GRiDBASIC REFERENCE MANUAL

March 9, 1983

Model Number 2Z1020-40

COPYRIGHT @ 1983 GRiD Systems Corporation

2535 Garcia Avenue)

Mountain View, CA 94043

(415) 961-4800 L

Manual Name : GRiDBASIC Reference Manual
Model Number 21020-40
Issue date: March 9, 1983

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical,
photocopy, recording, or otherwise, without the prior written permission of
GRiD Systems Corporation.

The information in this document is subject to change without notice.

NEITHER GRiD SYSTEMS CORPORATION NOR THIS DOCUMENT MAKES ANY EXPRESSED OR
IMPLIED WARRANTY, INCLUDING, BUT NOT LIMITED TO THE IMFLIED WARRANTIES OF
MERCHANTABILITY, QUALITY, OR FITNESS FOR A PARTICULAR FURFOSE. GRiD Systems
Corporation makes no representation as to the accuracy or adequacy of this
document. GRiD Systems Corporation has no obligation to update or keep
current the information contained in this document.

GRiD System Corporation’s software products are copyrighted by and shall
remain the property of GRiD Systems Corporation.

UNDER NO CIRCUMSTANCES WILL GRID SYSTEMS CORPORATION BE LIABELE FOR ANY LOSS OR
OTHER DAMAGES ARISING OUT OF THE USE OF THIS MANUAL. \h‘J

The following are trademarks of GRiD Systems Corporation: GRiD, NAVIGATOR,
COMFASS CENTRAL, COMFASS COMPUTER, and LEVERAGED LEARNING.

i1

TABLE OF CONTENTS

GRiDEASIC COMMAND SUMMARY . . & & & & & o o o o o = o =« « s = « = %

ABOUT THIS BODK . . « &« =« =« o o s o s s s s & s 5 s a s s = = X1

CHAFTER ONE: GETTING STARTED

WMhat IsBRIDBASIE . . &+ o o = & o o o % & « & @ = = @ &8 @ @ & @ /=
Invoking GRIDBASIC . s v o & = & » & @ 5 & = % @ % & & & @& & & =
The Programming (Indirect) Mode+« « + &+ « « &« . .
Running, Continuing, and Stopping a Frogram.
The ESCape KBy « w « » @ w o = & o @ o = @ = w & a & @ = @ ‘s
Eracing LInels) e « = » w m & & @ ® & & 0 @ & & & & % @ & & @
ther Commands = v s « w & & o o @ & & & @ @ @ @ 3 @ & @ % &
The: Direct Mode & i+ # 5 2 & 6 & ¥ @ & W @ & 9 & @ & & # @ % @& & %
About the GRiDBASIC Environment & & & & & o = « = = « « =«
Layout of the GRIiDEASIC Screen . . & & « & & & 2 « = « = & =
Lines and Line NUmbBring « « « « s « o & s« s # & % & 3 @ @« @& ‘&
Automatic Line Numbering . . « « « & & o & &« & & & « = & + 4
Manual Line Numbering . . . « « ¢ ¢ & 2 2 2 @« s a = s = & =
PenuUMOBring « o+ » o o & » o &0 @ @ » &8 # & @ = &« 2 » ® @ & =
Multiple Statements . v . & 2 o = @ & 3 @ @ @ 5 5 & @ @@ =
Reformatting your Listings « & « ¢« & & o + « &

| I |
NN BB DWW G R e

T T e e e e S e = = S =

CHAFTER TWO: GENERAL INFORMATION ABOUT GRiDBASIC

Syntax Diagrams . . . & « 4 4 4 4 4 4 bk e e e e
Reserved Words
Constants . . . & & v & & & v 4 & v & & <
String COnstEnts « o o & o 5 6 5 5 5 G 5 F 5 od 5 5w
Numeric Constants & 4 4 v & & o « o &
Variables . . & & 4 v 4 4 v 6 b e e e e e e e e e e e B
Array Variables T EE R EEEE R
Expressions and Operators R EE S R R RN R R
Order of Precedence and Numeric Operators. T R
Relational Operators . . & . & & & & 4 4 4 & o & o o = » = =
Logical OperatorsS. o o « &« o © 0 @ w 5 o o % @ & @ & & s
String Operatord.: « « o o & o o 5@ & # 8 9 & & & 5 % & %
File Naming ConventionS. & . « s & & @ s s & @ @ & & % @ % = & s .2-12
FIYE KiNOSs % 50 50 5 % % & 7 51 3 5 of 6w w o S oue 8 5 o e e
DElimit®r|. . o o o o @ o o @ o @ & o o 5 w0 @ w0 ow w e e P=LS

NNNMI\J’}JNNI‘JNM
e R R BN s I S N

L3
|
-
—

L]
1
—
(2]

CHAFTER THREE: ASSIGNMENT AND DEFINITION STATEMENTS

DIM o 5 w0 0 i 2 o w o 3 (8 8 5 % @ 8 % 5 % 5 ® 0w o8 # @ w = W 3-2
LET . « « « s s s = s s s s s s 8 3 s 8 s 8 s 3 e s s s s 34
READ DATA [RESTDRE] ® % s 8 & % & 8 ® 8 8 4 8 s s s = oa s s s s s 30
REM & & o s« 5 5 5 5 3 a5 @ 6 5 » % 5 & & % 5 & 5 s« 5 » & & s 5 =%

CHAPTER FOUR: STATEMENTS THAT CONTROL PROGRAM FLOW

END ® s 4 s e s 8w e s s e s s s s s e s e s
FOR TO NEXT [STEP] s s s & & & @ a o w s 4 4w e e om mow ow oW m s a
GOSUB RETURN . &« .« « o o « s o s o o o s &« s & « a & s o« = &« =
GOTO & « « & P % e s e s s 8 e 8 & 8 s & & & @ % &8 @

IF THEN [ELSE] PR W m e s R ms s oW E e W s e

ON GOTO and ON BOSUB . = ¢« ¢ ¢ o o o & s o a = 2 & s s @ = & @
STOP @ & o o o @ 2 o o & = = & # % @ @ & 2 o @ @ &« s «a « ® = ®
WHILE WEND . & ¢ & & « o o ¢ s ¢ o & s o & =

PLeis
Bl = 0o WM

[

-h-?-b
el

I

CHAPTER FIVE: ARITHMETIC AND LOGIC

INTEGER FUNETIDNS % s = % & 5 3 @ & & & 3 & % & @ & #» ® 575 (B & &
ARG (AbSOLULE! . 5 & o @ & § = % 6 ok s B oW W e R E W
ACOS (Arc cosine)

Lﬂ!..lﬂ(_ﬂ
BN

iv

AND 5 5 & & 25 & & s @ & © &
ASIN (Arc sine) . « « « =« + =
ATN (Arctangent)
CDBL (Convert to double) . .
CINT (Convert to integer) . .
COS: (Cosin®) = % 5 5 # « @ W
CSNG (Convert to single) . .
EXP (Exponential)
FALSE . « ¢ ¢« s 5 s & o = &
FIX & s« s s e & & » & & @ =
INT (Integer) « . .
Integer Division (\)
LOG (Logarithm) « «
LOG10 (Log to base 1Q) . . .
MDY = s 5 5o o W R
NOT . « o = 2 & o » 0 = o e
Bl e @ o e e w e W e
PT 6 6 4 ® 9 & B 15 8 ¥ & @ 03
RANDOMIZE . . « « &+ « o « &«
RMD {(Random)
ROUND . . o o ¢« o o 2 o = =
SBN (51an) « « = s » a o = =
SIN (Bine) = & & & ¢« u % & =
SER (Square root)
TAN (Tangent) « « .
TRUE ¢ v o o o @ ¢ w = o = =
TRUNC (Truncate)
XOR (Exclusive OR)

CHAFTER SIX: STRING FUNCTIONS

ASE (ASCIIY 5 = % 5 % = & = @&
CHR$ (Character string) . . .
INSTR (In string)
LEFT$ (Left string)
LEN (Length) o« « « o« o o o
MID$ (Mid string)
RIGHT$ (Right string)
SPACE$ (Space string) . . .
STR$¢ (S-T-R string)
STRING$% (S5tring)
VAL (Value) . . « . + « & &

oo 0 0

I I 1 o~o~0C 0O DO O O
bt et b = |)]
AN = O 0 OND> & WRN

CHAFTER SEVEN: INPUT/OUTPUT STATEMENTS

COMMA = « o » o« o « « & 7=
DATES 2 o « « o « & = 7o s & s s 5 i . e ¢ o 2 @ . 7-4
INKEYS o o w o v o 0 @ 5 3 % & & 4 @'% ® & &8 2 8 @ 6d & @ @& 1=9
INPUT 5 6 5 & 5 6 @ @ & » @ 7-6
LOCATE =< & & & o o =
PRINT . & ¢ o o w
PRINT USING
SEMICOLON
TAB 5 5 o & s & & % % & = o @ o s .
TIMES . » v o 0w w3 20 o € S & wmww » @ @www o5 @ w 7980

CHAPTER EIGHT: SEQUENTIAL FILES STATEMENTS

CLOSE s » & 9@ 2 & & 0 & & ® 4 3 & @ 8-3
EOQF KEndiof Fild) 5 & i # 5 o v @ o « = . . . B-4
EOLN. (End of 1ine) . = o « = ' o o w o «w @ a o @ « s & o & % « B9
BETEILE® . o o & = « 2 o & & » » B8-7
INPUTH . o o o 5 s 5 o o a6 5 8 a 3 o ' . . . 8-8
INPUTS = 5 o a1 5 @ % & sl % & & i ¥ Z o ume @ d o uesaw B-10
KILL o ¢ o & o o o o a o a o @« o 11
LOC (Locating) . « « & o ¢ o « &
LOF (Length of fil@) .o « « o ¢ s s o o s s ¢« o s o s a s « s » « B8-13
OPEN o & & & o o o o s o o o 5 8 8 a a s &« 2 »
PRINTR i 5 3 5 6 & o 3 o @ w & 5 e o & » o = . " e .
PRINTD USING 4 & « o o o w s w8 v o & 54 @ w o om s » oo« u @=19

CHAPTER NINE: RANDOM FILE STATEMENTS

CVI,CVS,CVD (Convert) . . = = ¢ « « &« 5 s a » « s s s « s « s o @
FIEED = » s G 9 @ 5 & & % 9 8 3 & 0 @ & % & B
B S R E R A R D e AR DR
LOE (ocating) .« « o @ oo o o @ w @ o 8 & w @ e e ¥ .
LOF (Length of T118) & = s « o a = @ o o o = =« @ & = =
LSET and RSET w s w = & 8 5 o o = & & & & o & &
MKIS MKS$,MKD$ (Make string) . « « ¢« ¢« ¢ ¢« o o s o &«
OFEN = s = 6 % & % & = %
POE =13 o 8 2 B BB

-
I-O~O~ID-O~0~{]
o0 m~NOC W

I

-lﬂ-0
—
—

0
I
-
2

vi

CHAPTER TEN: GRAPHICS STATEMENTS

CLEARMSG + + & o o o « & = « o« & &

DOMENU . o & & & & o « o & o o o &
DRAWBOX . = . « « & o ¢ & & o & &
DRAWCHARS « « « « « &
DRAMCIRCLE . . o o« « = o = o 2 «
DRAWDOT « o o ¢ ¢« o =« « s &« a = =
DRAWLINE « « & o & & « &
ERASEBOX . . « ¢ o « o« = s o o &«
ERASECIRCLE . « + =« o o o o o & &
ERASEDOT . . & « & &« o o & o &« &
ERASELINE « &« « ¢ s s « &

INVERTBOX . . ¢« ¢« & o« o« & o a & &
INVERTCIRCLE . « &« « o« & & & &

INVERTDOT & « o o o = » =« » ¢ » »
INVERTLINE . . & « &« & & & & & &
MOVEBOX - « « = = a o &« o » o = =
STACKMSE . . . « « =&

AFPFPENDICES

AFFENDIX A: ERROR MESSAGES

APPENDIX B: ASCII CHARACTERS

INDEX

10-4

10-5

10-6

10-7

10-9
10-10
10-11
10-12
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10~21
10-22

LIST OF FIGURES

Figure
Figure
Figure

Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

viii

10-1.
10-2.
10-3.
10-4.
10-5.
10-6.
10-7.
10-8.
10-9.

10—10.
10-11.

The Initial Program Editing Screen . . .
The Program Editor Screen . . . -
Line 1300 after Inserting SHIFT—RETURNs .

Example of a Type Mismatch Failure . . .
Example of Faulty Logic « « « . &
ANorking Logle . « « w o & @ ® s 5 w =
Another Working Logic . . . « « « &+ & &« =

Results of a Simple READ DATA Program . .
Results of a READ with Two Variables . .

Three Types of Random Numbers
A Program and Series of Random Numbers .
Output of RND on Three Numeric Ranges .

Examples of Comma Formatting
The Input Statement Illustrated
How Format Characters Pad Digits
Basic formatting PRINT USING
The PRINT USING Format with Signs
Asterisk and Dollar Formatting

Worksheet Figures for Example Program . .
PRINT# USING Formatting of Random Numbers

The Three Circle Graphics
The Three Dot Graphics . . + « + « & o« &
The Three Line Graphics . . . « « « « .« .
Before CLEARMSG « . « « o s o« = a & 2 »
After CLEARMSG v s e 8 os e s
A Menu Created with DUMENU F N
An Example of DRAWBDX« « .« .
The DRAWCHARS Example . s s 4 s & & s
An Example of ERASEBOX « « « + «
An Example of INVERTEOX
A STACKMSG Prompt Line « . .

8-20

10-2
10-2
10-3
10-4
10-4
10-5
10-6
10-8
10-13
10-17

10-23

LIST OF TABLES

Table 2-1. GRiDBASIC Reserved Words . . . « + « & =« & « « = =« « 2-4

Table S5-1. A Table of Integer Functions« . . . « . 52
Table S-2. The AND Truth Table « « « « s « & s o« s 5 s = o« » s s 95
Table 5-3. The NOT Truth Table « « + & & & &« & i &+ ©=20
Table 5-4 The OR Truth Table . . -« « « & o ¢ o = ® & 2 & = « « 9O21
Table 5-5. A Table of Ranges and Functions 35-26
Table 5-6 The XOR Truth Table o « = w o o o o 5 8 &« & » @ @ & D00

Table 9-1. Choosing MK$ and CV Functions - +« .« « . . 9-5

BRi1DBASIC COMMAND REFERENCE

ABS

ACOS

AND

AS

ASC

ASIN

ATN

CDBL

CHRs

CINT
CLEARMSG
CLOSE

COMMA

cos

CSNG

CvD, CVI, Cvs
DATA

DATES

DIm

DOMENU
DRAWBOX
DRAWCHARS
DRAWCIRCLE
DRAWDOT
DRAWL INE
ELSE

END

EOF

EOLN
ERASEROX
ERASECIRCLE
ERASEDOT
ERASEL INE
EXP

FALSE

FIELD

FIX

FOR TO [STEP] NEXT
BET
GETFILES
GOSUB RETURN
G60TO

IF THEN [ELSE]
INKEYS
INPUT
INPUTH#
INPUTS
INSTR

INT
INVERTBOX
INVERTCIRCLE
INVERTDOT

5-3
5-4
5-3
9-3
6-2
S5-6
5-7

6=3
5-9
10-4
B8-3
7-2
5-10
S5-11
9-3
3~
7-4
3-2
10-5
10-6
10-7
10-9
10-10
10-11
4-9
4-2
B8-4
B-5
10-12
10-14
10-15
10-16
5-11
5-13
9-5
5-14
4-3
9-8
8-7
4-4
4-8
4-9
7-5
7-b
B-8
B-10

5-15
10-17
10-18
10-19

INVERTLINE 10-20
KILL 8-11
LEFTS b-6
LEN &-7
LET 3-4
Loc 8-12, 9-7
LOCATE 7=9
LOF 8-13, 9-8
LOG 5-17
LOG10 S5-18
LSET <9
MIDs &6-8
MKDS$, MKIS, MKSS 9-10
MOD 2-8
MOVEBOX 10-21
NEXT 4-3
NOT 5-20
ON GOSUB 4-11
ON GOTO 4-11
OPEN 8-14, 9-11
OR 5-21
PI 9-22
PRINT 7-10
PRINT USING 7-12
PRINT# 8-17
PRINT#® USING B8-19
PUT 9-13
RANDOMI ZE 5-23
READ DATA [RESTORE] 3-5
REM 3-9
RESTORE 3-6
RIGHTS 6-9
RND 5-24
ROUND S5-28
RSET 9=8
SEMICOLON 7-19
SBN 3-23
SIN 5-30
SPACES 6-10
S@Rr 5-31
STACKMSE 10-22
STEP 4-3
STOP 4-15
STR$ 6-11
STRINGS 6-12
TAB 7-20
TAN 5-23
THEN 4-9
TIMES 7-21
TRUNC 5-34
VAL 6-13
WHILE WEND 4-14

+ - mm "R E =X

- A PP LAVVANL A =N |

2

-

N

7-13

2-12
2-12
10-5

ABOUT THIS BOOK

This reference manual introduces the GRiDBASIC programming environment,
including how to enter, run, and edit programs. It also covers the elements
of syntax. Beyond that, the manual classifies and discusses each command 1n
GRiDBASIC. Each disucssion includes a brief, example program. We invite you
to enter any that interest you and modify them as you wish.

Besides the Table of Contents., this manual includes an alphabetic Command
Summary (following the Table of Contents) and an index.

NOTE: This is a reference manual, not a tutorial. If you have never
programmed in the BASIC language, you would do well to find a book that
teaches BASIC programming and/or take a class in BASIC.

CHAPTER 1:

INTRODUCTION

This chapter introduces GRiDBASIC and its programming environment. It also
touches on the following subjects:

e How to

invoke GRiDBASIC and use its commands for writing, running, and

listing programs

e The GR1

e The GRi

DBASIC direct mode

DBASIC editor and editing screen

@ Lines and line numbering

WHAT IS GRiDBASIC?

GRiDBASIC meets and exceeds the requirements of the American
National Standard for Minimal BASIC as described in document ANSI
X3.60-1978. However, GRiDBASIC is much more than a "minimal"
version —— it is compatible with full-featured industry standard
versions of BASIC.

