8, you cannot
tell the difference between similar statements for DOT and LINE.

10-10 6RiDBASIC Ref erence Manual

EE

u

rl

ZiEI

Bill

DF=f}WL I NEE

The DRAWLINE statement draws a l]ne.

FqRAT

NOTES

EXArRE

I)RAWLINE startpoint {}:.y) endpoint (x.y)

I)RAWLINE needs four arqument5 --the hori:ontal and `/ertical points
for the Start of the line and the horizontal and vertic:al points for
the end of thE llne.

1000 DF{AWB0X 12(). 311, 90. 140
1111() DRAWLINE 10(1, 60. 15(1, 60

1200 LOCATE 1(t. 60: PBINT "I)rawline"
1300 IN`/ERTLINE 11-)0, 1{)0, 150, lot-)
140CI LOCATE IC), loo: F.RINT ''Invertline"
15()a ERA§ELINE Icll1. 140, 150. 140
1600 LOCATE Icl.140: PRINT "Eraseline"
17(10 END

6raphics statements 1{)-11

E F= f} S E= B 0 X

This statement erases a box in the position de6[ril]ed by its
cc)or d i n at es .

FORmT

veTE§

EXAHFLE

ERA§EB0X topLeft (x,y) extent (x,y)

You Cannot See EFiA§EB0X working against a dark backgroLind. Only
against a light background. The act of erasing only turns Screen
bits off .

11100 LET A=120: Bf=BO: C=80: D=BO
1100 DrawBox A,a,I,D
1200 FOR Pau5e=l TO 200: NEXT Paiise
1300 LET A=140: 8=100: C-40: 1}=40
1400 PFtlNT "This erases the center of the box''
1500 00SUB 2000
1600 PRINT "And this era5e5 everything."
1700 LET A=O: 8=0: [=320: I)=240
1800 60SUB 2000
1900 ENI)
2000 FOR Pause=l TO 2011: NEXT Pause
2100 ErageBo){ A,B,C,D
2200 FOR Pause=1 TO 2()0: NEXT Pause
2300 RETURN

This exanple draws a box. era5e5 its center, and then [lear5
(erases) the entire Screen. Flgure 10-9 shows the program riin
through the f irst erasure.

lc)-12 8Ril)BASIC Reference Manual

u

-.I

I-,

This Er.!E= t.he cent,I=r of` t,he box

H
Figi`rE II.:)-C}. An E;{amF)1e of EF`'ASEElox

Braphic:s Statements 11-I-13

Ziiil

Eiil

ZiE

EF=ASEC= I F=CLE

This statement erases a circle of the Size and position described by
Its c:oordinates.

FaFunT

NITE§

ExfunE

ERASECIRCLE }:.y, radius

Yc]u cannot See the Circle de5[ribed by ERASECIRCLE unless you erase
over a white area. The }:,v [oordiriates Specify the c:enter of the
circ.le. The radius is measured in screen bits.

1(:lcICI DRAWB0X 12Cl, 3Cl, 90. 140

11()0 DRAWCIRCLE 12(I,6Ct. 20
120() LOCATE 10. 60: PRINT "Drawcircle"
13t.10 INVERTCIRCLE 120,loo,20
14CIO LOCATE 1(I. 10(I: PRINT "Invertcircle"
15C)0 ERASECIRCLE 120, 1411, 20
16()(t LOCATE i(1.140: PRINT "Erasecir[le"
17{)0 END

1{1-14 6F(il)BASIC Fleference Mani`al

u

EI

EI

EF=f}SED0T

This Statement era9e5 a dot,

FORAT

veTES

EXArfLE

ERA§EDOT >:.y

ERA§EDOT turns of f one 5[reen bit. It i5 only visible when the dot
resides on a light bat:kqround.

EiEI

ill

Ziil

lt]Ot-I DRAWEOX 121-I. 30. 9{t, 140

11011 LOCATE 10. 55: PFilNT "DrawDot"
1200 LOCATE i(I, 95: PRINT "Invertoot"
1300 LC]CATE 10, 135: PRINT "Erasel)ot"
14011 REM The DrawDot Routine
1500 LET X=80: Y=60
160tl WHILE X{:=160

1700 DRAWDOT X,Y

l80CI LET X=X+5
19()0 WENI)

2(Iclo FiEM The Invertl)ot Routine
2100 LET X=80: LET Y=100
22CIO WHILE X<:=160

25(10 INVERTDOT X,Y

2400 LET X=X+5
2500 WEND
2600 REM The Era5eDc)t F{c]utine
2700 LET X=80:Y=140
280C) WHILE X¢.=160
29Cto ERA§EDOT X,Y

500tJ LET X=X+5
51('0 WEND

320Ct END

This program differs frc)in prc)grams fc)r the other f iqures in order tc)
put f ive pixels between the dots. Without these 5pac:e§, you Cannot
tell the difference betwEEn 5imilar statements for DOT and LINE.