INVOKING GRiDBASIC

You can invoke GRiDBASIC in the same way that you invoke GRiD
applications. For example, you could select a file of the
appropriate kind, i.e., Basic. GRiDBASIC supports two modes: the
programming or indirect mode and the direct mode. We will treat the
programming mode first.

Introduction 1-1

THE PROGRAMMING (INDIRECT) MODE

Once you have invoked GRiDBASIC, the program editing screen appears. \")
Figure 1.1 below shows the editor screen ready for input in its

initial form -- with no program listing. When you have the program

editor on the screen, type your program.

1800 [_]

Figure 1-1. The Initial Program Editing Screen

The term "editor" refers to that portion of the GRiDBASIC software
through which you type, modify, and list programs. Fressing RETURN
at the end of each line generates a new line number and a new line. W/

When you write statements with line numbers, the computer waits for
a CODE-R command before executing the program. We call this the
"indirect mode," because statements don’t execute directly when you
complete a line. They wait in RAM memory, before, during, and after
execution.

As with other GRiD applications, you press arrow keys to move within
and between fields. Whenever you exceed the screen’s depth (either
by typing statements or by pressing a vertical arrow key), the
displayed material "scrolls,"” letting you see previously undisplayed
material.

After writing or editing a line, be sure to press RETURN, DownArrow,
or CODE-RETURN before renumbering the listing or executing 1t. Any
of these actions moves your newly written code from the keyboard
buffer into RAM memory. Failure to take one of these three actions
can cause the loss of the line in question.

1-2 GRiDEBASIC Reference Manual

Running, Continuing, and Stopping a Program

NOTE: GRiDBASIC does not ask you to type a RUN, LIST, or NEW
command.

Press CODE-R to run {execute) the program you’ve typed. Whenever
you run a program or execute a statement, GRiDBASIC displays the
program®s output instead of the current listing. If you have a STOF
statement in your program, you can continue after the STOF line by
pressing CODE-C.

When program execution encounters a STOF or END statement (or when
you press ESC), you see the following message:

Program stopped at line nnnn

where nnnn 1s the statement’s line number.

The ESCape Key

You can stop program execution at any point by pressing ESC. Press
ESC once more and your listing comes back with the field outline
where it was when you pressed CODE-R. If a syntax error stops your
program, ESC returns you to your listing.

Erasing Line(s)

You can erase an entire line by placing the cursor on the line you
want to erase, pressing CODE-E, and then confirming. To erase more
than one line at a time, press the appropriate vertical arrow after
pressing CODE-E. You can select as many lines for erasure as you
want before confirming. If you start at the first line, press
CODE-E, and follow it with CODE-SHIFT-DownArrow and CODE-RETURN, you
erase the entire program.

Other Commands
Like GRiD applications, GRiDBASIC also has CODE-? to see and/or
execute available commands (including Renumber), CODE-@ to CQuit,

CODE-T to Transfer and print files, CODE-U to see memory usage, and
CODE-ESC to exit without saving the current file.

Introduction 1-3

THE DIRECT MODE

ABOUT THE

Layout of

The "direct mode" has no line numbers. When you confirm the line
(CODE-RETURN), it executes and disappears from the computer’s
memory. People find the direct mode useful for quick computations
and for debugging small segments of code. NOTE: All GRiDBASIC
commands, except the looping commands (see Chapter Four), work in
the direct mode.

To enter the direct mode, press DownArrow from the last statement
field in the program. This creates a statement field with no number
field. (Fields are discussed later in this chapter.) Enter the
material you want to execute. For example,

FRINT S5+3

Press CODE-RETURN, RETURN, or DownArrow. NOTE: The material you
entered disappears and the answer appears. To continue in direct
mode, press ESC or DownArrow. The statement outline reappears. To
return to the indirect mode and generate a line number, press
RETURN. To position the cursor within the current listing, press
UpArrow until the cursor reaches the desired line.

GRiDBASIC ENVIRONMENT

This section gives details of the editing screen and discusses lines
and line numbering.

the GRiDBASIC Screen

Figure 1-2 below shows the GRiDBASIC editor in the midst of working
on a program. As you can see, the narrow column on the left
displays program line numbers. We call it the "line number field."
The wide column to the right displays program statements -- the
actual "text" of the BASIC program. We refer to it as the
"statement field." You can move within each field, and from one
field to the other. A description of each element in the editor
screen follows:

Statement Field The field of the program editor screen where
you enter and edit program statements. The
statement field displays the "text" of your
BASIC program.

Line Number Field The field of the program editor screen where
program line numbers are displayed. GRiDBASIC
generates line numbers automatically. You

1-4 GRiDBASIC Reference Manual

The Outline

Cursor

Highlighting

Message line

field 0utline-\

also can enter and edit line numbers manually.
See the section below on "Lines and Line
Numbering. "

A rectangular outline surrounds the current
statement or line number field. When you
first begin editing & program, the outline
surrounds the statement field, indicating that
you can enter or edit the text that composes
your program.

The blinking triangle within the outline. Its
position indicates where your next keystroke
will appear.

A form of display that causes text on the
screen to show as dark-on-light when the other
text is light-on-dark. (Also called "inverse
video.")

The highlighted line displayed at the bottom
of the screen. Your system prints command and
error messages here.

Line number Statement

field field
f*‘F,;)
-~ —A ~

1868 REM This program rolls a pair of dice

1166 PRINT: INPUT “Hou manu throws"; Count: FRINT
12688 PRINT "DIE #1 DIE# 2

1389 [FOR V=T TO Count: FOR %=1 10 = LT Throw=
TRUMCCEXRNDC 1 241 3¢ PRINT Throw, : NEXT X:

Cursor mm———

Highlighting -——————-"‘—~.\\¥
Message line ___——j

Figure 1-2.

PRINT: NEXT Y.
1406 GOTO 11066
15866 END

Quit: Confirm o save and exit

The Frogram Editor Screen

Introduction i=5

LINES AND LINE NUMBERING

Multiple statements and/or physical lines can follow any line
number. Only the size of the screen limits the length of a line.
When you type a line that exceeds the width of the statement field,
the line breaks at the space character nearest to the end of the

field and "text wraparound" automatically moves the next word onto
the next line.

Any number from 1 to 64,000 constitutes a legal line number.
GRiDBASIC supports automatic line numbering, manual line numbering,

and renumbering. It also lets you reformat lines for enhanced
readability.

Automatic Line Numbering

Automatic line numbering begins with line 1000. Each time you press
RETURN, GRIDBASIC issues another line number. If you are not
inserting a line between two existing lines, increments are by 100.

When you insert a line, the editor first tries to simply increment
by 100. For example, a line inserted between 100 and 1000 receives
the number 200. Increments become smaller as the difference between
the two current line numbers shrinks. When the difference between
the two line numbers is less than 100, GRiDEBASIC next tries to
increment by 10. The three remaining increments are by S
(difference less than 10), 2 (difference less than 5), and 1
(difference of 2 or less).

Manual Line Numbering

To enter your own line numbers, position your cursor on the last
display line of the program or on the last line number field. Press
DownArrow. This causes a new statment field to emerge. Press
LeftArrow to create a new line number field, then type the desired
line number. Pressing RightArrow moves the cursor back into the
statement field.

Renumbering

1-6

GRiDBASIC has a command that renumbers your line numbers so that
they suit the current automatic numbering formula. To renumber,
press CODE-? and select the Renumber option. In a moment, the
command puts all statements into GRiDBASIC’s default form -- with
1000 as the first line number and increments of 100 between all line
numbers. This command also renumbers in the statement area so that
numbers that point to lines (GOTO 2710) adjust correctly to the new
line numbers.

GRiDBASIC Reference Manual

™

Multiple Statements

You can put as many statements as the screen permits after a line
number. However, vou must place a colon (:) between each statement
on the lirne. For example, you could put thesze three statements

1000 FOR X=1 TO S
1100 PRINT X
1200 NEXT X

on one line:

1000 FOR X=1 TO S: PRINT X: NEXT X

NOTE: Statementes placed after a REM statement (See Chapter 3) do not
execute.

Reformatting Your Listings

You can manually reformat your program listings in such a way as to
add to the current number of display lines within a given program
line. FPress SHIFT-RETURN at that point in a program line where you
want to begin a new display line.

The outline expands by one display line with the cursor positioned
at the beginning of that new blank line. The program editor won’t
generate a new line number. Figure 1-3 breaks out the seven
statements in line 1200 by inserting SHIFT-RETURNs after each the
each statement. Compare it to Figure 1-2.

Introduction 1-7

1-8

1000 REM This program rolls a pair of dice

1100 PRINT: INPUT “How many throws"; Count: FRINT
1200 PRINT "DIE #1 DIE# 2"

1200

LET Throw=TRUNC(SXRNDC 141 >:
PRINT Throw, !
HEXT ®:

1400
1508 END

Figure 1-3. Line 1300 after Inserting SHIFT-RETURNs

To remove SHIFT-RETURN or other invisible characters, place the
cursor to the right of the offending character and press BACKSFACE.

You terminate multi-line statements just as you do single line
statements -- by pressing RETURN or either vertical arrow key. If
you press RETURN, the statement field outline will move to the next
line position and will return to i1ts single line size.

If you choose an arrow key, you will generate a single statement
field {(unless the next program line also occupies multilple display
lines). NOTE: If you press DownArrow from the last line of a
program, you will get a statement field with no line number.

GRiDBASIC Reference Manual

A4

CHAPTER 2:

GENERAL INFORMATION ABOUT GRiDBASIC

This chapter discusses concepts essential to programming:

Syntax diagrams

Reserved

words

Constants, variables, and arrays

Expressions and operators

File conventions

Delimiters

SYNTAX DIAGRAMS

This book describes each GRiDEASIC and function according to the
following conventions:

We write BASIC statments and functions ("reserved words" -- see
below) in all uppercase letters. For example, we render the
statement that causes text to appear on the screen as FRINT.
However, when you enter a statement or function, you can type
any combination of upper- and lowercase. All the following
iterations constitute legal forms of the PRINT statement:

FRINT print PriInt pRINT

General Information 2-1

-

s

Variable names begin with a capital letter. For example:

LET A$t=Name%

You must supply any item shown in lowercase characters. For
example, the GOTO command syntax

GOTO line#

means you must supply a line number. Failure to provide a
required parameter results in a syntax error or unexpected
program output. For example, GOTO 150, the legal form, tells the
program to jump execution to line 150,

The following usages are illegal:

GOTO
GOTO bed

The first fails to supply a line number:; the second supplies a
character string.

Items enclosed in square brackets ([]) are optional. The LET
command syntax looks like this:

[LET] variableName=expression

This means that in assigning a constant to a variable, you may
drop the "LET." Thus both

LET A=5
and
A=5

are correct and accomplish the same purpose within a program:
they store the constant 5 in variable A.

1f you have a choice between twoc items, the choices are separated
by a vertical slash (!) and surrounded by curly brackets ({3).
For example, the syntax diagram

FRINT [expressionl({,i;}]

means that you have the option (note square brackets) of putting
either a comma or semi-colon after an expression. Note that
though you have a choice between the items in the curly brackets,
you must supply one of them.

GRiDBASIC Reference Manual

® A trailing ellipsis (three dots -- ...) indicates continuation.
For example, in the DIM syntax statement,

DIM variableName{(subscripts)[, variableName(subscripts)]l...

the ellipsis at the end indicates that you can continue the
variableName(subscript) pattern as many times as you want.

@ A vertical ellipsis indicates that other statements may come
between the first and last items. For example, you may place
executable statements between FOR and NEXT.

FOR

NEXT

e When programming, you must include all punctuation -- commas,
parentheses, semicolons, colons, or equal signs, as shown (except
the syntax punctuation -- square brackets, curly brackets, and
the vertical slash).

RESERVED WORDS

GRiDBASIC reserves the words that represent its statements,
functions, operators, and constants for their individual tasks.
Because they are reserved, you cannot use them as variables.
However, you can place them within variables. The first two
following examples are valid; the second two aren’t.

INFUT "Type each extra item", REMainder$
LETter=ASC (Name%)

INFUT "Cost of unit"; VAL
LET Total=Data+(.0&45%Data)

In the first instance, the reserved word AND is hidden within the
variable "Bands." In the second, a reserved word, DATA, is used as
a variable.

This list also serves as a quick index to GRiDBASIC’s statements,
commands, operators, and functions. NOTE: The reserved words ON,
and USING are not whole commands, but with other words make up such
commands. These words are:

General Information 2-3

ABS END LEFTS FUT VAL

ACOS EOF LEN RANDOMI ZE WEND
AND EOLN LET READ WHILE
AS ERASEROX Loc REM X0R
ASC ERASECIRCLE LOCATE RESTORE "
ASIN ERASEDOT LOF RETURN #
ATN ERASEL INE LOG RIGHTS$ $
CDBL EXP LOG1O RND %
CHR$ FALSE LSET ROUND !
CINT FIELD MID% RSET)
CLOSE FOR MKD$ SGN (
CLRMSG GET MKI% SIN ¥
cos GETFILES MES$ SFPACES +
CSNG GOSUE MOD SER =
CvD GOTO MOVEBOX STACKMSE /
CVI IF NEXT STEP :
Cvs INKEY$ NOT STOF H
DATA INFUT ON STR$ <
DATES INFUT# ON GOTO STRINGS =
DIM INPUTS ON GOSUE TAB >
DOMENU INSTR OPEN TAN \
DRAWBOX INT OR THEN -
DRAWCHARS INVERTEOX PI TIMES :
DRAWCIRCLE INVERTCIRCLE PRINT TO =
DRAWDODT INVERTDOT PRINT USING TRUE

DRAWL INE INVERTLINE PRINT# TRUNC

ELSE KILL FRINT# USING USING

Table 2-1. GRi1DBASIC Reserved Words

CONSTANTS
Program execution operates on values that we call "constants."
GRiDBASIC recognizes two kinds of constants: string constants and
numeric constants.

String Constants

A string constant is a sequence of characters (ranging in length
from 0 to 65,535). NOTE: You can only enter one screenful of
characters at a time. A string constant can include any valid
character. You must place double quotation marks before any string.
If the string does not end the program line, you must also close it
with double quotation marks. You can treat a number like a
character string by placing it within quotation marks. GSee the
examples of string constants (surrounded by their quotation marks)
below:

2-4 GRiDBASIC Reference Manual

llAll

"$100,000,000,00"

"Quarterly Profit Statement”
"L

”675"

Numeric Constants

Numeric constants are positive or negative numbers. GRiDBASIC
operates on two different types of numeric constants: real numbers
(also known as decimal or floating point numbers) and integers.

GRiDBASIC performs all numeric operations in double precision. This
allows for 15 significant digits. GRiDBASIC handles numbers as
small as 4.19E-307 and as large as 1.67E308.

Feal numbers are positive or negative numbers that can include
decimal points. GRiDBASIC works on double precision, real numbers
and provides 15 digits of precision. Three examples of real number
constants are:

0.12345678901234
P87654321.098765
-1.1

NOTE: GRiDBASIC does not return numberes in scientific notation (also
known as "E notation"). You can enter numbers with the carat (™) to
indicate power (10°3 is the same as 10 cubed), but the GRiDEBASIC
will never print 10E3.

Integers are whole numbers between -327468 and +32767, inclusive.
Integer constants do not have decimal points. GRiDBASIC stores all
integer values in 15-digit format and converts them to real numbers
before operating on them. No cost in speed results: Operations on
real numbers are as fast as integer operations, because of special
arithmetic hardware.

Here are examples of integer constants:
-10101
(4]

2001
b4

General Information 2=5

VARIABLES

A variable is a symbol. It stands for the memory address where the
computer stores the expression you assign to the variable. Thus
"A=15" tells the computer to store the value 15 at a position in
memory that you have assigned the address "A." When BASIC executes
the program it substitutes the constant found at the address for the
variable.

Thus when the computer executes the command
PRINT A

it goes to the address labeled A, and prints the constant it finds
there. If we use the constant assigned above, the number 15 would
appear on the screen.

Variable names must begin with a letter, but the rest of the
characters in the name can be any number, letter, or the decimal
point. The length of a variable can range from one character to one
full screen.

Variables, like constants, can be one of two types: string or
numeric. The last character in a variable name identifies the
variable’s type.

String variables must end with dollar sign ($). For example:

Name$
DayODfWeek$

Integer variables must end with the percent sign (%). For example:

Age’
Answer’Z(2,3)

Real variables can end with any character except a dollar sign (%)
or percent sign (%). GRiDBASIC assumes all variables are real
variables, unless told otherwise. Thus the following are real
variables:

Results
Forecast_1983
al23.0
Radians%1.8

2-6 GRi1iDBASIC Reference Manual

ARRAY VARIABLES

An array 1s a group of values referenced by a single variable name.
Individual values in the array are called "elements." Because each
element is itself a variable, vou can place an element in an
expression. You can also operate on it with any function or
statement that takes variables as arguments.

Elements within an array are named with the array name combined with
a number (s) enclosed in parentheses. For example, i1f an array name
is Month% and consists of string variables that are the names of
months, you might refer to December (an element of the array) as
Month$(12) and January would be Month#%(1).

In the example above, the array named Month$ i1s a one-dimensional
array with 12 elements. An array can have up to 255 dimensions and
a single dimension can have up to 65,335 elements. The maximum
total number of elements you can place in an array is 65,533.

Thus you could have an array with 1 dimension and 65,535 elements
and you could have an array of 255 dimensions, each dimension having
257 elements. When you access an element in a multi-dimensional
array, you must specify the element’s position within each dimension
of the array.

The DIM statement specifies the number of dimensions that an array
can have and the number of elements within each dimension. You do
not have to dimension (DIM) variables, unless they have more than
one dimencion or more than ten elements. GRiDBASIC automatically
expands the storage space required for string variables. All arrays
start at 1 {one), not zero. Chapter Three describes the DIM
statement in detail.

EXPRESSIONS AND OPERATORS

In its simplest form, an expression consists of a constant or a
variable. You can also connect constants, variables, and functions
with operators. GRiDBASIC has three types of operators: numeric,
string, and logical.

Order of Precedence and Numeric Operators
GRiDBASIC supports the numeric operators listed below. We have

listed them by their order of precedence, that is, by the order in
which GRiDEASIC evaluates them when they appear in an expression.