Graphics Statements ill-15

EF=f}§EL I NE

This Statement erases a line in the position degcribed by its
coord i nate5.

F-T

veTES

EXArfu

ERA§ELINE 5tartpoint (x,y) endpoint (x.y)

ERASELINE needs four argiiments -- the horizontal and vertical poirit5
for the Start of the erasure and tlie horizontal arid vertical points
f or ending erasure.

1000 I)RAWEOX 120, 30, 90, 140
1100 DRAWLINE loo, 60, 150, 60
1200 LOCATE 10, 60: PRINT "I)rawline"
1300 [NVERTLINE loo, loo, 150, loo
1400 LOCATE 10, loll: PRINT "Invertline"
1500 ERA§ELINE loo, 140. 150, 140
1600 LOCATE 10,140: PRINT ''Eraseline"
1700 ENI)

10-16 BF{iDBA§IC REference Manual

u

EI

u

ZiiE

1

Zil

I N V E= R T EI 0 X

Thi5 statement]nverts the "colors" c}f a box in the positic]n
de5cr.ibed by its c:oordinate5.

Fount

NITES

EXAIRE

]NVERTEI0X Tc)pLeft (>(.`/) E>(tent (>:.y)

The inver5ic)n here amc]imts to tiirnino off bits that are on and
turning on bits that are off . As a resL`lt. INVERTElox desc:ribes a
light rectangle on a darl.I bac:I:groiincl anc] a dark rectangle against a
light backgroLtnd. See FigL`re 11:)-10 below.

l{)l-)C) DRALiJB0X 811. 8(I.1(:1{:1. i.:)C)

llCICI LET A=4(): B=1l:lt:I: C=1: I)=1

12()(:1 WHILE A.::(:lt:)

13(:)0 INIJERTB0X A,12l:I,5.2Cl

14(:'0 A=A+5

15(Jt:l WEND

16{:tc) END

Figiire 1(:)-1(). An E>:ample of IN\/ERTEOX

Graphic.s Statemeiit5 1t:l-17

I r` v E F= T C I Fi. c= L E

This statement position5 and draws a c:irc.Ie the "colors" c)f which
are the opposite ef the background area.

FORmT

TiHiE

EXArFu

INVEFITCIRCLE x,y, radius

The inversion here amounts to tiirning off bit5 that are on and
turning an bits that are off . A5 a result. INVERTCIF!CLE de5c:ribe5 a
light circle on a dark bat:kgroiind and a dark circle againgt a light
background. The }:.y Coordinates Spec:ify the c:enter of the circle.
The radlug ig measured in Screen bits.

1000 DRAWB0X 12{1. 30. 90. 140
11[)0 DRAWCIRCLE 120,60,20
12110 LOCATE 10, 60: PBINT "I}rawcircle"
1500 INVERTCIRCLE 120,loo,20
1400 LOCATE 10, 1(10: PRINT "Invertcircle"
1500 ERA§ECIRCLE 120, 140, 20
1600 LOCATE 1{),140: PRINT "Erase[ircle"
1700 ENI)

10-18 GRiDEA§IC Fteference Manual

RE

u

EI

iiE

rl

Eii

I lu V E I: T 1} 0 T
INVERTDOT draws a dot of a "color" opposite that of its background.

FdanT

veTES

ExfuRE

INVERTDOT topLeft (x.y) extent (x,y)

INVERTI)OT places a light dot on a dark bat:kgroiind and a dark dot on
a light background. If a screen bit ig on, INVERTDOT turng it off .
If off . it turns it on.