General Information 2~-7

() Parentheses
Functions (SIN, LOG, etc. -- see Chapter Six)
= Unary minus (the negative sign)
Exponentiation

X / N MOD Multiplication, floating point division, integer
division

¥ = Addition, Subtraction
Relational Operators (See below)

Logical operators (See below)

Relational Operators

The relational operators are a special sub-category of numeric
operators and have the lowest precedence of all the numeric
operators. These are the relational operators. NOTE: All of these
operators have equal precedence.

£ Less Than

¥ Greater Than

<= Less Than or Egqual To

= Greater Than or Equal To
= Equal To

<> Not Equal To

Logical Operators

The logical operators, listed in order of precedence, are:

e NOT
s AND
e OR
a XOR

2-8 GRiDBASIC Reference Manual

In GRiDBASIC, logical operators perform logical (Boolean) operations
by acting on every bit in the 16-bit integer value presented to it.
To do this, GRiDBASIC follows three steps:

(:) Convert value to an integer
(:) Ferform a bit-wise logical operation

(:) Convert the integer back to a real number.

With the exception of NOT, a logical operator connects two or more
operands and returns a true or false value. NOT is a unary operator
(like the signs plus and minus) and simply changes the truth value
of its operand. The results, "true" (not zero) or "false" (zero)
value, form the basis for the computer to make a decision.

For example, in an IF statement, the computer takes one course of
action when it finds a zero and another course in the case of a
non-zero value. You must be careful in stating your logic. As an
example, here are four programs, all of which try to trap any
unwanted user responses. Their common theme is to act as an input
filter. The program only accepts a response of "Y" or "N." If the
user types any other character(s), the filter says "Sorry" and loops
back to the INFUT statement.

Look at the first program in Figure 2-1.

1000 REM Logic 1 —— Type mismatch

1100 INPUT "Y or N"; Answer$

1200 IF Answer$ <> "Y" OR "N" THEN GOTO 1500
1300 PRINT "Thanks"

1400 END

1500 PRINT "Sorry, “3;: GOTO 1100

Figure 2-1. Example of a Type Mismatch Failure

It fails at line 1200 and issues a "Type mismatch" error message.
Why? Because the program first evaluates the statement

Answer$ <> "Y"
Depending on the response, it returns either a Boolean 0 or 1. The
OrR then compares the Boolean to N, a string. And that creates a

type mismatch, because GRi1DBASIC won’t compare data of differing
types (in this case, Booleans and strings).

General Information 2=9

2-10

The program in Figure 2-2 won’t find anything true. No matter what
you type, it says "Sorry." Look closely at line 1200.

1000 REM Logic 2 -- evaluates nothing as true

1100 INPUT "Y or N"; Answer$

1200 IF Answer$ <> "Y" OR Answer$ <> "N" THEN GOTO 1500
1300 PRINT "Thanks"

1400 END

1500 PRINT "Sorry, "j: GOTO 1100

Figure 2-2. Example of Faulty Logic

In this case the logic says, if the input is either not Y or not N
then say "Sorry." But Y is not N and vice versa. Therefore, the
logic fails Y and N, as well as everything else!

Now for a working example.

1000 REM Logic 3 -- evaluates correctly

1100 INPUT "Y or N"; Answer$

1200 IF NOT (Answer$="Y" OR Answer$="N") THEN GOTD 1500
1300 PRINT "Thanks"

1400 END

1500 PRINT "Sorry, "j: GOTO 1100

Figure 2-3. A Working Logic
In Figure 2-3, the logic says if the response is neither "Y" or "N,"
then say, "Sorry." That’s what we want, because if the response is

one of those, we have an appropriate input.

This is not to say that line 1200 in Figure 2-3 is the only way of
presenting this logic. Line 1200 in Figure 2-4 also works.

GRiDBASIC Reference Manual

1000 REM Logic 4 -- AND also works
1100 INPUT "Y or N"; Answer$

1200 IF Answer$ <> "Y" AND Answer$ <> "N" THEN GOTO 1500
1300 PRINT “"Thanks"

1400 END

1500 PRINT "Sorry, “"3;: GOTO 1100

Figure 2-4. Another Working Loagic

It =ays 1f the input is not "Y" AND not "N" say "Sorry." That's
what we want, because that’s what we see as an invalid response.

Chapter Five discusses each of the logical operators in details. It
also covers the two Boolean constants, TRUE and FALSE.

String Operators

String operators perform relational comparisons and concatenation on
string expressions.

The relational operators for string expressions are the same as
those described for numeric operators, because you are actually
performing numeric operations. For example, if you use the Less
Than (<) operator to compare two strings, the ASCII values for each
character in the two strings are compared toc see which has the
smaller numeric value. The result of the operation is thus a
numeric result.

NOTE: GRiDBASIC makes comparisons of alphabetic characters without
regard to capitalization. Thus the characters "A" and "a" are
regarded as equal even thouagh they have different ASCI] values.)
For a list of the relational operators, see the discussion in the
preceding paragraphs.

The plus symbol (+) "concatenates" or joins strings together. The
example below illustrates this.

A$="This 15 a "
E$="concatenated string"

Therefore, A% + B%$ becomes

"This is a concatenated string”

]

General Information -11

FILE NAMING CONVENTIONS

When your programs use the OFEN or KILL statements (discussed in
Chapter Eight), they must specify the name of the file to be opened
or deleted. You cannot perform these operations with the Transfer
command (CODE-T). However, you can incorporate the file form used
by the Transfer to get the file name information you need. To do
this, use the GETFILE$ command (see Chapter Eight). If you choose
GETFILE$, you can ignore the details of the Compass Computer
operating system’s file npaming conventions given below.

You identify a file by specifying its "pathname". A pathname
defines the route the computer takes to a file. A complete pathname
includes the device and subject where the file 1s located plus its
title, and kind. The complete pathname schema is as follows:

‘device*subject "title™kind

Thus to specify a GRiDWRITE file with the title Forecast, when it
resides under the subject Business on the bubble, you would enter,

‘b *Business ‘Forecast™Text

The system defaults to the current device, subject. and kind. As a
result, you don’t have to respecify them. If you were staying
within current defaults, you could open the example file by typing

1000 OPEN "I",2," *Forecast” {)

where 1000 is the line number, "I" indicates sequential input, and 2
i the file tag number (See the OPEN statement in Chapter Eight for
syntactical details.)

Note the two pathname delimiter characters: the left single quote
(") or "tick" and the tilde (™). The tick must precede device,
subject, and title names. Press CODE-" to print a tick. The tilde
(™) must precede the kind. Generate this character by pressing the
CODE-; combination.

If you specify a pathname that does not begin with the tick, the
system assumes that the first name it encounters is the title and
that you have left off the device and subject names. This limits
the search for the title to the current directory, that is, to the
current device and subject and makes file access quicker.

It you provide the complete pathname including device, subject, and
title, the computer first searches all active devices for the
subject. From the subject i1t then searches for the title. If the
title is on-line, this process locates it.

The maximum length of subject and title names is BO characters each.

2=12 GRiDBASIC Reference Manual

Subject and title names can consist of any printing characters
{including spaces) except the following:

5 left single quotation mark ("tick")
= tilde
- hyphen

colon

File Kinds

Flacing the file kind (sometimes referred to as the file "type")
after a title 1s optional. Kinds let you classify several related
files under the same title while assigning them different "kind"
characteristics. Interpretation of the kind is left up to the
application. For a thorough discussion of file kinds refer to the
"Compass Computer Operating System Reference Manual."

Delimiters

Delimiters are characters that set off certain programming elements
from others, so that the language’s "interpreter" can separate
variables from operators from constants from reserved words.
GRiDBASIC has only one delimiter, the space character.

Though you needn’t place spaces around operators (with the exception

of MOD)., you should place them around variables and reserved words.
Improper delimiting results in an "Improper syntax" message.

General Information 2=13

CHAPTER 3: ASSIGNMENT AND DEFINITION STATEMENTS

The statements in this chapter assign values to variables and define the size
of arrays.

GRiDEASIC Reference Manual B—1

DIM

This statement establishes the dimensions of an array and allocates
storage space for the specified number of elements.

FORMAT

DIM variableMame(subscripts)[.variableName(subscripts)l...

NOTES

You must dimension (DIM) any array that consists of more than ten
elements or more than one dimension. If an array variable name is
used without the DIM statement, the maximum value of its subscript
is 10.

A subscript is an expression that defines the maximum number of
elements in an array. It follows the array variable name and is
enclosed in parentheses. Thus,

Year (12,31)

is a two-diimensional array. The first subscript can contain as many
as 12 elements, the second 31. The minimum value of a subscript is
one, not zero.

The maximum number of dimensions that an array can have is 2535.-
Dimensions can hold any number of elements as long as the total
number of elements for the entire array does not exceed 65,535.

Thus if you dimensioned an array to have one dimension containing
65,534 elements, you would have limited your program to having just
one other dimension, and a dimension possessing only one element, at
that!

1f a program tries to reference more elements than the subscript
allows, you will see the error message:

Array reference is out of range
You can establish the dimensions of more than one variable array at
a time with a single DIM statement. Just separate the specification
for each variable array with a comma. For example, the statement
1000 DIM ANSWERS(Z,14,100) ,NAMES (Z20)
defines a numeric variable array with the name ANSWERS having three
dimensions and 2800 elements (2 x 14 » 100). The same DIM statement

defines a string variable array called NAME$ with one dimension that
can have 20 elements.

3-2 Assignment and Definition

EXAMPLE

A note on string arrays: With GRiDBEASIC, you don’t have to dimension
the actual strings, just the number of elements.

Subscripts can be numeric variables, instead of constants. Ee sure
that you have previously declared any such variable; otherwise, vyour
subscript will amount to zero. For example,

1000 DIM GONZD(23, A, B)

dimensions a numeric arrav. The first dimension has an absolute
maximum number of elements, 25. The second two depend on what value
you (or the program) have previously assigned the numeric variables
A and B. NOTE: If a variable should change its value later, the
array will remain unaffected. It holds the original wvalue until you
redimension it.

To redimension an array, just restate its DIM statement with the
desired values. Redimensioning automatically clears the old array.

1000 DIM Array(4)
1100 FOR X=1 TO 4
1200 Array (X)=X
1300 NEXT X

1400 FOR X=1 to S
1500 PRINT Array(X)
1600 NEXT X

2000 END

In this example, line 1200 assigns values from the loop (the value
of X) to each element in the array. We assign four values to four
elements, so everything is fine.

However, line 1400 exceeds our dimension by one, so the program
halts when it tries to handle this larger number, leaving the error

messaqge:

Array reference is out of range
Program stopped at line 1500

We can fix this problem by changing the 5 to a 4 in line 1400,

GR1DEASIC Reference Manual 3=3

LET

FORMAT

NOTES

EXAMPLE

The LET statement assigns the value of an expression to a variable.

[LET] variableName=expression

LET is optional. You can write the variable followed by the equal
gign and then the expression with the value to be assigned without
the word LET.

The two following statements perform exactly the same; they both
store the value 2 at the variable LoopCounter.

1000 LET LoopCounter=2
1000 LoopCounter=2

If you assign a numeric value to a string variable or a string value
to a numeric value a Type Mismatch error occurs.

1000 LET X=20
1100 Y=X¥3
200 PRINT X
1300 PRINT Y
1400 END

The example assigns values to variables with and without the LET
statement. Lines 1200 and 13200 print each value, showing that both
ways work.

3-4 Assignment and Definition

READ

FORMAT

NOTES

DATA [RESTOREI]

READ, DATA, and RESTORE constitute a trio of statements that, as a
team, assign values to variables. NOTE: RESTORE 1s optional.

READ variablel,variablel(, ...]

[RESTORE [line#]]

DATA constantl,constant][, ... 1]

THE READ STATEMENT

The READ statement begins with the word "READ" and follows that with
at least one variable. The following are legal READ statements:

1000 READ NewNumber
1200 READ LastName$, Counter
1300 READ A, B, C, D

The READ statement assigns its variable(s) the value(s) 1t finds in
the program’s DATA statement(s).

READ cannot operate alone; its program must contain at least one
DATA statement. Each time the program executes a READ, it moves a
pointer to the next item in the DATA statement list. When program
execution begins, READ has its pointer set to the first item in the
first DATA statement. When no more DATA items exist, a

Ran out of data

error occurs. You can reset this pointer with the RESTORE statement
(see below).

When a program has more than one DATA statement, READ proceeds by
line number, reading all the data in each program line before
continuing to the next line. Within each line, it reads each item
of data in order.

A READ statement can have both numeric and string variables. The

values read from the DATA statement are assigned on a one-by-one
basis to the variables. These values, however, must agree with the

GR1DBASIC Reference Manual 3—9

variable types specified in the READ statement or a Type Mismatch
error occurs. ’

One READ statement can take constants from one or more DATA
statements, because GRiDBASIC strings the items in multiple DATA
statements together in one long list. Similarly, more than one READ
statement can operate on a single DATA statement. Each READ
statement takes the next item in the DATA statement(s) list of
items.

THE DATA STATEMENT

A DATA statement begins with the word "DATA" and follows it with a
list of numeric and/or string constants. (A list can be as short as
one item.) A comma must separate individual constants, but should
not appear after the last item. For example,

2900 DATA 1492, "Nina, Pinta, Santa Maria", Columbus, 3.14

Numeric constants can be integer, real, or short real numbers.
String constants can have up to 45,535 characters, the maximum
length for any DATA statement. These strings require no quotation
marks unless they contain commas, colons, or significant leading or
trailing spaces. NOTE: Expressions are not permitted in DATAR
statements.

A program can include as many DATA statements as memory permits.
You can place them anywhere within a program f{even after an END):
they are nonexecutable.

THE RESTORE STATEMENT

EXAMPLE

RESTORE resets the READ statement’s pointer to the beginning of the
specified line. If you don’t specify a line, the pointer returns to
the first DATA statement in the program and its first item.

1000 DATA agate, 3465, boy., cow, 3.14, dog, elbow, foot, girl, 100
1100 READ A%

1200 PRINT AS.

1300 GOTO 1000

1400 END

This example mixes both string and numeric constants in its DATA
statements. When line 1100 reads line 1000, it turns the numeric
constants into strings. The example immediatley below is exactly
the same program, but with ite DATA statement in a different
position.

3-6 Assignment and Definition

1000 READ A%

1100 PRINT AS%,

1200 GOTO 1000

1300 END

1400 DATA agate, 345, boy, cow, 3.14, dog, elbow, foot, girl, 100

The results are exactly the same. See Figure 3-1

agate 3€5 boy couw
3.14 dog elbouw foot
girl 100

Figure 3-1. Results of a Simple READ DATA Frogram

In the next example. the READ statement contains both a string and a
numeric variable (see Figure 3-2). As the result of this program
show, the two variables take turns drawing from the DATA statements.

1000 DATA agate, 365, ball, 123, cake, 3.14, doll, 100
1100 READ Noun$, Number

1200 PRINT Noun$;" is a noun"

1300 PRINT Number;" is a number"

1400 GOTO 1000

1500 END

agate is a noun
365 is a number
ball is a noun
123 is a number
cake is a noun
3.14 is a number
doll is a noun
198 is a number

Figure 3-2. Results of a READ with Two Variables

The example below contains three READ statements. In each case, a
loop controle the number of times the READ statement acts. In this
way, none of the statements runs out of data.

GRiDEASIC Reference Manual =

3-8

1000 FOR Counter=1 TO 3

1100 READ X

1200 FRINT "X = "1X,

1300 NEXT Counter

1400 PRINT: PRINT: RESTORE 2600: PRINT "A RESTORE statement
here":FPRINT

1600 LET LoopCount=0

1700 WHILE LoopCount <*> 9

1800 LET LoopCount=LoopCount+1

1900 READ Y

2000 PRINT "Y = ":Y,

2100 WEND

2200 PRINT: PRINT: RESTODRE 2600: PRINT "A RESTORE statement here":
PRINT

2300 READ Z

2400 IF Z<» 11 THEN PRINT "Z = ";Z, ELSE END

2500 GOTD 2300

2600 DATA 1, 2, 3, 4

2700 DATA 6, 7, B, 9, 10, 11

Assignment and Definition

REM

This statement lets you insert explanatory remarks into a program.

FORMAT

{REM remarks | “remarksk

NOTES

GRiDBASIC does not execute REM statements. They only appear when
you display or print the program listing.

GRiDBASIC also recognizes a single quotation mark or apostrophe (%)
as a REM statement. If you branch intc a REM statement (from a
GOSUE or GOTO statement), execution continues with the first
executable statement after the REM statement.

You can put a8 REM statement on a multiple statement line by
separating it from preceding statements in the normal way, with a
colon. NOTE: Frogram execution ignores any statements that follow a
REM statement within the same program line. Note further that REM =
take up memory space and slow program execution.

EXAMPLE

1000 REM This text is a remark.

1100 *This text is a remark.

1200 REM The next statement won’t print: PRINT "You’re Right!"
1300 END

The first two statements are equivalent. The final statement

demonstrates what happens to commands placed after a REM. Nothing!
I¥f you run this program, all you will get is a blank screen.

GRiDBASIC Reference Manual 3-9

CHAPTER 4: STATEMENTS THAT CONTROL PROGRAM FLOW

This chapter describes statements that alter or halt normal
statement-by-statement execution and allow loops and conditional execution of
statements.

Program Flow Control 4-1

END

NOTES

EXAMPLE

This statement terminates program execution and closes all files
that were opened. .

END

You can terminate program execution with either the END statement or
the STOP statement (described later in this chapter). END differs
from STOP in that END closes all files. Therefore, you cannot
resume program execution with the Continue command (CODE-C). When
an END is encountered, the following message is displayed:

Program stopped at line nnnn

where nnnn is the line number where the END was encountered. You
can return to the program editor by pressing any key. You can begin
program execution again by pressing CODE-R (the Run command).

An END statement at the end of a program is optional. If there is no
END statement at the end of the program, files remain open until you
exit the program with the Quit command (CODE-Q).

Regardless of when the END statement is encountered and executed, it
always causes termination of program execution.

1000 LET A=5

1100 INPUT "A equals 5. How much should B equal "3;B
1200 IF A<>B THEN END

1300 PRINT "Good-bye for now..."

1400 END

The END statement can live within a program as easily as it does at

the end. This example contains two END statements -- one at the end
and the other within another statement (line 1200). The logic says

to end if the variables A and B are unequal. If they both equal 5,

print a "good-bye" message before ending.