I(loo I)RAWB0X 120, 30, 90, 140
1100 LOCATE 10, 55: PRINT ''DrawDot"
1200 LOCATE 10, 95: PRINT "Invertl}ot"
1500 LOCATE 10, 135: PRINT "EraseDot"
140Ct REH The I)rawl)ot Routine
1500 LET X=80: Y=60
16Cto WHILE X<=160

170(1 I)RAWI}OT X,Y

1800 LET X=X+5
19rJ0 WENI)
20tlo REM The InvertDot Routir`e
2100 LET X=80: LET Y=100
220{1 WHILE X<=160
2300 INVERTl)OT X,Y
24Clo LET X=X+5
2500 WEND
260(I REM The Era5eDot Routine
270C) LET X=803Y=140
2800 WHILE X<=160
2900 ERASEDOT X.Y
3000 LET X=X+5
3100 WEND
320C) END

This program differs from programs far the other f igure5 in order to
piit f ive pixels between the dc]t5. Without these 5paEe5, you Cannot
tell the dif+erence between similar statements for DOT and LINE.

Craphi[5 §tatement5 10-19

I rvvEF=TL I NE

INVERTLINE draws a line a+ a ''[o]c)r" t]ppo5ite that of its
background.

F-T

NRES

ExfuRE

INVERTLINE startpoint (x.y) endF'oint {x,y)

INVERTLINE needs fc]ur arguments -- the horizontal and vertical
pc}ints fc)r the Start of the line and the hori:ontal and vertical
points for the end of the line.

The inver5ion here amounts to turning of f bits that are on and
turning on bits that are off . As a result. INVERTLINE degc:ribes a
light line on a dark background and a dark line against a light
backgrc}und.

1000 DRAWElox 12(), 30, 9l.t, 140
1100 DRAWLINE 11)0, 60, 150. 6(I
1200 LOCATE 10, 60: PRINT "Drawline"
1300 INVERTLINE 100, loll, 150, loo
14C)CI LOCATE 10, loo; PRINT ''Invertline"
1500 ERA§ELINE loo, 140, 150, 140
160CI LOCATE 10.1411! F'RINT "Era5eline"
1700 ENI)

lcl-I() GRiDBA§IC Referent:e Manual

EE

EI

u

1

M0VEE30X

This Statement [opie6 an existing box to a second Set of
coordinates.

FumT

roTES

Exf-

MOVEB0X tt]pLeft (x,y) extent (x.y) destinatic)n topLeft (x,y)

MOVEE)OX cai]ie5, but does not erase, ari existing I)ox. If you need tc)
give the illusion of flovement you must fallow yaiir HOVEB0X Statement
with an EFtA§EB0X 5tateoent (the erase coordinates shoiild be thc)se of
the original boy.).

1000 LET A=loo: 8=80: C=80; D=BO
1100 DrawBe}{ A,a,C,D
1200 FOR Pause=l TO ZOO: NEXT Pause
1300 MoveBox A,B,C,0,200,80
1400 Era5eBc}x A.a,C,D
1500 END

6raphics Statements 10-21

STf}CKM=G

Thls stE`tEment placeg a me5saqe in inverse vldec] at the bottclm c}f
the screen.

F-T

unE§

ExfwRE

§TACKM§6 "Prc]mpt§tri ng"
[§TAC*:M§6 "Prompt§tring"J

§TA[KM§6 takes only c)ne parameter --the string character that
constitutes the prompt message. If you liave a secc)nd STACKMS6
Statement, the message area will expand to hold both messages.
NOTE: When writing two mes5aqes, iJlace the fir5t me55age second.
For e,¥ample, the mes5E`qes in

lot)C) STAck:MSB "Press ESC to e}:it"
1 ll)C) §TAct!`'MS6 "ThE StackMsg Program"

appear in reverse vertical c)rder:

The StackMsg ProQram
Fre5s E§C to exit

STA[KMS6 messages remain on the screen far a si]lit Second. To make
them stay longer, you c.an follow the §TACKM§6 statement with some
kind of loop. The most common loop displays the prompt until
Someone presses a key. The message then disappears a5 prc}gram
exec:i`tion continues. NOTE: I)a not inc:lude a §TAcr:M§C prompt inside
a loop unless you FBI.low it immediately with a CLEAF"S6 statement.
Otherwise, the prompt area 5[roll5 up the Screen. Adding a third
and/or fc)urth message without CLEARMS6 al5a c:au5es scrolling. See
CLEARMS6 earlier in this chapter far details.

1000 STACKMSG "Press E§C to exit"
1100 §TACKM§8 "The StackMsg Program"
1200 LET KeyS=INKEYS
150(t IF KEYS <> " THEN PRINT KeyS; " gets me out of the lot)p" ELSE
60T0 12('0
1400 END

In this example, lines i(){)0 and 1100 Set up a two-line prompt.
Lines 1200 and 1300 [reate an INKEYS loop that waits for a key pre55
to oc[ur. When Someone pre55es a key, line 1300 prints the key's
character .

10-22 0Ril)BASIC Reference Maniial

L

EI,

u

rl

A

Fiaure lt:t-11. A STA[l;MSG F.rompt Line

6raphlcs StatEiments li.)-:I

H

u

u

Zii

1

Ziil

AppEi\iDlx A: EFun rEssA6Es

GRiDBASIC error meg5age5 are li5ted here in alphabetic:al order.

Array ig too large

What happened You tried ta put over 65,535 bytes into an array.

What to do Ftedimension the array so that its size falls within
legal limits.

Array reference is out Of range

What happened Yc]u probably have a 5ub5cript c]f 0: you dimengioned
an array with a variable and Still haven't assigned a
numt}er to tliat variable. Or, you have assigned a
number greater than the 5ub5cript allows.

What ta do Check your siibs[ripts, especially tht)5e that are
variablEs. Remember: You Can only have ten items in
an array without dimensioning.

Atteapt to read past end Of file

What happened An INPUT# statement is e}:ecuted after all tlie data in
a file has already been input, or the file i5 a null
(empty) file.

What to do Place the EOF function in your prc)gram tc) detect end

6F{il)BASIC Ref erence Manual A-1

t)f file and avoid thi! error,

ELSE mceuntered -itliout .atchinq IF u
What happened You programmed an IF THEN ELSE, biit managed to leave

out the IF.

What tci de Put ln the IF .tatement.

Eqty lln,

What happened This i5 a 9ygtem-level errc)r.

What to do Nothing. YOU won't See this error.

Expr-.ion error

What happened This ig a System-level error.

Wh.t to do Nothing. You won't see thl9 error.

Fll. .lrndy epm

What happened Thi. run-time error ec[urB when yciu try to reopen a
file you've already opened.

What to do ChE[k ta see what file is c)pen and itg tag number. EE
Also, i5 it a random accegg file? Sometimes you try
to Open a different i ile, but give a tag that ig
already in use.

Yc]u can either write a CLOSE Statement fc}r the file
or (if the tag is the problen) give the correct
number. If the file i5 random acce55, make gure you
haven't tried to read or write to it as yc]u woiild
with a Sequential file.

Fll. i. not operi far r.ndo. ace

What happened This rLln-time error indicates you've tried to read
from or write to a file (with BET or PUT). but you
haven't opened it a5 a random access file.

What to do

A-2 Error Messages

Check ta see if you've oi]ened the file. If you liave,
c:heck the f ile tag number and the niimber yoiL've used
with the your ac[e65 command. Also, did you assign
the file the "R" (for "random") mode? And remember:

E|

Random a[c:e5s files reqiiire a F.IELD Statement to
allot bitffer Space.

File not apen

lthat happened Tlii5 run-time error indicates yoLi'`+e tried tc) read
from or write tc) a file you ha`7en't openecl.

What to do

ZiE

Rii

n

Chec:k to see if yoll've c)pened the f lie. If you have,
che[k the file tag nitmber arid the nL`mber yc}Li'`,`e used
with the yoLir ac[e55 command.

FqFt encountered without Patching NEXT

What hapiJened

What to dc'

Beneratico error

What happened

What ta do

Illegal Eharacter

What happened

What to do

Illegal value

What happened

What to do

Iapraper expre65i tin

What happened

What to dc'

You began a FOR NEXT lot)p, bLtt failed to Complete it
with a NEXT Statement.

locate the place where the loc)p shoiild end arld put in
the NEXT statement with E`ppropriate vE`riable. Or
era5E the FOF{ TO [STEP] if you no longer want the
loop in yoi`r program.

Thi5 i5 a System-levEl errl3r.

Nothing. Yc}u won't see this error.

This error message is reserved tor later use.

Nothing. It wDri't happen.

A number that i5 Either too large or tc)0 gmall causes
this at the System lEvel.

Nc}thing. Yoll won't See this error.

This i5 a system-level error.

Nothing. Yc}u won't See this error.