4-2 BRiDBASIC Reference Manual

FOR TO L[LSTEFP1 NEXT

The FOR ,TO, and NEXT trio of statements create a program loop.
Instructions within this loop repeat each time the loop executes.
These statements help define the range., increments, and number of
loops. Programmers often refer to these as "For Next loops.”

FORMAT
FOR variablel=expression! TO expressionZ [STEP expressioni]

NEXT variablel

NOTES
The following list describes the four parameters taken by FOR NEXT.
variablel: A variable that acts as a counter.
expressionl: The initial value or setting for the counter.
expression2: The final or limit value of the counter.

expression3: The increment value added to or subtracted from the
counter after each pass through the loop. This
expression i1s optional. If you don’t specify a value,
GRiDBASIC acssigns a value of 1 (one!.

When program execution encounters the FOR statement, it checks to
determine if the initial value {(expressionl) of the counter
(variablel) is greater than the final value (expression 2). If it
is already greater, the body of the loop is skipped and the
statement following the NEXT statement is executed.

If it is not greater, the program lines following the FOR statement
are executed until the NEXT statement is encountered. At that
point, the counter (variablel) i1s incremented (or in the case of a
neqgative STEF, decremented) by the amount specified in expression3.
Frogram execution then branches back to the FOR statement and the
process is repeated.

If the STEP value (expression3) 1= a negative, the logic just
described is reversed. The loop is skipped when the counter
(expression2) is less than the final value and the counter 1is
decremented after each pass through the loop.

If expression2 {the STEF increment/decrement) evaluates to zero, an
endless loop occurs, unless you provide some method of setting the

Frogram Flow Control 4-3

counter greater than the final value.

You can "nest" FOR NEXT loops (place one FOR NEXT loop inside

another) to whatever depth you want: you are limited only by the \naj
amount of available memory. When you nest loops, you must provide a

unique variable name for each loop counter.

Make sure that that the NEXT statement for an inside loop appears
before that of an outside loop. A loop like

1000 FOR X=1 TO S
1100 FOR Y=1 TO 10
1200 PRINT X, Y
1700 NEXT X

1400 NEXT Y

causes an "Improper loop nesting" error message. Reversing lines
1300 and 1400 would solve the problem.

NOTE: You can jump out of a FOR NEXT loop., but NEVER jump into the
middle of such a loop. The reason is that such jumps usually fail
to properly initialize the counter and loop limits.

EXAMPLE

1000 FOR Counter = 1 70 S

1100 PRINT "Counter now equals ";Counter \h/}
1200 Next Counter

1300 FRINT "Counter equals "j;Counter

1400 END

This first example shows a simple loop. The new value of the
counter prints each of the five times the program executes the loop.
When the value of the counter reaches &6, the counter fails the test
and execution passes out of the loop to print the end value of the
counter (line 1300).

As with other examples, feel free to modify this example, playing

with your own loop sizes and controls. A more complex example
follows.

4-4 GRiDBASIC Reference Manual

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

This

REM The outer Loop begins on the next line
FOR OuterlLoop=1 TO 3

PRINT: PRINT "Outer Loop number":; OuterlLoop; " and counting..."”
REM The inner or "nested" loop is next

FOR InnerLoop=27 TO O STEF -3

FRINT Innerloop; " ";

NEXT InnerlLoop

REM That’s it for the inner loop

FRINT

NEXT OuterLoop

REM And that’s it for the outer loop

END

example demonstrates nested loops, use of the STEF instruction

and negative STEPs. The outer loop beqgins at l:ne 1100 and ends at

line

1600.

1900. The inner loop begins at line 1400 and ends on line

-

Steps in the inner loop decrement by units of -3I.

Frogram Flow Contraol 4-5

GOSUE RETURN

FORMAT

NOTES

4-6

The GOSUER statement transfers control to a subroutine at specified
line number. The RETURN statement must appear at the end of that
subroutine and returns control to the main program.

GOSUR line#

subroutine
RETURN

The line# is the line number of the first line of the subroutine.
(A subroutine is one or more statements that performs a distinct
task). A GOSUE jumps program execution to a subroutine. (This is
sometimes referred to as "making a subroutine call".)

When the RETURN statement is encountered at the end of that
subroutine, it causes execution to return to the statement following
the most recent GOSUE statement. You can have more than one RETURN
statement within a subroutine for situations where you want to exit
the subroutine at different points.

If the specified line number contains a non-executable statement
(for example a DATA, REM, or DIM), execution will begin at the first
subsequent executable statement after line#.

You can call a subroutine as many times as you want, and you can
call one subroutine from within another. Your only limit on this
nesting of subroutines is the amount of available memory.

GRiDBASIC Reference Manual

EXANPLE

1000 GOSUE 1900

1100 PRINT "Dive! Dive!"

1200 GOSUE 1200

1300 GOSUE 1700

1400 GOSUB 1900

1500 PRINT: PRINT "At last. The END is in sight."
1600 END

1700 PRINT:PRINT "So this is a "GOSUB.” Time to surface...”
1800 RETURN

1900 REM The next line just loops for time

2000 FOR X=1 TD 400: NEXT X

2100 RETURN

In this example, we have two subroutines -- one beginning at line
1700 and the other at line 1900. We call the subroutine three times
during program execution to put time between the execution of the
print statements. Note that the subroutine at line 1900 begins with
a REM, not with an executable statement.

Frogram Flow Control 4-7

GOTO

FORMAT

NOTES

EXAMPLE

This statement causes an unconditional transfer of control to a
specified line number.

GOTO line#

The GOTO statement differs from the GOSUB statement in that it lacks
a RETURN statement. Any return of program execution to the line
following the GOTO line must be forced by another GOTO.

If line# specifies a line containing an executable statement, then
that statement and those following it are executed. If the
specified line does not contain an executable statement (for
example, a DATA statement), then execution continues at the first
executable statement after the line specified by line#. The
intervening lines are simply ignored.

NOTE: GRiDBASIC does not support an "implied GOTO" as in the example

2200 IF A=B THEN 1700

1000 PRINT "This line (1000) contains a GOTO statement.": GOTO 1300
1100 Print "This is the line (1100) after the first GOTO."

1200 GOTO 1500

1300 PRINT "This is the first line (1300) you went to."

1400 GOTO 1100

1500 PRINT "The END. (See message below.)": END

In this example, program execution jumps from line 1000 down to line
1300. It then jumps back up to line 1100. Execution moves straight
down from 1100 to 1200 where the final GOTO appears, sending
execution to the last line.

To understand the term "infinite" loop, remove line 1200 from this
program and watch what happens. Remember: Pressing ESC will stop
any such loop.

4-8 GRiDBASIC Reference Manual

IF THEN L[CELSE]

FORMAT

NOTES

These statements allow the conditional execution of one of two
statements or a series of statements, based on the result of an
expression evaluation.

IF expression THEN statementlil:statementla:statementib ... J[ELSE
statement2][:statement2a:statement2b ...]

If the expression following IF is true (not zero), the statement
following THEN executes. If an ELSE statement exists, execution
skips it.

If the result of the expression evaluation is false {(zero), program
execution skips any statement(s) following THEN and executes any
ELSE statement(s). If no ELSE statement exists, execution goes to
the next line number.

ELSE statements are optional. An ELSE statement only executes when
the IF statement evaluates as zero (false).

Look at the following example:

1000 IF A=B THEN PRINT "Equal": GOTO 1500 ELSE PRINT "Unequal"
1100 GOSUB 2000

If A does equal B, then the computer will print the word "Equal" and
it will jump to line 1300. However, if A does not equal B, neither

the THEN statement nor the GOTO will execute. Instead, the program

will execute the ELSE statement and print the word "Unequal" before

continuing to line 1100,

You can follow the THEN and ELSE statements with as many statements
as you want. The statements must be separated by colons (:) and can
be either on the same line or on a new line. If on a new line, the
statements cannot have a new line number; they are considered part
of the same line as the THEN or ELSE statement. Thus both of the
following sequences are valid:

100 IF A=E THEN C=D:
E=F

ELSE J=K
200 «uw

100 IF A=H THEN C=D:E=F ELSE J=K

Program Flow Control 4-9

EXAMPLE

4-10

Note the absence of a colon between E=F and ELSE in the second
example. The ELSE statement (if present) is also considered to be
part of the same line as the IF and THEN statements and should not
be separated from the preceding statement by a colon nor should it
have a new line number. Therefore, the following sequences are
invalid:

100 IF A=B THEN C=D:E=F
200 ELSE J=K

and also
100 IF A=B THEN C=D:E=F:ELSE J=K

You can nest IF THEN ELSE statements to any depth: you are limited
only by the amount of available memory. If the statement does not
contain the same number of ELSE and IF THEN clauses, each ELSE is
matched with the closest unmatched IF THEN.

NOTE: The word "THEN" must always follow an IF clause. The
following statement, omitting THEN, is not valid.

2200 IF A=B GOTO 1700

1000 Even$="Even Steven!": 0dd$="0dd Bodkins!'"

1100 INPUT "Try some conditions (Y/N and confirm)";Answer$

1200 IF Answer$="N" THEN PRINT "Whatever you say.": GOTO 14600
1300 INPUT "Type any integer and confirm (ESC to stop):",Number
1400 If Number MOD 2=0 THEN FRINT Even$% ELSE PRINT Odd$

1500 GOTO 1300

1600 END

This example contains two IF THEN statements -- lines 1200 and 1400.
The line 1200 statement lacks an ELSE, but attaches a statement
after THEN. If the condition is true, both will execute. The
message "Whatever you say," prints and the program jumps to the END
statement. However, if the statement evaluates as false, then
execution falls through to the next line (1300).

Line 1300 contains a straightforward IF THEN ELSE statement. If the
modulo test yields a O, print the string variable for "even." If
false, ELSE prints the "odd" string.

NOTE: The ESC key function mentioned in line 1300 comes from the
system, not from this program. Remember: You can press ESC to halt
execution of any GRiDBASIC program.

GRiDBASIC Reference Manual

ON GOTO and ON GOSUE

FORMAT

NOTES

EXAMPLE

These statements cause an unconditional transfer of control to one
of =several specified line numbers. The particular lines depend on

the result obtained by evaluating the expression following the ON
statement.

ON expression GOTO line#l,line#l...
and
ON expression GOSUE line#l,line#]...

ON GOTO does 1n one statement what IF THEN would take numerous
statements to achieve: 1t takes an expression and uses its value to
send program execution to a particular line number.

In the example below, if the variable ANSWER evaluates to 2, program
execution jumps to the second line number in the list, 1500.

S00 ON Answer GOTO 1000, 1500,2000

NOTE: GRiDBASIC rounds the expression value to an integer, if
necessary. If the expression value is zero, or if it is greater
than the number of line numbers in the list, execution simply
continues with the next executable statement in the program.

1000 INFUT "Enter a number from 1 to 5 and confirm",A
1100 ON A GOTO 1200, 1300, 1400, 1500, 1600

1110 FRINT "Your entry is out of range.": GOTO 1000
1200 PRINT "ONE": GOTO 1000

1300 PRINT "TWO": GOTO 1000

1400 PRINT "THREE": GOTO 1000

1500 PRINT "FOUR": GOTO 1000

1600 PRINT "FIVE": GOTO 1000

This example prints the name of the number given the INFUT
statement. This i1s a typical use for ON GOTO in that particular
values must connect with particular items. A more complex example
might connect a U.S. Fresident’s order in the Presidency with his
name.

If you enter a number greater than five or less than one, execution
will drop through the ON GOTO statement to the next line, an error

Program Flow Control 4-11

4-12

message and a GOTO sending execution back to the INFUT statement.

Note the GOTO statements following each of the line numbers in the
list (1200-1600). Without such an ending statement (you could ucse
END, too), execution continues and prints all subsequent numbers.
Hardly our purpose.

When you run this program, give it some out of range numbers and
some decimals to see what happens. An example of ON GOSUE follows.

1000 INFUT "Enter a number from 1 to S and confirm",A
1100 ON A GOSUE 1300, 1400, 1500, 1600, 1700

1200 IF A<1 OR A>S THEN GOTO 1800 ELSE GOTO 1000

1300 PRINT "ONE": RETURN

1400 FPRINT "TWO": RETURN

1500 PRINT "THREE": RETURN

1600 FRINT "FOUR": RETURN

1700 FPRINT "FIVE": RETURN

1800 PRINT "Out of range": GOTO 1000

This 1s the same program except that an ON GOSUE statement guides
excecution to the proper line number. And because this is a GOSUB,
a RETURN statement must end the one line subroutine.

RETURN sends execution to line 1200. To accomodate this, and still
be able to issue an "Out of range" message, line 1200 contains a new
logic. It checks to see if the input is within range. If it is,
the program loops to the first line again. If not, execution goes
to the error message on line 1800 before going to the first line.

GRiDBASIC Feference Manual

O

STOF

The STOP statement suspends program execution.

FORMAT

STOP

NOTES

The STOF statement suspends program without closing any files. STOP
serves as a good debugging tool; you can halt execution, check the
status of variables, and then continue. You continue program
execution by pressing CODE-C (the Continue command). Fressing any
key return you to the program editor.

When a STOP is encountered, the following message appears:
Frogram stopped at line nnnn

where nnnn is the line number where the STOFP was encountered.

EXAMPLE

1000 A%$= "Hit the brakes!''!'"

1100 B$= " There’s a STOF line just ahead."
1200 C$=A%$+B%

1300 PRINT "Screeeeeeeeech"

1400 STOP

1500 PRINT C$

This example declares and concatenates two string variables. The
STOF at line 1400 gives you the chance to preview the concatenation
before executing it. By entering the direct mode and typing "PRINT
C¢," you can see what C% looks like. Press CODE-C to continue.

Frogram Flow Control 4-13

WHILE WERND

FORMAT

NOTES

EXAMPLE

4

14

These statements create a program loop that continues to execute as
long as the WHILE statement evaluates as true.

WHILE expression
statement (s) and/or functions

WEND

If the result obtained by evaluating the expression is true {(not
zero), the statement or statements between the WHILE and WEND
statements will be executed. WEND returns execution to the WHILE
statement for another evaluation of the expression.

The intervening statements execute until the expression evaluates to
zero (false). If the expression evaluates to zero the first time it
is encountered, then the intervening statements will not execute at
all. After the expression evaluates to zero, execution continues
with the first executable statement following the WEND statement.

You can nest WHILE WEND statements to any depth; you are limited
only be the amount of available memory. Program execution matches
each WEND with the most recent WHILE. If you have unequal numbers
of WHILE and WEND statements, an error will occur -- "Improper loop
nesting error."

If you write FOR NEXT loops inside of WHILE WEND loops (or vice
versa), be sure the inner loop lies entirely within the outer loop.

1000 LET GuessMe=TRUNC (S¥RND(1)+1)

1100 WHILE UserGuess <> GuesesMe

1200 INPUT "Guess a number between 1 and 5";UserGuess

1300 WEND

1400 PRINT "You got it! The number was "j;GuessMe

1500 INFUT "Want to try again (Y or N)";YesNo$

1600 IF YesNo$ = "Y" THEN GOTO 1000 ELSE PRINT "Okay, bye'!": END

This example is a guessing game that asks you to enter a number.

The WHILE statement then tests to see if you guessed correctly. If
the number qualifies, program execution falls through the WHILE WEND
loop to the message. If the comparison fails, execution stays
within the WHILE WEND loop, asking for another input.

GRiDEASIC Reference Manual

CHAPTER FIVE: GRiDBASIC ARITHMETIC AND LOGIC

This chapter describes GRiDBASIC's arithmetic statements, functions, and
constants. Chapter Five alsoc discusses the GRiDBASIC’s four logical operators
-— AND, NOT, OR, and XOR -- plus its two Boolean constants, TRUE and FALSE.
Additionally, it covers the two integer operators: integer division and MOD.

NOTE: Although not documented like other operators, GRiDBASIC has the four
essential arithmetic:

s + (Addition)

® - (Subtraction)

@ ¥ (Multiplication)
e / {(Long Division)

See Chapter Two for details on precedence among arithmetic, relational, and
logical operators.

This chapter opens with a discussion of GRiDBASIC's six integer functions. It
also discusses them individually within the chapter.

Arithmetic and Logic et |

INTEBER FUNCTIONS

GRiDBASIC has six ways of converting floating point numbers to \h_/
integers:

s CINT

s FIX

s INT

® ROUND

@ TRUNC

® Assignment of a value into an integer variable (symbolized as
VAR below).

Table 5-1 below illustrates how GRiDBASIC applies its various
functions to converting floating point numbers. NOTE: To ensure
accuracy when converting decimals to integers, choose either
ROUND or TRUNC. GRiDBASIC includes the CINT, FIX, and INT
functions for compatibility with other BASIC’s. The table below
shows that ROUND performs the same as CINT and TRUNC acts like

Fl¥%.
FUNCTION « J
CINT FIX INT ROUND TRUNC VAR
-3.50 -4 -3 -4 = -3 -4
INPUT -3.49 -3 -3 -4 -3 -3 -3
3.49 3 3 3 3 v 3
3.50 4 3 3 4 3 4

33000.00 -32536 -32536 -32536 33000 33000 -325356

Table 5-1. A Table of Integer Functions

A discussion of each of GRiDBASIC’s arithmetic functions begins
on the next page. NOTE: GRiDBASIC cannot guarantee accurate
integers whenever you give it a number that exceeds the
boundaries of integer arithmetic: -32748 to +32767 inclusive.

=2 GR1DEASIC Reference Manual

AEBS

FORMAT

NOTES

EXAMPLE

This function returns the absolute value of its expression.

ABS (expression)

The absolute value of the expression is the value unsigned. AES
strips away the minus sign of negative numbers. The absclute
value of a number is always positive or zero.

1000 INPUT "Enter a number and confirm",A
1100 B=ABS(A)

1200 PRINT "Absplute value is ":H

1300 GOTO 1000

1400 END

Arithmetic and Logic

U
0

ACOS

The arc cosine function.

FORMAT
ACOS (expression)

NOTES
This function takes an expression representing an angle in
radians and returns its arc cosine (in the range of 0 to pi).
GRiDBASIC evaluates this expression in full precision. To
convert from degrees to radians, multiply by pi/180.