GF\.1 DEIASIC F..eference Mani`al A~:`

Iqreplr function c.ll

Wh.t h.pp.ned Thi. in.s9age cover. a multitl`de clf .ina --+ram u.inu
nan-exi!tent or unimpLemented fun[ticin..

Wh.t to do Check to .e. that your program contain. only current
function.. Are their nan.a correctly Spelled? If
everything lolJk5 okly, try re-running the progr:am.
]f th.t fails, reboet the gy5tem and then re-ri`n the
Program.

I-reper loop rl..tin.

What h.ppen.d YOU written an inner lcop and an outer lcep !o that
they civerlap, A run-time error.

What to do Untangle the of fending loops §o that na overlapping
takes place. See FOR NEXT and WllILE WEND for
detai I s,

I-rapM ppra..tor ln function I.11

What happened Thil run-time error u€iially indicateE an improper
niLmber of parameters or parenthe!el.

Wh.t to do Ch.ck to ... th.t you gave th. correct numb.r of
p.r.mentor. .nd p.renth..e9 to the i unEtlon.

Iqreper lyntut

What happened This ig the catc:h-all phrase for any Syntax problem.
It occurs while programming, when you press RETURN,
CODE-RETURN, or either vertical arrow key.

What tc) do

EI

Check the Syntax of all statements and func:tion5 on
the current line and Confirm the line again to see if
the error remains.

[nv.lid varl.bl.

What happened The int.rpretEr has encc)untered either a variable
with an illegal character in it (gee Chapter Two) or
the name of a file the system can't find.

What to do

A-4 Error Meggage5

Check the varlables c]n the current line. If yoi` are
making a +ile reference, make 5iire that it i9 an the

u

Zilii!

ZiE

n

device, under the subject. Eind c)f the kind you have
named .

His.etched quotes

What happened This errc]r occiirs `.ihile yoL`'rE programming End
indicate5 yell don..t have the proper nimber of qitotes
on the cL`rrent lirie.

What to do CheEk qi`otation mE\rk5 (") to mak.i 5iire yc)ii have the
correct niimber. NOTE: Don't try tc) pilt doiible quotE.5
within double quotes. You can, hc]wever, pi`t 5inqle
quc)tee (a) within double quotes.

Missing para.eter in array reference

What happened Diirinq programJTlinq, yoit have omitted one of the
dimension5 that you dec:larecl when dimen5ioning (DIM)
the array.

What to do Find the erring array and insert the missing
parameter .

rli55ing I)ara.eter in fLLnction reference

What happened While prc}qramming, volt have omitted a reqiiired
parameter frc)in a functic`n.

What to do Find the function and determine which parameter i5
mis5inq. Then insert the parameter.

l\EXT enccuntered .ithcxlt .atEhing FOFt

What happened Yc)u have failed to inc:lude the upper portion of the
FOR NEXT loop --FOR TO [STEP]. Or you have given
the wrong variable after NEXT.

What to do Pi`t the FOR TO [STEPJ portitJn of the loop at Its
|]roFier place in your program. Or, if the wrc)ng
variable follows NEXT, correct it. Or. if the NEXT
is an unwanted leftover. erase it.

hkiober Of array di.ensierl5 di5agree5 .ith clef inition

What happened YOU ha`/e given an array the wrong number c)i
dimen5ic)n5. This message can occL`r while programming
or at rLtn-time.

GRiDBASI[Reference Mani`al A-5

What to do Check any array(9) in the current line and determine
which has an improper number Df dimen5iang.

Net iql-ted
What happened You have used a word that 6F{iDBA§IC hag reserved i or

later iL5e, but whi[h does not yet work ag a
Statement, fun[tlc}n, or congtant.

What to do Figure out Some other way to accomplish the purpose
achieved by the unimplemented word.

Ill.btr Of para.Eter5 disagrENrs With dot inition

What happened Yoii have given an array or a funEtien the wrong
number of parameters. This me55age tan occur while
pragramming or at run-time.

What to de Check any array(9) or functions in the current line
and determine which hag an improper numb.r a+
parameters.

out Of -_y
What happened You dimen!ioned an array 5o that it tal(e. more menery

than the system of f ere,

What to dci Redioen5ion the c}f fending array.

Ran oLit of data

What happened A READ Statement read all the available I)ATA items.

What to do Add more data. Or pitt in a counter that [ause3 the
prc)gram to Stop reading before exhaii5ting the items
in the data Statement. Or put in a RESTORE statement
to cause the data to be reread.