EXAMPLE

1000 INFUT "Enter a number between -1 and 1";Number

1100 PRINT

1200 Rads=ACOS (Number)

1300 Degrees=Radsk (1BO/PI)

1400 PRINT "The arc cosine of "; Number; " is ";Degrees; "
degrees"

1500 PRINT: PRINT

1600 GOTO 1000

1700 END

o5-4 GRiDBASIC Reference Manual

AND

FORMAT

NOTES

EXAMPLE

The logical operator for conjunction

expressionl AND expressionZ

The AND function unites elements, calculates their combined truth
value, and issues a Boolean true or false. As the AND truth
table (Table 5-2 below) shows, AND only issues a true (non-zero)
when both elements are true.

A B AAND B
-1 s | ~1
-1 0 0
Q -1 0
0 0 0

Table 5-2. The AND Truth Table

1000 PRINT "Separate the two numbers with a comma":PRINT

1100 INPUT "Type two numbers between 1 and 5"; A,B

1200 IF A=3 AND B=4 THEN PRINT "You win!" ELSE PRINT "Try again"
1300 PRINT:GOTO 1100

1400 END

As long as you enter both elements correctly (3,4), you win. Any
other combination fails.

Arithmetic and Logic 5-5

S5-6

ASIN

The arc sine function.

FORMAT

ASIN(expression)

NOTES

This

function takes an expression representing an angle in

radians and returns the arc sine of that angle. GRiDBASIC
evaluates this expression in full precision. Arc sines fall into
the range of -pi/2 to pi/2. To convert from degrees to radians,
multiply by pi/180.

EXAMPLE

1000
1100
1200
1300
1400
1500
1600
1700

INFUT "Enter a number between -1 and 1"j;Number

FRINT

Rads=ASIN (Number)

Degrees=Rads¥ (180/F1)

PRINT "The arcsine of "; Number; " is ";Degrees: " degrees"
PRINT: PRINT

GOTO 1000

END

GRiDBASIC Reference Manual

ATN

FORMAT

NOTES

EXAMPLE

The arc tangent function.

ATN(expression)

This function takes an expression representing an angle in
radians and returns the arc tangent of that angle. GRiDBASIC
always evaluates this expression in full precision. The result
falls in the range of -pi/2 to +pi/2. To convert from degrees to
radians, multiply by pi/180.

1000 INPUT "Enter a number "j;Number

1100 PRINT

1200 Rads=ATN (Number)

1300 Degrees=Rads¥ (180/FI)

1400 PRINT "The arc tangent of ": Number:; " is "j;Degrees; "
degrees"

1500 PRINT: FRINT

1600 GOTO 1000

1700 END

Arithmetic and Logic 5-7

CDEL

The convert to double precision statement

FORMAT
CDEL (expression)

NOTES
Because GRiDBASIC performs all operations in double precision,
this statement does nothing. It exists only for compatibility’s
sake. See CSNG belaow.

EXAMPLE

1000 LET Some=CDEL (4)
1100 PRINT Some
1200 END

Put any number you want in the parentheses. Line 1100 displays
it just as you entered it.

5-8 GRiDBASIC Reference Manual

CINT

FORMAT

NOTES

. EXAMPLE

The CINT (convert to integer) function converts an expression to
an integer.

CINT (expession)

CINT performs the conversion by rounding the fractional portion
of the number.

NOTE: This function is identical to the GRiDBASIC’s ROUND
function described later in this chapter. The existence of both
functions enhances the compatibility of GRiDBASIC with other
BASIC’s. See the discussion of integer functions at the
beginning of this chapter.

1000 INPUT "Enter any number and confirm", Decimal
1100 Answer=CINT (Decimal)

1200 PRINT "The CINT integer is ":Answer::PRINT
1300 GOTO 1000

Arithmetic and Logic o-9

S—-

cos

FORMAT

NOTES

EXAMPLE

The cosine function.

COS{expression)

This function takes an expression representing an angle in
radians and returns the cosine of that angle. GRiDBASIC always
evaluates this expression in full precision. To convert from
degrees to radians, multiply by pi/180.

1000 INFUT "Enter angle (in degrees) and confirm",Angle

1100 Rads=Anglex(PI/180)

1200 Calculation=CO0S(Rads)

1300 PRINT "The cosine of ":;Angle:;" degrees is "; Calculation:
PRINT

1400 GOTO 1000

10 GRiDBASIC Reference Manual

CSNG

FORMAT

EXAMPLE

The convert to single precision statement

CSNG (expression)

Because GRiDBASIC performs all operations in double precision.
this statement does nothing. It exists only for compatibility’s
sake. See CDBL above.

1000 LET Some=CSNG(4)
1100 PRINT Some
1200 END

Put any number you want in the parentheses. Line 1100 displays
it just as you entered it.

Arithmetic and Logic o1

EXF

FORMAT

NOTES

EXAMPLE

The exponential function, referred to in mathematics as "e."

EXF{expression)

In BRiDBASIC, a natural logarithm has a base of
2.7182818828457905

The EXF function raises this base number to the power given as
its expression. Thus

EXP(2)
equals 2.718281882845903 squared.

LOG is the inverse function of EXF, as demonstrated by the
example program below. For this reason "the exponential of" and
"the natural antilogarithm of" are synonymous phrases.

If the expression evaluates to greater than or equal to
approximately 200, an overflow occurs.

1000 INFUT "An exponent please";Anex

1100 LET Answer 1=EXP(Anex)

1200 FRINT "The natural log’s value raised to the power ";fnex:;"
is": PRINT Answerl: PRINT

1300 Answer2=L0G{(Answerl)

1400 PRINT "The natural log of this number is ";AnswerZ: PRINT
1500 Answer3=L0G10 {(Answerl)

1600 PRINT "Its log to the base 10 is ";Answer3:PRINT

1700 GOTO 1000

1800 END

5-12 GRiDBASIC Reference Manual

4

FALSE

FORMAT

NOTES

EXAMPLE

The Boolean constant for false.

FALSE

The constant FALSE has a value of 0. Statements can i1nteract
with it in a number of ways. You can assign 1ts value to
variables, operate it on i1t logically, print it. The program
below does all these things.

1000 PRINT "True=":TRUE: " and False=";FALSE

1100 INPUT "Type the number 3": A

1200 IF A=3 THEN B=TRUE ELSE B=NOT TRUE

1300 FRINT B;

1400 IF B=FALSE THEN FRINT " means you didn’t type 3" ELSE FRINT
" means you typed 3"

1500 FRINT:GOTO 1100

1600 END

Line 1000 prints the values of GRiDEASIC’s two Boolean constants.
Whenever you use TRUE or FALSE, vou use the constant’s value.

For example, depending on the value of A, line 1200 does one ot
two things. It either assigns -1 to B (TRUE) or applies NOT to
TRUE, changing the -1 to its opposite, a zero (0). MNote that
although the program never assigns "FALSE" to the variable B, it
can evaluate B as "FALSE" (line 1400), 1f in line 1200 B proves
to be "NOT TRUE."

(%4
LA

(]

Arithmetic and Logic

FIX

The FIX tunction converts an expression to an integer.

FORMAT
FIXiexpression)

NOTES

Thie function converts an expression to an integer by removing
all numbers to the right of the decimal point. The difference
between this function and the CINT and INT functions is that FIX

does not round negative numbers down. Thus -2.3 and 2.9 both
become -Z.

Thus FIX (an "import" from other BASIC's) works like GRiDBASIC's
own TRUNC function. See the section at the beginning of this
chapter, comparing the different integer functions. Also see the
TRUNC function later in this chapter for more details.

EXAMPLE

1000 INFUT "Enter any number and confirm", Decimal
1100 Answer=FIX(Decimal)

1200 PRINT "The FIX integer is "jAnswer :FRINT
1300 GOTO 1000

5-14 GRiDBASIC Reference Manual

INT

FORMAT

NOTES

EXAMPLE

The INT function converts an expression toc an integer.

INT {expession)

GRi1DBASIC performs the conversion by rounding down the fractional
portion of the number. Thus a positive whole number remaincs the
same regardless of the value of the number to the right of the
decimal point.

In the case of negative numbers, however, INT rourds the number
to the next smaller whole number. Thus with INT -2.3, -2.5, -Z.9
all become -3. Because of this acticn, INT is =zometimes referred
to as a "floor function."

GRiDBASIC includes INT for compatibility with other BASIC's. See
the article on integer functions at the beginning of this chapter
for more information.

1000 INPUT "Enter any number and confirm", Decimal
1100 Answer=INT (Decimal)

1200 PRINT "The INT integer is "3 Answer: FRINT
1300 GOTO 1000

Arithmetic and Legic 5-=15

INTEGER DIVISION <(\N)

FORMAT

NOTES

EXAMPLE

The integer division operator.

dividend \ divisor

Integer division acts like ordinary division (/) in that it
delivers a quotient. Unlike, ordinary division, it does not
issue a remainder. Thus the operation

PRINT S5\2

vields 2, not 2.5. NOTE: You make a back slash, the integer
division sign, by pressing the CODE-SHIFT-® combination.

The MOD function is just the opposite of integer division; it
prints the remainder, but not the quotient. (See MOD later in
this chapter.)

1000 INFUT "Divide 51 by what number"; Divisor

1100 LET Buotient=51\Divisor

1200 LET Remainder=51 MOD Divisor

1300 FPRINT "The quotient is "jBuotient; " with a remainder of
":Remainder

1400 PRINT: GOTO 1000

1500 END

This example shows the integer division guotient and the MOD
remainder that result from dividing 51 by vour input divisor.
The second example asks you for both the dividend and the
divisor: it then calculates the results from floating point
division, integer division, and MOD.

1000 INPUT; "Dividend":;N
1100 INPUT * Divisor";D
1200 PRINT "FPDiv=";N/D,
1300 PRINT "IntDiv="3;N\D,
1400 PRINT "MOD="3;N MOD D
1500 PRINT: GOTO 1000
1600 END

a-1é6 GRiDBASIC Reference Manual

LOG

FORMAT

NOTES

EXAMPLE

The {(natural) logarithm function

LOG(expression)

This

function returns the natural logarithm of an expression.

The value of the expression must be a positive number greater

than

1000
1100
1200
is":
1300
1400
1500
1600
1700
1800

This
(the

zZero.

INPUT "An exponent please";Anex

LET Answer 1=EXFP (Anex)

PRINT "The natural log’s value raised to the power ";Anex:"
PRINT Answerl: PRINT

Answer2=L0G (Answer1)

PRINT "The natural log of this number is "jAnswerZ: PRINT
Answer3=L0G10 (Answer1)

FRINT "Its log to the base 10 is ";Answer3:PRINT

GOTOD 1000

END

example calculates the exponential of a number, its inverse
LOG), and finally, the common logarithm (to the base 10).

Arithmetic and Logic o=17

LOG1O

Logarithm to base 10,

FORMAT
LOG1O(expression)

NOTES
This function returns the logarithm to the base 10 of an
expression (NOTE: Natural logarithms have a base of 2.718). The
log to the base 10 is the number to which you have to raise 10 to
get a particular number. Thus log of 1000 is 3, because 103
yields 1000
The value of the expression must be a positive number greater
than zero.

EXANPLE
1000 INPUT "An exponent please";Anex
1100 LET Answer 1=EXF (Anex)
1200 PRINT "The natural log’s value raised to the power ";Anex;"
is": PRINT Answerl: PRINT
1300 Answer2=L0G(Answerl)
1400 PRINT "The natural log of this number is "jAnswer2: PRINT
1500 Answer3=L0G10 (Answerl)
1600 PRINT "Its log to the base 10 is ";Answer3:PRINT
1700 GOTO 1000
1800 END
This example calculates the exponential of a number, its inverse
(the LOG), and finally, the common logarithm (to the base 10).

5-18 GR1DBASIC Reference Manual

MOD

FORMAT

NOTES

EXAMPLE

The modulo operator.

dividend MOD divisor

The modulo function (MOD) prints the remainder of a division

operation, but not the quotient. This makes it the opposite of

the integer division operation, which prints the guotient, but
not the remainder. (See Integer Division earlier in this
chapter.)

MOD rounds its operands to integers. It then performs floating

point division and throws away the resulting quotient.

1000 INPUT "Divide 31 by what number"; Divisor

1100 LET Buotient=51\Divisor

1200 LET Remainder=51 MOD Divisor

1300 FRINT "The quotient is ";Quotient; " with a remainder of
":Remainder

1400 PRINT: GOTO 1009

1500 END

This example shows the integer division quotient and the MOD
remainder that result from dividing 51 by your input divisor.
The second example asks you for both the dividend and the
divisor; it then calculates the results from floating point
division, integer division, and MOD.

1000 INFUT; "Dividend";N
1100 INPUT " Divisor";D
1200 FRINT "FPDiv="3;N/D,
1300 FRINT "IntDiv="3;N\D,
1400 PRINT "MOD="3;N MOD D
1500 PRINT: GOTO 1000
1600 END

Arithmetic and Loagic o=

19

NOT

EXAMPLE

The logical operator for negation.

NOT expression

NOT is a unary operator that reverses the truth value of the
operand (expression) it addresses. The NOT truth table (Table
5-3) below illustrates this.

A NOT A
=21 0
0 =3

Table S-3. The NOT Truth Table

1000 PRINT "Separate the two numbers with a comma":PRINT

1100 INPUT "Type two numbers between 1 and 5"; A,B

1200 IF NOT(A=3 AND B=4) THEN FRINT "Try again" ELSE PRINT "You
win"

1300 PRINT:GOTO 1100

1400 END

Compare this example to the example for AND. To get the same

evaluation, the results ("Try again"” and "You win" are reversed.

This suits NOT's action on truth values. Also see the logic
examples under "Logical Operators" in Chapter Two.

9-20 GRiDBASIC Reference Manual

O

OR

FORMAT

NOTES

EXAMPLE

The logical operator for disjunction.

expressionl OR expression?2

OR links two expressions and issues a true when both expressions
evaluate as true or when just one evaluates as true. Both
expressions must be false for OR to issue a false. See Table 5-4
below. Compare this action with XOR (Described at the end of
this chapter), which yields a true only when just one of the two
expressions is true.

A B AOR B
=1 =1 =1

=1 0 -1

v} = =1

0 0 0

Table 5-4. The OR Truth Table

1000 PRINT "Separate the two numbers with a comma":PRINT

1100 INPUT "Type two numbers between 1 and 5"; A,B

1200 IF A=3 OR B=4 THEN PRINT "You win'!" ELSE PRINT "Try again"
1300 PRINT:GOTO 1100

1400 END

You win if you type 3 as the first number of the pair, or if you
type 4 as the second number, or if you type both correctly (3,4).
Also see the logic examples under "Logical Operators" in Chapter
Two.

Arithmetic and Logic a-21

The pi constant.

FORMAT
PI
NOTES
PI is not a function, but the mathematical constant representing
the ratio of the circumference to the diameter of a circle.
GRiDBASIC keeps FI equal to
3. 14159265358979
EXAMPLE

1000 PRINT "Note: Pi equals "; FI: PRINT

1100 INPUT "Enter the radius of a circle and confirm"; Radius:
PRINT

1200 Circ=2¥PI1X¥Radius

1300 PRINT "The circumference of the circle is "3;Circ: PRINT
1400 Area=PIl¥Radius"2

1500 PRINT "The area of the circle is "; Area: PRINT

1600 GOTO 1100

This example puts the PI function to work in two common formulae,
those for the circumference and area of a circle. It also prints
the value of pi (see line 1000).

5-22 GRiDBASIC Reference Manual

RANDOMI ZE

FORMAT

NOTES

EXAMPLE

RANDOMIZE seeds the RND number generator.

RANDOMIZE [expressionl

This statement gives the random number generator a specific seed
to work with. HRND takes each seed and from it creates a known
series of numbers. Therefore, placing RANDOMIZE before a RND
statement yields a repeatable series of numbers.

RANDOMIZE without an expression, sends the RND function back to
the realtime clock for its seed. See the RND statement,
described next, for further details on random numbers.

1000 RANDOMIZE 101

1100 INPUT "Loop times"j;Number
1200 PRINT: PRINT

1300 FOR X = 1 TO Number

1400 PRINT ,10%RND(1)

1500 NEXT X

1600 PRINT: PRINT

1700 GDTO 1000

1800 END

In this example, the expression "101" causes the same series of
random numbers to print, no matter when or where you use it. Try
other expressions. You can treat these expressions as if they
were labels for certain series.

Arithmetic and Logic o-23

RND

The RND function returns a random number between O and 1.

FORMAT

RND (expression)

NOTES

The RND function can generate three types of series of random
number each time you RUN a program, depending on the type of
expression you give it. The three expressions and their products
are:

® A number less than zero (-1). This expression reseeds the
random number generator every tenth of a second from the
realtime clock. Thus it has the effect of producing groups of
two or three random numbers. See Figure 5-1.

@ Zero. This takes the most recent number generated in the
current series. If produced by a loop, the same number occurs
repeatedly.

® A number greater than zero (+1). A sequence of random
numbers.

Figure 5-1 below shows a typical run of the three types. You can
find the program that generated these numbers in the Example
section below.

When the argument < @ ...
0.0831158922713
0.99860044251 164
9.99860044251164
B.95060044251164
0.898069733732007

When the argument = @ ...
9.89806973373007
0 .89806973273007
8.898069733720087
©.89306373372007
@.589806973373007

When the argument > @ . . .
0.67539482719158
8.13185328820935
8.74765207293812
8.41618982223239
0.81486228732738

Figure 5-1. Three Types of Random Numbers

NOTE: To create a repeatable series of random numbers, place the

9-24 GRiDBASIC Reference Manual

RANDOMIZE statement (See above, this chapter) with the RND
function.

To create a random whole number, simply multiply the RND function
by some integer. The integer gives the uppermost value the
function can return. Remember: RND returns numbers between © and
1. Ten times one equals ten, the largest number that line 1300
below permits. The program in Figure 5-2 returns the column of
figures at its right.

1000 INPUT "Loop times":;Number
1100 PRINT: PRINT

1200 FOR X = 1 TO Number

1300 PRINT, 10%¥RND(1)

1400 NEXT X

1500 PRINT: FRINT

1600 GOTO 1000

1700 END

L@B3242327292E7E
.B2151522687434
. 8295567254139

9269692351 1482
.@4562447547112
.91728454718853
.838854084745556
452887 76233335
LE9520163761349
.4E7EB2084478293
.443592042420031
T191577619913

L 73334855235523
. 8388647287 70a38
.13861722743572
LI217E8aTZTES534
.44151973352691

L RN e e s Rl) e s ST YN Lo R

Figure 5-2. A Program and Series of Random Numbers

To turn a whole number into an integer, we recommend submitting
the RND function to either the ROUND or TRUNC function. In
particular, when you want a range extending from 1 to n, try

TRUNC (expression) +1

If you want a number in the range of 0 to n or in a range of
numbers (nl1 to n2), choose

ROUND {(expression)
These two functions act differently to create an integer. ROUND
rounds all decimals of .5 or greater upward. TRUNC, on the other

hand, just cuts the decimal portion off. Table 5-5 below gives
several examples you can use as models.

Arithmetic and Logic 225

EXAMPLE

Range of Integers Example Function

0 to 10 ROUND (10XRND (1))

1 to 10 ROUND (9¥RND (1) +1) or
TRUNC (10%RND (1) +1)

1 to 11 ROUND (10XRND (1) +1) or
TRUNC(11%RND(1)+1)

87 to 95 ROUND (BXRND (1) +87)

Table 5-5. A Table of Integer Ranges and Functions

The Example section contains a program illustrating ranges 0 to
10 and 87 to 95. In the last range (87 to 95), we didn’t
multiply RND by 87, because that would produce all the numbers
from O to 87. Instead, we multiplied by the width of the range
(8) and added the beginning number of the range.

1000 PRINT: PRINT "When the argument < O ..."
1100 FOR X = 1 TO S

1200 PRINT RND(-1)

1300 NEXT X

1400 PRINT: PRINT "When the argument = 0 ..."
1500 FOR Y =1 TD S

1600 PRINT RND(Q)

1700 NEXT Y

1800 PRINT: PRINT "When the argument > 0 ..."
1900 FOR Z = 1 TO S

2000 PRINT RND(1)

2100 NEXT Z

Running the above example shows the difference that RND's
expression makes. Figure 5-1 shows a typical printout produced
by this program. You can change the lengths of any of the loops
to create larger or smaller sample sizes. The second example
(see below) shows how you can achieve different ranges of

integers by manipulating RND with TRUNC, ROUND, and additional
numerals.

S5-26 GRiDBASIC Reference Manual

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200

This

REM This pgm creates RND integer ranges
PRINT: PRINT "For the range | to 10 ..."
FOR X =1 70 12

PRINT TRUNC(10XRND(1)+1),

NEXT X

PRINT "For the range 0 to 10..."

FOR Y =1 70 12

FRINT ROUND{(10¥RND(1)),

NEXT Y

PRINT "For the range 87 to 95..."

FOR Z =1 TO 12

PRINT (ROUND(BXRND(1))+87),

NEXT Z

program produces the output like the one in Figure S5S-3.

For the range 1 to 18 ...

6 3 2 2
3 B 3 3
7 B 8 S
For the range @ to 10. ..

) 8 2

(5] 9 18 g
6 7 7 [
For the range €7 to 95. ..

88 94 92 ol
94 g7 93 95
33 91 e g8
Figure 5-3. Output of RND on Three Numeric Ranges

Arithmetic and

Logic

9-27

ROUND

The ROUND function.

ROUND (expression)

NOTES

The ROUND function takes a decimal number and converts it to an
integer. If the decimal portion is .5 or greater the integer
increases by one. If it 1s less, it drops to the next lower
integer. Negative numbers are rounded (-3.5 becomes -4).

NOTE: This function is identical to the GRiDBASIC’s CINT function
described earlier in this chapter. The existence of both
functions enhances the compatibility of GRiDBASIC with other
BASIC's. See the section at the first of this chapter on Integer
Functions.

EXAMPLE

1000 INFUT "Enter any number and confirm", Decimal
1100 Answer=ROUND (Decimal)

1200 PRINT "The ROUND integer is "jAnswer :PRINT
1300 GOTOD 1000

o-28 GRiDBASIC Reference Manual

SGN

FORMAT

NOTES

EXAMPLE

The sign function.

SGN (expression)

This

function returns the algebraic sign of an expression. A

positive expression returns 1, negative expressions return -1,
and zero returns 0.

1000
1100
1200
1300
1400
1500
1600

This

PRINT

INPUT; "The sign of"; Number

ON SGN(Number)+2 GOTO 1300, 1400, 1500
PRINT " is minus (-)": GOTO 1000

PRINT " is zero (no sign)": GOTO 1000

PRINT " is plus (+)": GOTO 1000
END
example tests for sign of number given it. The SGN function

returns the appropriate number. The "+2" raises this number to a
1, 2, or 3 — all numbers that the ON GOTD statement can use.
The result points to the correct answer line.

Arithmetic and Logic a=29

SIN

The sine function.

FORMAT
SIN(expression)

NOTES
This function takes an expression representing an angle in
radians and returns the sine of that angle. GRiDBASIC always
evaluates this expression in full precision. To convert from
degrees to radians, multiply by pi/180.

EXAMPLE

1000 INPUT "Enter angle (in degrees) and confirm",Angle
1100 Rads=Anglex (P1/180)

1200 Calculation=SIN(Rads)

1300 PRINT "The sine of "3;Angle:" degrees is "; Calculation:
PRINT

1400 GOTD 1000

530 GRiDBASIC Reference Manual

sSarR

FORMAT

NOTES

EXAMPLE

The square root function.

SOR (expression)

This function returns the square root of an expression. The
value of the expression must be zero or greater.

1000 INFUT; "Square root of": Number
1100 FRINT " is "3 SBR(Number)

1200 PRINT: PRINT

1300 GOTO 1000

1400 END

Arithmetic and Logic

TAN

The tangent function.

FORMAT
TAN (expression)

NOTES
This function takes an expression representing an angle in
radians and returns the tangent of that angle. GRiDBASIC always
evaluates this expression in full precision. To convert from
degrees to radians, multiply by pi/180.

EXAMPLE

1000 INPUT "Enter angle (in degrees) and confirm",Angle
1100 Rads=Anglex (PI/180)

1200 Calculation=TAN(Rads)

1300 PRINT "The tangent of ";Angle;" degrees is "; Calculation:
PRINT

1400 GOTO 1000

5-32 GRiDBASIC Reference Manual

TRUE

FORMAT

NOTES

EXAMPLE

The Boolean constant for true.

TRUE

The constant TRUE has a value of -1. Statements can interact
with it in a number of ways. You can assign its value to
variables, operate it on it logically, and print it. The program
below does all these things.

1000 PRINT "True="3;TRUE; " and False=";FALSE

1100 INPUT "Type the number 3"; A

1200 IF A=3 THEN B=TRUE ELSE B=NOT TRUE

1300 PRINT BE;

1400 IF B=FALSE THEN PRINT " means you didn’t type 3" ELSE PRINT
" means you typed 3"

1500 PRINT:GOTO 1100

1600 END

Line 1000 prints the values of GRiDBASIC’s two Boolean constants.
Whenever you use TRUE or FALSE, you use the constant’s value.

For example, depending on the value of A, line 1200 does one of
two things. It either assigns -1 to B (TRUE) or applies NOT to
TRUE, changing the -1 to its opposite, a zero (0).

Arithmetic and Logic a~33

TRUNC

The truncate function.

FORMAT
TRUNC (expression)

NOTES
The TRUNC function converts a number (whether positive or
negative) into an integer not by rounding it, but by chopping off
anything to the right of the decimal point. TRUNC acts like
another integer function, FIX. See the article on integer
functions at the first of this chapter. Also compare TRUNC to
the FIX and ROUND functions.

EXAMPLE

1000 INFUT "Enter any number and confirm", Decimal
1100 Answer=TRUNC (Decimal)

1200 PRINT "The TRUNC integer is "j;Answer :PRINT
1300 GOTO 1000

5-324 GRiDBASIC Reference Manual

XOR

FORMAT

NOTES

EXAMPLE

The exclusive-OR logical operator,

expressionl XOR expression2

XOR yields a true if just one just one of the expressions
evaluates as true, but not if both or neither are true. Table
o-6 shows this.

A B A XDR B
=1 =1 0
=1 0 =1
0 =1 =1
Q 0 0

Table S-6. The XOR Truth Table

1000 PRINT "Separate the two numbers with a comma:PRINT

1100 INPUT "Type two numbers between 1 and 5"; A,B

1200 IF A=3 XOR B=4 THEN PRINT "You win'" ELSE PRINT "Try again"
1300 PRINT:GOTO 1100

1400 END

With XOR you can only win by getting just one of the pair of
numbers correct —- either the I in the first place or the 4 in
the second. If you type "3,4" the program tells you to "Try
again. "

l'.ll'l
o

o

Arithmetic and Logic

CHAPTER SIX: STRING FUNCTIONS

This chapter describes GRiDBASIC's string functions. String functions perform
operations on sequences of characters specified in programs. A string is any

sequence of characters. All of these functions require an input parameter or

argument enclosed in parentheses.

A word on nomenclature. A number of the string function names end with the
dollar sign ($). Most programmers "pronounce" this symbol in either of two
ways. Some say "dollar"; others say "string." Thus the statement LEFTS is
called both "left dollar" and "left string." Take your pick.

String Functions 6-1

ASC

The ASCII function,

A 4
FORMAT
ASC(string$)
NOTES
ASC takes the first character of string$ and returns that
character’s ASCII code (a decimal, numeric value). This is the
inverse of the CHR$ function, which converts an ASCII code to a
character (see below). "ASCII" stands for "American Standard Code
for Information Exchange."”
If the string has a length of zero (no characters in the string), an
error occurs.

EXAMPLE

b6-2

1000 INFUT "Press a key and confirm",Text$

1100 LET Code=ASC(Text$)

1200 LET Letter$=CHR% (Code)

1300 PRINT "The ASCII code for "jLetter$;" is "j;Code

1400 PRINT

1500 GOTO 1000 N/
1600 END

This example converts text (including numbers, and punctuation, and
other characters into their ASCII codes. Note that though the input
variable (Text$) is a string variable, ASC returns a numeric value,
because each ASCII code is a number.

GRiDBASIC Reference Manual

CHRsS

The character string function.

FORMAT
CHR$ (expression)

NOTES
This function converts an expression representing an ASCII code (in
decimal) to its one character equivalent. The expression must be a
value in range of 0 to 255. This function is the inverse of the ASC
function, which performs ASCII-to-numeric conversion.

EXAMPLE

1000 INPUT "Enter an ASCII code and confirm", Ascode
1100 LET Letter$ = CHR$ (Ascode)

1200 FRINT Ascode;" is the ASCII code for ";Letter$
1300 PRINT

1400 GOTOD 1000

1300 END

This program takes any ASCII code (in decimal) from O to 255 and
prints the character represented by the code. Note that line 1100
assigns the resulting character to a string variable, Letter$
{whether or not it’s a number).

String Functions 6-3

INSTR

The in string function.

FORMAT

INSTR ([expression, lsourceString$, findString$)

NOTES

The INSTR (often called "in string") function locates a specified
string (findString$) within another string (sourceString$) and
returns the character position of the first occurence of the string.
INSTR differentiates between upper and lower case; specify
characters accordingly.

The optional expression tells the function how many characters to
skip (from the left) before before beginning its search. Include
this expression when you want to move past the string just located
to find another occurence of the same string.

INSTR returns a zero (0) when:

@ The value of expression is greater than the length of
sourceString$

@ SourceString$ is null
e It cannot find findString$.

I+ findString$ is null, INSTR returns 1 or expression (if included).

EXAMPLE

1000 LET Sample$="The dollar the snowman the Cat"
1100 LET A$="he": Let B$="the": Let C$="man": LET D$="doll": LET
E$="cat": LET F=6

1200 LET Position1=INSTR(13,S5ample$,E$)

1300 LET Position2=INSTR("weather",B$)

1400 LET POSITION3=INSTR(F, "Woebegone","e")

1500 LET POSITION4=INSTR (Sample$, "now")

1600 FPRINT Positionti

1700 PRINT Position2

1800 PRINT Position3

1900 FRINT Position4

2000 END

6-4 GRiDBASIC Reference Manual

This program yields four numbers:
24
4
9
17

The example illustrates two facts. First, expression, findstrings,
and sourcestring$ can occur as variables and/or values (whether
string or numeric) in the same specification. Second, expression
views the number of characters in sourcestring$ as absolute.

For example, the expression in line 1400 tells INSTR to position
itself at the "g" in "Woebegone" and search for "e" (one character
past the second"e"). In this case, it returns 9 -— the position of
the last "e" -- not 3, which it would if it started counting at one
from each position.

Note too, that if you searched for E$ (cat) within Sample$, INSTE

would return a zero. The reason: The "Cat" within Sample$ has an
uppercase "C."

String Functions 6-5

LEFTsS

FORMAT

NOTES

EXAMPLE

The left string function.

LEFT$(string%,expression)

This function returns the leftmost character(s) from a specified
string. The function counts in from the left end of the string by
the number of characters specified in the expression. For example,

LEFT$ (Compass Computer system,7)
yields the string "Compass."

If the value of expression is greater than the length of the string,
the entire string is returned. If the value of expression is zero,
a null string (no characters) is returned.

1000 LET Sample$="dollar toy pizza book tree home"

1100 PRINT "The string is "";Sample$;"™"

1200 PRINT -

1300 INPUT "Take how many letters from the left": Number
1400 LET Someletter$=LEFT$ (Sample%,Number)

1500 PRINT "LEFT$(Sample$,";Number:") is '"; Someletters$;"""
1600 GOTO 1200

6-6 GRiDBASIC Reference Manual

LEN

FORMAT

EXAMPLE

The length function.

LEN returns the number of characters in a specified string and

thereby its length. All characters in the string., including signs,
decimal points, blanks, and non-printable characters, are counted.

LEN(string$)

1000 INFUT "Type some characters and confirm"; Stuff$

1100 PRINT "You entered "; LEN(Stuff%):" characters that time."
1200 FRINT

1300 GOTD 1000

1400 END

This example shows that the LEN function counts the number of

characters in a string. (Also see the example for the STR$
function.)

String Functions

&=7

MIDs$

FORMAT

NOTES

EXAMPLE

The mid string function.

MID$ (string$,I[,J1)

The MID$ function returns a specified portion of a string. The
parameter I specifies the first character (counting from the left
end of the string) that MID$ returns. The optional parameter J
specifies the total number of characters the function should return.
For example,

MID% (Compass Computer system,9,8)
yields the string, "Computer".

If J is omitted, or if there are fewer than J characters to the
right of the Ith character, all characters from I to the right end
of the string will be returned. If I is greater than the length of
the string or if J is zero, MID$ returns a null string, that is, a
string with no characters in it.

1000 LET Sample$="dollar toy pizza book tree home"

1100 PRINT "The string is ""j;Sample$;"’"

1200 PRINT

1300 INPUT "Go how far in from the left"; Number

1400 INPUT "And take how many letters";Letters

1500 LET Someletter$=MID% (Sample$,Number,Letters)

1600 PRINT "MID$(Sample$, ";Number; ", "3 Letters;") is *";
Someletters$; """

1700 GOTO 1200

1800 END

6-8 GRi1iDBASIC Reference Manual

RIGHTS

NOTES

EXAMPLE

The right string function.

RIGHT$ (string$,expression)

This

function counts from the right end of a string of characters to

return a number of characters. The expression returns the number of
characters specified by expression. If the value of expression is
greater than the length of the string, the entire string is
returned. If the value of expression is zero, a null string (no
characters) is returned.

1000
1100
1200
1300
1400
1500
1600

LET Sample$="dollar toy pizza book tree home"

PRINT "The string is "":;Sample$;"""

FRINT

INFUT "Take how may letters from the right": Number

LET Someletter$=RIGHT$ (Sample$,Number)

PRINT "RIGHT¢(Sample%$,";Number:") is ""; Someletteré;"""
GOTO 1200: REM if you’re going to do this a lot, GOTO 1100

instead

String Functions a=9

SFPACES

The space strinag function.

FORMAT
SPACES$ (expression)

NOTES
The SPACE$ function returns a string consisting of spaces. The
expression specifies the number of spaces.

EXAMPLE

1000 INPUT "How many spaces": Number

1100 LET Blank$=SPACE$ (Number)

1200 PRINT Number: " spaces lie between the asterisks": PRINT
"X";Blank$;"x"

1300 PRINT

1400 GOTO 1000

1500 END

6-10 GRiDBASIC Reference Manual

STR$

FORMAT

NOTES

EXAMPLE

The S-T-R string function.

STR$ (expression)

The STR$ function converts the value of a numeric expression into a
string, so that you can perform strings (rather than numeric)
operations on it.

1000 INPUT "Type a number"; Numberl

1100 INPUT "And another to multiply it by"; Number2

1200 LET C$=STR$ (Number 1¥Number2)

1300 PRINT "The answer is ";C%$;". Length of this string is "j;LEN(C%)
1400 PRINT

1500 GOTO 1000

1600 END

This example takes two numbers and converts their product to a
string (line 1200). The fact that LEN, a string function operates
on product, proves this i1s a string, not a numeric, constant (line
1300).

String Functions 6-11

STRINGS

FORMAT

NOTES

EXAMPLE

The string function.

STRINGS (expression, ASCIIcode)
STRINGS (expression, string$)

This function returns a string whose characters all have the same
ASCII code. The value of expression defines the length of the
string.

You specify the character returned by giving its ASCII code (in
decimal) or by giving a string. STRING$ returns only the first
character of this string.

1000 CodeSample$=STRING$(10,42)

1100 PRINT "The string using an ASCII code is "j;CodeSample$

1200 PRINT

1300 LET A$="Hello"

1400 FirstChar$=STRING$ (10,A%)

1500 PRINT "The sample taking the first character is "; FirstChar$
1600 END

The example shows the STRING$ function with both arguments. Line
1000 takes the ASCII argument and prints 10 asterisks in line 1100.
Line 1400 takes the first character of A$ (Hello) and prints it 10
times in line 1500. NOTE: the 10 in both print statements is the
first argument in each STRING$ definition.

6=-12 GRiDBASIC Reference Manual

VAL

FORMAT

NOTES

EXAMPLE

The value function.

VAL (string%$)

This function returns the numeric value of a specified string. The
string should comprise nothing other than leading blank(s), a sign,
and a number (the blank(s) and siagn needn’t be present).

VAL strips off any leading blanks from the string. If the first
non-blank character is anything except a plus sign (+), minus sign
{(-), or a numeric digit, VAL returns a zero (0). If the string
contains anything besides numeric digits, it also returns a zero
(0.