FETL" encountered outsid. eiil)routine

What happened You have a PIETURN statement that lacks a preceding
matchiriq 60SUB Statement.

What to do

A-6 Error Me5sage5

Either write the appropriate GO§UB Statement or erase
the RETURN.

u

u

Ziil

BiiR

Ziii

§tateiient witi` syntax errors encountered

What ilappened This message repeats at riln-time what yoi` saw a5
"Imprc)per 5ynta}:" while prc}gramminq. Thi5 means that

you didn't c:c}rrect the errc]r.

What to do Check the syntax of all statements and functic]ns on
the c:urrent line and conf irm the line again to see if
the errc)r remains.

Type oisntch

What happened Every variable and mc]5t c)peration5 e>:pect a
particiilar "type" of data --string, niimeri[. or
Eloolean. Giving a f Dreiqn dati`m to a variable or
c)peration causes this error. For e}(ample, giving a
string tc) a niimEric operatc)r or variable.

What to do Find the c)ff ending datum (c}r its Source). Then
change either the datum c)r the receivinq 5tatment 5o
that a type match occurs.

lJidefined line nuJber

What happenEld You have plated a line riumber in a Statement (suc:h a5
GOT0 c]r GOSUB) for which no matt:hinq line e>:i5ts.

What to do Change the line nilmber tc) point tc) the proper line.
Or erase the poiriter Statement.

Variable expec:ted here

What happened You tvFie a statement rE]quirinq a varialbe (Such as
INFUT) while programminq. but didii.`t inc.Ii`de its
var i abl e .

What to dc) Find the Statement and enter the variable(5).

lEND enEc.unttred without .atching WILE

What happened A WHILE WEND loc]p lacks its WHILE statement.

What to do Either Insert the WHILE statement with its ccindition
or Erase WEND 5tatEment.

6RiDBASIC Referenc-e Maniial A-7

WHILE fmcountEN-ed Without utching NDID

What happerled A WHILE WEND loop lacks it. WEND 9tatement.

What to do Eith.r insert the WEND itatemer`t with its [andition
or erase WHILE Statement.

A-8 Errc)r MeB9ageg

u

u

u

lil

-,

Zii

APPEl`DIX a: ASCII D+ARACTERS

This appendix Eontain5 the A§CII (American Standard Code for Informatic)n
Interchange) character codes. Programmers use these codes in everything from
String handling functions {see Chapter Six) to communic:ation5 work.

GRioEIA§IC Ref erence Manual a-1

NAME PRESS

a-2

roll
st.r+, of herdirvy
st,'-t of text
end of t.ext.
erid a+` tr.nsmission
er'quirt'
•ckriow I edge
bell
backspace
horizcintal tab
I inefeed
ue'-t.ical t.®b
f om f eed
carriage re¢urn
sr'ift out
hift. ir'

i¥:i':!!!,:i!pi((xxoO:F,
nee)tl`,e ,C|:

:#tr,:::Tsbil8!E
car'€e I
end medium
subst i t.ute
escape
file separa+,or
group sep.rat.or
record sep.rotor
ilrlit a.p.rator
SF`aEe
exc i ,mat i on
quclt,.t.ion in.rkf
numb.r si®n
doll.r fign
p,rcent fi®n
MP,rf,nd

•postrophe
oF.eri irig parerlthe9 is
c:losing parent.he=is
sterisk

plus
Comma'EEEE

sl,sh

color'
semicc,lan
less th,n
equal t®
9ree¢.r than
commeric.I at Sigrl

A§[II Characters

cTeL-sHiFT-2
CTRL-A
CTRL-B
CTELi
CTRL-0
CTRL-E
CTRL-F
CTPL-I
CTeL-H
CTRL-I, TAB
CTRL-J
CTRL-K
CTBL-L
CTRL-M
CTRL-N
C.TR|-0
CTRL-P
CTRL-a
CTRL-R
C1'EL-S
CTRL-T
CTRL-U
CTRL-u
CTRL-W
CTRL-*
CTRL-Y
CTRL-Z
CTRL-;
CTF:L-SHIFT-,
CTRL-=
CTRL-SH I F1.- .
CTRL-SHIFT-hiFih.Ii