1000 INFUT "Type a number"; Numberi

1100 INFUT "And another to multiply it by"; Number2

1200 LET C%=STR$% (Number 1¥Number2)

1300 PRINT "The answer is ";C%:;". Length of this string 1s ";LEN(CS
1400 LET Result=VAL (C$) /Number1

1500 PRINT "Dividing by the first vields the second: "j;Result

1600 FPRINT

1700 GOTO 1000

1800 END

This example turns a number into string (line 1200). and engages VA
in line 1400 to turn the string number back into a number that
numeric operators can handle. NOTE: VAL's counterpart ics STR$ (see
line 1200).

String Functions 6-1

)

L

CHAPTER SEVEN: INPUT/OUTPUT STATEMENTS

The input/output statements discussed in this chapter transfer data to and
from memory, the realtime clock, the keyboard, and the screen.

For
information on sequential file 1/0, see Chapter Eight. For random access file
1/0, see Chapter Nine.

Input/Output Statements =1

comMmmMmaAa

NOTES

The comma character (,) formats output to the screen.

expression, expression(,]

Whether in an INPUT statement or a PRINT statement, the comma
simultaneously links elements in a series and keeps them separate.
The comma differs from the semicolon in that it causes each element
to print at predetermined tab position. The comma places each

expression in one of four absolute fields -- at columns 0, 15, 30,
and 45.

Within a PRINT statement, a comma following the last element in a
list causes suppression of the carriage return and line feed
characters that the PRINT statement normally issues after its

expression(s). Instead, the expressions print at the appropriate
tab field.

Placing the comma before the first expression in a PRINT statement
causes the expression to print at the second field. Likewise, two
commas preceding an expression cause printing at the third field,
and so on. For example:

1800 PRINT ,,"Third tab"

Flacing the comma between an INPUT string and its variable,
suppresses the guestion mark (?) normally issued by the INPUT
statement. For example:

1500 INPUT "Your name please", Name$

You can request multiple items with an INPUT statement, if you
separate the statement’s variables with commas. For example,

1600 INPUT "Please enter three numbers", A, B, C

NOTE: The response to this must also separate each item with a
comma. For example,

54, 98.01, 1
When sending data to the Epson printer, you must supply tab position

information for the comma to work correctly. Otherwise, you won’t
get the spaces between columns that you expect.

7-2 GRiDBASIC Reference Manual

EXAMPLE

You must follow the FRINT# command with the file tag number, an ESC
D (represented by CHR$(27)+"D") and the column number of each tab
preceded by the CHR$ statement. Concatenate these tab positions
with the plus sign (+). All such statements must end with the null
character, CHR%(0). Do NOT exceed an 80-character line. An example
command assigning 15 character-wide tabs follows:

FRINT# 1, CHR$(27)+"D"+CHR$ (15)+CHR® (30) +...+CHR%(Q)

1000 INPUT "Your name please:", Name$

1100 INFUT "Three numbers", A, B, C

1200 FRINT

1300 PRINT "Hello there", Name$, "3", "Albert"
1400 FPRINT "A very long string", "of",

1500 PRINT A, B, C

1600 PRINT ,,"Third tab"

1700 END

This example illustrates what commas can do in both INFUT and FRINT
statements. The comma in Line 1000 suppresses INPUT’s question
mark. In line 1100, commas separate variables for INPUT.

Line 1300 shows the tab zones set up by the comma. Note in Figure
7-1 below that when a string exceeds the 15-character width set up
by the comma that the next string appears in the next zone over.
The first string does not collide with the second.

The comma at the end of line 1400 suppresses the carriage
return—-line feed at the end of that line, so that line 1400 and
1500°s tab zones become continuous. The two commas before the
expression in line 1600 push the expression one tab each so that the
string "Third tab" prints at the third tab.

Your name please: John
Three numbers 8,-912765, 0081243

Hello there John 3 Flbert
A very long string of 2
-912765 B.0021243

Third tab

Figure 7-1. Examples of Comma Formatting

Input/Output Statements 7-3

DATES

The date function.

FORMAT

DATE$

NOTES

DATE$ returns the current date from the Compass Computer system’s
real-time clock. The date is an eight character string in the form
mm/dd/yy where mm is the month (00 to 12), dd is the day of the
month (00 through 31) and yy is the year (00 through 99). NOTE:
These characters are string, not numeric characters. For the
program to use them numerically, you must convert them to numbers
(see Chapter Six, the VAL statement and the example below).

EXAMPLE

1000 PRINT "The date is "; DATE$

1100 LET Month$ = LEFT$(DATES$,2)

1200 IF LEFT$(Month$,1)="0" THEN LET Month$=RIGHT®(Month$,1)
1300 PRINT "The number of the month is "; Month$

1400 LET MONTH=VAL (Month$): LET A$="The name of the month is "
1500 ON Month GOTO

1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500, 2600, 2700
1600 PRINT A$;"January":END 4
1700 PRINT A%;"February":END

1800 PRINT A%; "March":END

1900 PRINT A%;"April":END

2000 PRINT A%;"May":END

2100 PRINT A%;"June":END

2200 PRINT A%$;"July":END

2300 PRINT A%;"August":END

2400 PRINT A%;"September":END

2500 PRINT A%:"October":END

2600 PRINT A%;"November":END

2700 FRINT A%$: "December":END

This example prints the current date in line 1000. It then removes
the "0" from the front of all single digit month numbers and prints
the number of the month (lines 1100-1300). The rest of the example
uses the ON GOTO statement so that the month®s number can cause the
month*s name to print.

To do this, we convert the month numeral-as-string character to a
numeral with the VAL statement (see Chapter 6). You can incorporate
this program as a subroutine where you want a nicely formatted date.

A\ 4

7-4 GRiDBASIC Reference Manual

INKEEYS

FORMAT

NOTES

EXAMPLE

The inkey function.

INKEY$

INKEY$ reads the keyboard and returns whatever value it finds there.
If you press a key at the moment that INKEY$ reads the keyboard, the
function returns that key’s value as a one-character string. It does
not display that character on the screen. Instead, it passes the
string to your program. When INKEY$ reads the keyboard and finds
nothing, it returns a null string (length zero).

NOTE: INKEY$ does not of itself wait for a keypress to occur. If
you want to monitor the keyboard continuously, you must put INKEY$
in a loop (see example below).

1000 LET Loop=0

1100 LET Key$=INKEY$

1200 IF Key$="" THEN Loop = Loop+1:PRINT " "; Loop; " "; ELSE PRINT
"OkK% "; Key$; " kxx ";

1300 GOTO 1100

1400 END

This example prints a sequential number on the screen each time
INKEY$ reads the keyboard. When you press a key, it prints the key
surrounded on either side by " ¥xx ".

Input/Output Statements 7=3

INFUT

The INPUT statement asks the user to enter data. It then assigns
the data to specifed variables.

INPUT [;1["promptString"] (3!, variablesList

When an INPUT statement executes, it prints the contents of the
promptString. If you follow the promptString with a semicolon, a
question mark will follow this string. For example,

1000 INPUT "Your name"; Name$
prints on the screen as
Your name?

If you put a comma at the end of the string no question mark
appears. If you do not include a promptString, the program only
displays the question mark. You must enclose the promptString in
quotation marks; it can contain any printable characters.

Program execution stops after displaying promptString and question
mark (if specified). Execution waits for you to enter data and
press CODE-RETURN. If you place a semicolon directly after the word
INPUT, the cursor will remain on the same line as the user’s
response after confirming.

Multiple variables must appear at the end of the INPUT statement.
You cannot place variables within the input string. The following
example places a variable (Count) in the input string to describe a
range of choices. This is an illegal statement.

1500 INPUT "Pick a number (from 1 to ":Count; ") "; Choice

The INPUT statement wants to put your data into Count, because Count
comes at the end of a prompt string. To put such an informational
variable in an INPUT statement, write two lines, one a PRINT
statement, the other an INPUT statement. In the example below, we
break the illegal line 1500 into two lines. The semicolon at the
end of line 1500 causes the two to print like one statement.

1500 PRINT "Pick a number from 1 to ";Count;
1600 INPUT Choice

Data entered via the keyboard is assigned to the variable(s)

7-6 GRiDBASIC Reference Manual

EXAMPLE

specified in the variableslList. The number of data items entered
must be equal to the number of variables specified in variableslList.
You must separate multiple variables in variableslList with commas.

Each data item entered must be of the same type as that specified by
the corresponding variable name. The variable names in
variablesList can be any mix of numeric and string variable names
including subscripted variables. However, each input must be of the
same kind as its variable.

NOTE: INPUT does not accept a comma or a semicolon as valid input.
You must start vour string with the double quotation mark (") if you
want to include either of these characters.

I¥ you respond with the wrong kind of constant (giving letters to a
numeric variable or including a comma or semicolon in an input
string, for example). vyou will see the message

Idvalid input: Re-enter data

1000 INFUT "Flease enter your first name", First$

1100 PRINT "Okay, "; First$;

1200 INPUT ", what is your last name": Last$

13200 INPUT; "Your area code"; Area$

1400 INPUT " And phone number"; Fhone$

1500 PRINT "We can reach you at ("; Area$; ")"; " "iPhone$%
1600 PRINT

1700 PRINT "Type three numbers...": INPUT "(FPut a comma between each
one)", A, B, C

1800 PRINT: FRINT "Those numbers are: ": A, B, C

1900 END

This example illustrates the various possibilities inherent in the
INFUT statement. In line 1000, the comma at the end of promptString
suppresses a question mark, whereas the semicolon at the end of
promptString in line 1200 prints a question mark. However, in line
1300 the semicolon following INFUT suppresses the carriage
return-line feed character at the end of the line. As a result,
lines 1300 and 1400 print on the same line. See Figure 7-Z below.

Lines 1100 and 1200 combine a variable that gives information and

one that asks for input. Finally, lines 1700 and 1800 show how to
gather multiple items of information with one INFUT statement.

Input/Output Statements 7=7

Please enter your first name John

Okay, John, what is yowr last name? Smith

Your area code? 415 And phone number? 961-4801
We can reach you at (415) 9€1-4899

Tupe three numbers. ..
(Put a comma betuesen each one) 12.8€,-3. 14,+ 00001

Those numbers are: 12.06 -2.14 @. 20001

Figure 7-2. The INPUT Statement Illustrated

7=-8 GRiDBASIC Reference Manual

LOCATE

FORMAT

NOTES

EXAMPLE

This statement positions the cursor to a specified dot or pixel
location on the screen.

LOCATE X,y

The horizontal coordinate (%) must be in the range of 1 to 320 and
the vertical coordinate must be in the range of 1 to 240. The
coordinates describe the position of the top, left pixel of the
first character in the string that follows the LOCATE statement.

When a program runs, it doesn’t normally display the cursor. When
yvou follow a LOCATE statement with an input/output statement such as
INFUT, the cursor appears at the screen location specified by the
last preceding LOCATE statement. Similarly, a subsequent FRINT
statement will output its data beginning at the previously specified
screen location.

Also see the DRAWCHARS statement in Chapter Ten. DRAWCHARS does not
position the cursor, but rather specific character strings.

1000 LOCATE 140,110

1100 INPUT "Horizontal axis (0-320)", Horiz
1200 LOCATE 140,120

1300 INPUT "Vertical axis (0-240)", Vert
1400 LOCATE Horiz, Vert

1500 PRINT "."

1600 END

This example shows the power of the LOCATE statement by positioning
its INPUT statements (lines 1000 and 1200) and then by letting you
display a dot at your own coordinates (line 1400).

Input/Output Statements 7=9

FRINT

FORMAT

NOTES

7-10 GRi

The FRINT statement displays data on the screen.

PRINT [expression][{,i;}][expression] ... [{,!;}]

The PRINT statement displays any expression that follows it and
sends a carriage return-line feed combination at the end of that
expression. When deprived of an expression, FRINT displays a blank
line, the result of the carriage return-line feed characters. The
following expressions are all legal. Line 1100 yields the product
of 5 x 6, 30.

1000 PRINT "Hello"
1100 PRINT Sxé
1200 PRINT

You must enclose string constants in quotation marks ("). You can
omit the final quotation mark from any string appearing at the end
of a program line. Only the size of the screen limits the number of
expressions a single FRINT statement can handle.

To place multiple expressions after a single PRINT statement, you
must separate the individual expressions with either a comma (,) or
a semicolon (;).

If you place a semicolon between two expressions, the two
expressions will print with no intervening characters. See
"SEMICOLON" later in this chapter.

If you place a comma between two expressions, FRINT displays the
value of the second expression at the beginning of the next "print
zone". GRiDBASIC divides each line into print zones of 15 spaces
each. Commas used as expression separators cause a "tabbing" effect
so that the next expression value is displayed in the next print
zone.

The zones begin at columns 0, 15, 30, and 45. If a string has more
than 15 characters, PRINT will skip the zone that has been
overwritten and begin the next display at the next zone. Thus the
comma never causes concatenation. See "COMMA" earlier in this
chapter.

Terminating a list of expressions with a comma or semicolon, cancels

the carriage return-line feed pair so that a subsequent PRINT
statement continues printing on the same line. If a printed line 1s

DBASIC Reference Manual

A g

W

EXAMPLE

longer than the display’s line width, printing continues on the next
line. GRiDBASIC breaks stringe at the right edge of the screen.

Frinted numbers are always followed by one space and positive
numbers are also preceded by one space. A minus sign precedes each
negative number.

1000 LET A=5: B=3: C%$="George": D#%="Washington"
1100 FRINT A

1200 PRINT B

1300 PRINT "A+B=";A+B

1400 PRINT S5+3

1500 FRINT

1600 FRINT C%

1700 FRINT D%

1800 FRINT C#$+D%

1900 PRINT

2000 PRINT TAE(0) "O0"3; TAB(10) "10"; TAB(20) "20"; TAB(Z0) "30";
TAE(40) "40"; TAB(S0) "S0"

Z100: PRINT “a", “BY, "% DY, ™MEY, "F'; “§"
2200 PRINT “a%z; “B"; "G%3 "D¥; "E"y “F'3 "B
2300 END

Lines 1100 and 1200 print the values stored at variables A and E.
Line 1300 prints a string constant and then the result of adding A
and BH.

Line 1400 shows that FRINT can operate on numeric constants by doing
math for you. Note in line 1800, a plus sign between string
constants concatenates (or joins together) strings.

Line 2000 shows how the TAB statement operates with PRINT. Line

2100 the comma’s tabbing effect and line 2200 the semicolon’s
concatenating effect.

Input/Output Statements 2= 14

FRINT USING

The PRINT USING statement formats strings or numbers, depending on
the punctuation that follows the statement.

A4

PRINT USING format symbol;{list of expressionilist of string%}

NOTES

FPRINT USING takes as its arguments a format symbol and a list either
of numeric or string expressions. The format symbol shapes the
expression into their format.
For example, the format symbol ("###.##")
II*“*. ’*ll ; A
tells GRiDBASIC to put the number stored in variable A into a format
with three digits to the left of the decimal point and two digits to
the right. Thus the number 34.14735 appears in the formatted form
34.15

This section explores each format symbol and its results.

STRING EXPRESSIONS

You can modify string expressions with any one of three format
symbol s:

@ The exclamation point (!)
@ Double back slash enclosing space(s) (\n space\)

@ The ampersand (&)

EXCLAMATION FOINT (!)

The exclamation point returns only the first character in each
string argument that follows it. See the example below.

DOUBLE BACEK SLASH (\\)

When you don’t put space(s) between the two back slash
(CODE-SHIFT-") characters, the double back slash prints two

7-12 GRiDBASIC Reference Manual

characters from its string argument(s). Each space between the back
slashes causes another character from the string(s) to print.

Double back slash prints one space character for each character you
specifv over the number of characters in the string. Thus if a
string expression has five characters, and five space characters
separate the two back slashes, two spaces will follow the printing
of the five character string. See the example below with its
companion printout.

AMFERSAND (%)

The ampersand causes the string to print exactly as it is stored.
See the example below.

EXAMPLE (STRINGS)

10G0 LET A$="Input"
1100 LET B#$="Output"

1200 PRINT USING "!":A$;ES$ 1o

1300 PRINT USING "\\";A$;E$ In0u

1400 FRINT USING "\ \";A$;H$ InpOut

1500 PRINT USING "\ \";A$;B$ Inpulutp

1500 PRINT USING "\ \"3A$;B% InputOutpu
e Input Dutput

1700 PRINT USING "\ \":A%$: BS It

1800 FRINT USING "&":A$;

1900 END

NUMERIC EXPRESSIONS
The numeric format symbols include:
@ The number or "pound" sign (#)
@ The decimal point (.) and comma (,)
e The plus (+) and minus (-) signs
® The double asterisk (¥¥)
@ The double dollar (%)
@ The double asterisk-dollar (X%X$)

a [he character string

Input/Output Statements 7-13

NUMBER SIGN (#)

COMMA (,)

Each number sign reserves one digit of space for PRINT USING. Thus
to reserve space for a five digit number followed by three decimal
places, you write

HUHBH, HE4
Such a format handles numbers like

12345.567 and -2345.987

Note that the minus sign takes one of the character positions. If
you try to print a number with more digits than your format allows,
a percent sign (%) will precede the first character (whether it’s a
sign or a number). We call this the "overflow symbol." See Figure
7-3 below. Thus trying to put the number -99999.01 in the format
##4444. ## would result in

%-99999.01

Whenever a number has fewer digits than the PRINT USING format,
PRINT USING puts these extra spaces at the front of the number.
Figure 7-3, shows a five digit format (to the left of the decimal)
and three numbers in that format. Both the five digit positive
number and the four digit negative number take up all alloted
digits. The extra two digits pad the three digit number to its
left.

HEHEH. $4
234468.91

576.08
-3418.99

Figure 7-3. How Format Characters Fad Digits

If you want your number to display a comma every three digits, you
can include the comma anywhere tc the left of the decimal point.

The comma also specifies another digit in the string. The following
examples are all legal.

HHSEHHE, L BE HE, BRRNEL HHHGHRE . B

7-14 GRiDBASIC Reference Manual

If you place a comma to the right of the decimal point, the comma
prints as a literal at the end of the number. For example:

You can pad numeric output with surrounding spaces by putting space
characters between either end of the string and the nearest
quotation mark. See Figure 7.4 below for an example.