u

EEI

EI

C,:,I,E- ,
C.CIDE-SHIFT-..
C||DE-

C:ODE-,

CODE-SH I FT-,
C.0[lE-SHIFT-,
CODE-SHIFT-
CC'DE-;
CODE-SHIFT+iijF.heri

opening bi-aEket
backs I ash
closing bi-act.et.
c i rc:umf. I ex
under I i ne
ba'=k q,Jot,e

left c:urlg bracket
`''e'-tical line
right curls bracket.
t i I de
'Je) ete

BRiDBASI[Ref erence Manual El-3

n

rl

u

u

u

Ziii,

!iii,

rl

INDEX

A (Append) El-l.
ABS a-3
Acce58 Code 8-14
AEOS 5-4
AND 2-8, 5-5
Append .cce5. .ode 8-I.
Arr.yl 2-7, 3-2
A§ 9-5
Ass 6-2
ASCII ch.rlEtgr. 6-2, 8-I ++
Asf N 5-6
ATN 5-7
AutEb8.tl[Ilo. nu.thutlno I-6

bo 8-I
BI)cilean Constant. 5-13, 5-53
Btiffer (F`AM) 9-1, 9-5, 9-11

CDB| 5-8
CHR, 6-5
CINT 5-2, 5-9
CLEARHS6 10-.
CLOSE a-3
CODE-? I-6
CODE-C i-3
CODE-E I-3
CODE-R I-3
COMMA 7-2, 7-6, 7-7, 7-10
Ccimunlcation5 fi)e5 a-10
Concatenatiori 2-11, 7-2, 7-11, a-11
Con5tant6 2-4

Boole.n 5-13. 5-33
Nuoeric 2-5
String 2-4

Ccintinuing a Prograhl I-3

Convert 9-3
Convert to double preci3ion 5-8
Cony.rt to int.ger 5-9
Cony.rt to 5lngle prE[igion 5-11
COB 5-10
Coline 5-10
CSN6 5-11
Curlor I-i
CVD 9-3
CVI 9-S
CV8 9-I

DATA 3-6
DATE, 7-4
D.lid`iterg 2-13. 7-7
I)" 2-7' S-2
DOMENU 10-5
DRAWB0X 10-6
DRA"- 10-7
DRAWCIRCLE 10-9
DRAWDOT 10-10
DRAwllNE 10-11

e (exponentl&l function) 5-12
ELSE 4-9
END 4-2, 8-3
E natatian 2-5
EOF a-4
EOLN 8-5
Epson 7-2 f , 8-18
ERA§EB0X 10-12
ERASECIRCLE 10-14
EfiA§E00T 10-15
ERASELINE 10-16
Eraging LlnE.(.) I-3

GRIDEIA§IC Reference Manual Index-1

Error |q.. A-I ff .
Eseap. k.y I-3
EXP 5-12
Expon.ntl.I +12
Expr...loo. 2-7

'0 8-I
FALes 5-i3
FIEID 9-5
Field verltol.. 9-9
Flle .cce.. .ed. a-I.
Fii. kind. 2-i3
File n.dlino conv.ntlon. 2-12
f il, t,9 8-3
FIX 5-2' +I,
FOF! 4-5
FOR T0 N:XT [§TEP] .-3

GET 9-6
6ETFILE. 2-12. a-7
60sOB RETIJRN .-6
60TO 4-E'
Cr..tee thun (>) 2-8
6r..t.r then cw. .qu.I to (>) 2-®
GRiDBAS[C mviren..nt I-.
ceiDEiA§[C, Invoklng I-I
GF`ll)BASIC cer..a I-4

Hlqhl!,htln, I-5

I 'Irlpu,' I-I,
[F ,-9
]F THEN [ELSE] .-9
INKEY. 7-5
INPUT, a-a
INPUT, a-10
'NPuT 7-6
[npiit .cce.. aed. e-I.
]NSTR 6-4
INT 5-2, 5-ls
lntEiglr I)ivi.ion 2-., 2-El, 5-16
lot.I.r furiEtloli. 5-2
Iritap.ri 2-6, 5-2
tNVERTcOX 10-17
INVERi.ciRCLE io-ie
INVERTceT io-i9
INVEF`TL)NE 10-20

K.yl)a.rd 7-a
KILL a-11

LEFT. 6rd
LEN 6-7
L,,, tt',n (<) 2-8
1... th.n cr qu.I to (<-) 20

Index-2 GRIDBA§]C R.f.r.nc. Mlnu.)

LET SI
Lin. nuebiM. +i.ld I+
Lln.I .nd lin. nucherlnp I-6
lee e-i2, g-7
L"TE 7-9
Lpr e-i3. 9d
Ltrsio 5-ia
loqarith. +17, 5-18
Logical oper.tor. 2-e f , 5i. 5-20, 5-21. S-3!
LOG 5-17
LSET 9-9

halt. .trlng +unctlon 9-10
H.null tin. nuobering I-6
M.flu 10-5
Me.gagf. tin.I-5, 10-4, 10-22
Mess.q.e 10-4, 10-22
MID, 6-8
Mro, 9-10
MKI, 9-10
MK§, 9-10
meD 2-8, 5-I.
Mode

Access 8-14, 9-11
Dirttt I-4
Inl]ireet I-2
Proqr.coing I-2

rovEeex io-2i
Hultipl. it.ton.nt. I-7

NHtln, ,+, ,-I,
NEXT ,-5
vet 2-8, 2-9. 5-ae
Not qtJ,I te (<>' 2-8
^lu..rlc con.tnt. 2-5
NLiMlc op.r.ten. 2-7. 5-I

a (Output) a-1.
CIN 60§UB ,-11
0N GOTO 4-11
OPEN (Randob filel) 9-11
OPEN (§.qiLenti.I files) 8-1, 8-I.
Op,r,tor. 2-7
0R 2-a' 5-21
0utlln, I-,
Oiitput .cce.. cod. e-I.

P.ddlnq dlolt. 7-I,
P.thn.in. .ynt.x 2-12. B-7
P] i-22
plx,1 7-9' 10-I
PriN:.a.nc., Order of 2-7, 2-e
PRINT, e-17
pRiNT. u9ING e-i9
PBINT 7-10
PrintM 7-2 i , El-lB
PRINT UBINO 7-12
Proqr.Ii .ditlnq .cr..n I-2, I-5
ProdN}t 10-5, 10-22
PUT ,-13

EEZ

u

rl

Biil

r

R (Pandom) 9-I
Fiandom a[[esl mode 9-I
RANDoril zE 5-25
Random numbers 5-24 f i
REAl) 5-5
fiEA0 DATA [PE§TORE] 5-5
Real-time clock 5-25, 7-4, 7-21
Re+ormattlng li5tlngg i-7
Relationdl operators 2-8
fiEM 3-9
Renumbering I-6
Reserved wl]rds 2-3
RESTORE 3-6
RETURN 4-6
RIGHT$ 6-9
RNO 5-24
ftouNI) 5-2, 5-28
R§ET 9-9
Running a i]roqram 1-3

Screen clinien5ion5 9-I
§crcilling 1-2
SEMICOLON 7-6, 7-7, 7-10, 7-19
§6N 5-29
SHIFT-FiETURN I-8
SIN 5-30
§PACE$ 6-10
SOR 5-51
STACKMS6 10-22
§tate4ient f ield I-4
STEP 4-5
§TOF' 4-13
§topping a program li
STR, 6-11
STRING. 6-12
Strlng [on5tant5 2-4
String operators 2-11
Syntax diagramg 2-I

TAB 7-20
Jabbing 7-2, 7-10
TAN 5-52
THEN 4-9
Tlr'E$ 7-2!
TO 4-5
TRUE 5-33
TfiuNI: i-2, 5-34

VAL 6-13
Variableg 2-6

wO 8-I
WENI) 4-14
WHILE ,-14

WHILE WEND 4-14

Work5heet exainple B-6

XOFi 2-8, 5-35, 7-12

a 2-4, 7-10

I 2-4, 7-14. B-S, 8-14
S, 7-17

2-4, 2-6, 6-I
% 2-4, 2-6, 7-15
a 7-13
'3-9
(2-4' 2-8
) 2-4' 2i)

7-17
7-16

I 2-4, 2-a, 5-I, 7-17
+ 2-4, 2-8, 2-11, 5-I. 7-15
- 2-4, 2-7. 2-3, 5~1, 7-15
/ 2-4' 2-8, 5-i

1-2 ++, 7-,4
2-4' 2-13
7-19
2-a

2-4' 2-8

2-4, 2-a. 5-i6. 7-is
2-5
2-4, 2-12, 2-13
10-5
2-4, 2-12, 2-13

GRil)EIAE;IC FieferEnce Manilal I ndE): -3

'J

I.v,

•``1