The program below with its output illustrate these facts.
1000 LET A=.912345

1100 LET B=7
1200 LET C=-1234.567891

1300 PRINT "A = ";A
1400 PRINT "B = ";E
1500 PRINT "C = ";C

1600 PRINT

1700 PRINT USING "#####.4#%4":A, B, C
1800 PRINT USING "#####.#% ";A, B, C
1900 PRINT USING "#####,.##":A4, B, C
2000 PRINT USING “##.##";A, B, C

2100 END

A= B8.3123435

B=7

C = -1234 5678391
8.91 7.88 -1234 .57
B.91 7 .88 -1234 .57
B8.91 7.0 -1,234 .57

8.21 7 .98 %-1234 .57

Figure 7-4 Basic formatting for PRINT USING

FLUS (+) AND MINUS (-) SIGNS

GRi1DBASIC accepts a format with a plus or a minus sign at either the
front or rear of the format string. All the following are legal:

Input/0Output Statements 7-15

+H#HHE, #4
~HHH#. #H
HHH# . HH+
HHHH, #H-

Flacing the plus sign on either end of the format string causes
positive numbers to display the plus sign in the position indicated
by the format. Negative numbers print the minus sign in this same
position. Either sign adds an extra space to its number. See
Figure 7-5 below, it shows a program with formatted output.

1000 LET A=-213.14
1100 LET B=2130.14
1200 LET C=-2130.14

1300 PRINT "A = ";A
1400 PRINT "B = ";B
1500 PRINT "C = ";C

1600 PRINT

1700 PRINT USING "#####. ##" A,
1800 PRINT USING "“+####.##";A,
1900 PRINT USING "####.##+"3;A,
2000 PRINT USING "####.##-";A,
2100 PRINT USING "-####. ##"; A,

-

mmpmm
oooo0oon

-

2200 END

A= -213.14

B = 2130.14

C=-2130.14

-213.14 2130.14 -2130.14
-213.14 +2130. 14 -2130. 14
212.14- 2130 14+ 2129 14-
213.14- 213014 2130 . 14-

-213.14 2130.14 %-2120.14

Figure 7-5. The PRINT USING Format with Signs

DOUBLE ASTERISKS (x¥)

7=1&

Flacing two asterisks in front of the format string fills leading
spaces with asterisks. NOTE: Leading spaces appear when the number
of digite take less space than the number of positions specified by
the format. The program and printout in Figure 7-6 1llustrate
double asterisk, double dollar. double asterisk-dollar formatting.

GR1DBASIC Reference Manual

DOUBLE DOLLAR (%$%)

Placing two dollar signs before a format string causes a dollar sign
to print to the left of the formatted number. Double dollar creates
two format spaces, one of which the printed dollar sign takes. See
Figure 7-6 for examples.

DOUBLE ASTERISK-DOLLAR (k¥%)

EXAMPLE

Double asterisk-dollar combines the effects of double asterisk and
double dollar: It prints a dollar sign to the left of the number and
fills the field with asterisks whenever the number contains fewer
digits than the format specifies. See Figure 7-6 immediately below.

{NUMBERS)

1000 LET A=.912345

1100 LET B=7

1200 LET C=-1234.5678%91

1300 PRINT "A ":A

1400 PRINT "B “;:B

1500 FRINT "C "sC

1600 PRINT

1700 PRINT USING "$s#s###.#4"1A,
1800 FRINT USING "$S####.#%-"3A,
1900 PRINT USING "Xx$H###.H#";A,
2000 PRINT USING "xx$###.#8-"3;A, EH,
2100 PRINT USING "Xx####.#4":A4, B, C

I nwn

-

m o mm
-
oOnaon

2200 END
A = 8.912345
B=7
C = -1234 567891
$0.91 $7.00 $-1234.57
$8.91 $7 .99 $1234.57-
¥¥kx¥ks$0 . 91 X¥kkxe? . 00 *$-1234 .57
AEEEs0 91 LES &yl *$1234 57—
F¥¥kke 91 £XE%%7 .00 *-1234 .57

Figure 7-b6. Asterisk and Dollar Formatting

CHARACTER STRINGS

You can also include character strings between either set of

Input/Output Statements 7=17

guotation marks and the format string. FRemember: The space is a
character. All the following are legal:

" HHaHE. B8

"HHHHE . W ™

" HEHEH. 49 "

"Your account contains $&####H#. H#H"

"H#4#4#. #4 after deductions”

" You get #####.## shares for each hundred"

7-18 GRiDBASIC Reference Manual

SEMICOLOMN

FORMAT

NOTES

EXAMPLE

The semicolon character formats FPRINT and INFUT data.

expression: expressionl;]

The semicolon character (;) serves to link expressions following
PRINT and INPUT statements. FPlaced between expressions, the
semicolon can link variables and strings. Unlike the comma, it
provides no space between expressions. Flaced at the end of a
program line, the semicolon suppresses the carriage return-line feed
characters issued by PRINT.

When a semicolon follows an INPUT statement, it suppresses the
carriage return-line feed pair. As a result, you can request
multiple items for INFUT on the same line.

1000 INPUT "Your first name is"; Name$

1100 FRINT

1200 INPUT; "Your City"s; City$

1300 INFUT; " State"; 5t$

1400 INPUT " ZIP":;ZIP$

1500 PRINT

1600 PRINT "Ahhh, you mean "3 City$; ", "; Sté; " "; ZIP$: " and not

ll;
1700 PRINT Name$;City$;St$;ZIF$
1800 END

In lines 1000, 1200, 1300, and 1400 the semicolons following the
prompt string cause a question mark to print immediately after the
prompt. The semicolons after INPUT on lines 1200 and 1300 suppress
the carriage return-line feed pair, so that the program requests
city, state, and ZIF code information all on the same line.

Line 1600 shows how you can place semicolons to link a mix of

strings and variables. Line 1700 prints as one long line, because
semicolons provide no spacing.

Input/Output Statements =19

TAE

FORMAT

NOTES

EXAMPLE

This function operates with the PRINT statement to tab horizontally
a specified number of character positions or spaces.

TAB(expression)

TAB understands expression as the column number where it should
position whatever item follows it. For example,

1000 PRINT TAE(17) "Top Drawer"

prints the string "Top Drawer" at the 18th column of the current
line. NOTE: The first display position on a line is 0; TAB(1) is
the second character position on a line.

The expression must be a positive number. If the current print
position is already beyond that specified by expression, TAE goes to
the specified expression on the next line. If the specified value
is greater than the length of a display line (52 characters), TAE
simply keeps counting character positions on subsequent lines to
arrive at the specified column position. Thus,

PRINT TAB(52) "Here"

would print HERE beginning in the first character position of the
next display line.

TAB operates only with the PRINT statement —-- it does nbt work with
the PRINT# statement.

1000 PRINT TAE(Q) "O"3 TAB(10) "10"; TAB(20) "20"3; TAB(30) "30";
TAB(40) "40"; TAB(S0) "S50"

1100 FOR Position=0 TO 10

1200 FPRINT TAB(Position) "Tab "jPosition

1300 NEXT Position

1400 END

This program prints the word "Tab" and the tab’s number at columns 0
through 10.

7-20 GRiDBASIC Reference Manual

v

TIMES

FORMAT

NOTES

EXAMPLE

The time function.

TIMES

TIME$ returns the current time as a 13 character string from the
Compass Computer system’s real-time clock. The string takes the
form hh:mm:ss a.m. or hh:mm:ss p.m. where hh is the hour (00 through
12), mm is the minutes (00 through 59) and ss is the seconds (00
through 59). NOTE: These characters are string, not numeric,
characters. For a program to use them numerically, you must convert
them to numbers {see Chapter Six, the VAL statement).

1000 PRINT "The time is ":; TIME$

1100 FOR Loop=1 TO S

1200 FOR Rest=1 TO 128: NEXT Rest

1300 LET Second$ = MID$(TIMES$,7,2)

1400 PRINT: PRINT "The current seconds are ":; Second$
1500 NEXT Loop

1600 END

After printing the time in line 1000, the program illustrates that
you can take any particular element from the time string and work
with 1t separately. In this case, the current seconds print every
second, five times. The loop at line 1200 provides a one second
{approximately) pause between printouts.

Input/Output Statements =21

CHAPTER EIGHT: SEQUENTIAL FILES STATEMENTS

This chapter describes the statements necessary for writing, reading, and
manipulating sequential files. Many of these commands also come into play
when dealing with random access files (described in Chapter Nine).

The PRINT# and INPUT# statements, described in this chapter, transfer data to

and from sequential files. The files created by the FPRINT# statement are in a
format called "interchange file format" and the INFPUT# statement expects files
it reads to be in this same format.

The interchange file format enables GRiD applications to place data in columns
and rows for tabular or cell-based applications such as GRiDFLAN, GRiDFILE and
GRiDFLOT. Because GRiD applications can read files in interchange format,
they can process data generated by GRiDBASIC programs.

NOTE: Many of the examples in this book write or read data from a floppy drive
and a subject called "‘Testing®." For example:

1000 OFEN "0",1,"*f0"Testing Weekly"

If you prefer to put your test files on your bubble, replace "*f0" with "‘“bO."
For the hard disk, substitute "*w0." The BGRiDEASIC OPEN command can create a
title {like "‘*Weekly") but not a subject. If you want to create a special
subject for your examples and test programs, you must do this beforehand.

If you prefer not to deal with pathname syntax, put the GETFILE$ statement in
vour program. It presents the standard application file form. See the
GETFILE$ statement later in this chapter.

NOTE: You need only specify a file's device, subject, and/or kind when any of
those designations change. For example, if you set usage (CODE-U) to the

Sequential Files 8-1

floppy drive and then select the subject "*Testing" to write a BASIC program
in, you could write

1000 OPEN "0",1," “Weekly"
instead of
1000 OPEN "0",1,""f0"Testing "Weekly™~Text"

Like GRiDWRITE, GRiDBASIC assigns "Text" as the kind for file’s created with
the OPEN and PRINT# statements.

8-2 GRiDBASIC Reference Manual

CLOSE

FORMAT

NOTES

EXAMPLE

This statement closes a file or files previously enabled for program
access by an OFEN statement.

CLOSE [([#]fileTagl(,[#1fileTagll, ... 1]

The OPEN statement assigns a file tag number to a particular file
name. The CLOSE statement disassociates the tag from this file
name, so that you can reassign it to another file. With sequential
files, you must close a file to change its mode.

For example, you have to close a program operating a file in the
ocutput mode before you can append to it. You can reopen the same
file again with its previous tag or a different tag. For a further
discussion of fileTags and modes, refer to the OPEN statement later
in this chapter.

If you fail to give the CLOSE statement a fileTag, GRiDBASIC closes
all open files. NOTE: An END statement automatically closes all
files, but a STOP statement does not. GRiDBASIC allows the optional
number sign (#) that precedes the fileTag to provide compatibility
with other versions of BASIC.

1000 OPEN "I",1,""*f0"Testing *Weekly™"

1100 WHILE NOT EOF (1)

1200 INPUT# 1, Day$

1300 PRINT Day$

1400 WEND

1500 CLOSE 1

1600 PRINT: PRINT "Those are the days of our lives."
1700 END

In this example (taken from the OPEN statement below) line 1500
closes the "*Testing" file opened in line 1000. You can also close

multiple files with the same statement for example:

1000 CLOSE 3,4,15

Sequential Files 8-2

EOF

The end of file function.

FORMAT

NOTES

EOF (fileTag)

The EOF function returns a value that indicates if an end of file
has been reached on a specified file. If the end of file has been
reached, EOF returns a -1 (true) value. If the end of file has not

been

reached, a 0 (false) is returned.

The fileTag parameter is the number you specified when you opened
the file for input.

EXAMPLE

8-4

1000
1100
1200
1300
1400
1500
1600
1700

OPEN "I",1,"f0'Testing ‘Weekly™"
WHILE NOT EOF (1)

INPUT# 1, Day$

PRINT Day$

WEND

CLOSE 1

PRINT: PRINT "Those are the days of our lives."
END

NOTE: This example is one of three illustrating the OPEN command.
To make this work program work, you will have to type and run the

OPEN

Output example first (see the OPEN statement later in this

chapter).

GRiDBASIC Reference Manual

EOLN

FORMAT

NOTES

EXAMPLE

The end of line function.

EOLN(fileTag)

The EOLN function returns a value that indicates if an end of line
within a specified file has been reached. An end of a line within
a file is indicated by the carriage return-line feed combination.

If the most recent character read from a file is followed by a
carriage return-line feed, or if the end of file has been reached,
the EOLN function returns a -1 (true) value; otherwise, it returns a
Q (zero).

This function is especially useful when reading interchange files
from other GRiD applications.

The fileTag parameter is the number you specified when the file was
opened for input.

1000 OFEN "I",1,""f0"Testing *Al1Checks™Mykind"

1100 INFUT "Take balance from what row (2-13)": Row
1200 LET Lines=0

1300 WHILE NOT EOF (1)

1400 IF EOLN(1) THEN LET Lines=Lines+l

1500 INFUT# 1, Record$

1600 IF Lines = Row THEN LET Goal%$ = Record%
1700 WEND

1800 PRINT

1900 PRINT "The balance at row ";Row:" is "3;Goal$
2000 END

This program lets you take any number from the balance column of the
worksheet shown below in Figure B-1. For example, if you select row
3, the program will return the amount 479251.43 (the amount after
the 02/03 Deposit).

I+ you want to set up Figure 8-1 in a worksheet, make all but the
first item in the balance column a formula that adds current line’s
Amount to the previous Balance column amount. The first item is the
absolute amount, 491084.00. The second Balance item (478605.47)
results from adding -12478.53 to the absolute amount.

Sequential Files 8-5

Check no Payee Amount Bal ance

start balance 491084. 00

1000 Acme Realty -12478.53 47B405.47
1001 Local Power -5601.89 473003.58
1002 Telephone -3016.92 469986. 66
23457 02/03 Deposit 9264.77 479251.43
1003 Fass Freight -1032.14 478219.29
1004 Ace Credit -15629.01 4462590.28
1005 Fleet Rents -4912.30 457677.98
1006 Personnel =38971.95 421706.03
1007 A-1 Cleaning -856.795 420849.28
1008 StarInsurance -1478.42 419370.86
1009 Heavy Equip -25819. 66 393551.20

Figure 8-1. Worksheet Figures for Example Program

The EOLN function works by searching for the carriage return-line
feed combination. In the case of this example program, line 1400
increments a line counter (the variable "Line") each time it
encounters an EOLN. When the value of Line equals the value of Row
(input by the user), the program prints the last field.

NOTE: Record$ reads one record at a time, not one line. One cell,
begun and/or ended by the Tab character constitutes a record.

8-46 GRiDBASIC Reference Manual

GETFILESS

FORMAT

NOTES

EXAMPLE

The get file statement.

string$=GETFILE®% ("promptMessage")

Normally, programmers specify file pathnames with the program
development syntax -—-

*Device"Subject"Title™Kind™
For example: 1000 OPEN "I",1,"*f0*Testing ‘Weekly™Text™"

The GETFILE$ statement lets you bypass this syntax by bringing you
the standard file form. Filling in the form and confirming it
brings you the desired file.

You may prefer GETFILE$ over the pathname syntax i1f you have trouble
understanding pathname syntax or if you want your program to work
with different files. On the other hand, if your program uses just
one file (or only a few —— you could change a parameter before
running the program), go with pathname syntax. Likewise, if you
value quick access time, choose pathname syntax.

1000 MyFile$=GETFILE%$("Select file and confirm")
1100 OPEN "I",1, MyFile$%
1200 WHILE NOT EOF (1)

1300 INFUTH# 1, Day$
1400 PRINT Day$
1500 WEND

1600 END

In this example, line 1000 assigns the GETFILE$ function to the
string variable, MyFile% along with the prompt

Select file and confirm
The prompt appears in the message line when you run the program.
Once you give the file information to the form and confirm, the

string variable delivers that information to the program (see line
1100).

Sequential Files 8-7

INFUTH

FORMAT

NOTES

8-8

This statement assigns values to program variables by reading data
items from a sequential file.

INFUTH# fileTag,variableslList

The fileTag parameter is the number you specified when the file was
opened for input.

Data items read from the file are assigned to the variables
specified in the variablesList. Each data item read from the file
must be of the same type as that specified by the corresponding
variable name. The variable names in variableslList can be any mix
of numeric and string variable names, including subscripted
variables.

INPUT# expects the file to be in GRiD’s standard interchange file
format: data items are separated by Horizontal Tabs or Carriage
Return-Line Feed pairs. The PRINT# creates this interchange file
format, as do GRiD’s cell-based applications such as GRiDFILE and
GRiDPLAN.

If the end of a file is reached while an item is being input, the
item is terminated. If a type mismatch occurs between the data item
and the variable that it is being assigned to, or the file has an
insufficient number of items, the program halts and an appropriate
Brror message appears.

The INPUT# statement can obtain data from the keyboard; you open the
keyboard just as you would any other file. The keyboard’s filename
is "CI" (for Console Input). For example,

OPEN "1%,1,%CI"
If you choose keyboard input, you must write a prompt for your

user{s): unlike the INPUT statement, the INPUT# statement does not
print a guestion mark or a prompt message.

GRiDBASIC Reference Manual

O

EXAMPLE

1000
1100
1200
1300
1400
1500
14600
1700

NOTE: This example is one of three illustrating the OFEN command.

OPEN "I",1,"*f0*Testing ‘Weekly™"
WHILE NOT EOF (1)

INFUT# 1, Day$

PRINT Day$

WEND

CLOSE 1

PRINT: PRINT "Those are the days of our lives."

END

To make this work program work, you will have to enter and run the

OPEN

Output example first.

Sequential Files

8-9

INFUTSsS

FORMAT

NOTES

EXAMPLE

8-10

Prefer INFUT$ over INPUT# for handling communications files or for
reading large sections of files.

INPUTS (tag#, bytes)

INPUT$ fetches the number bytes (or characters) assigned to it in
its argument from the file represented by the file tag number. You
can assign part or all of the characters read from a communications
or other file into one string with INPUTS.

NOTE: If you give the statement a greater number of characters to
fetch than exist within the file, INPUT$ quits when it reaches the
end of file character.

1000 OPEN "I",1, "*$0°Testing‘AnotherDay™"

1100 INPUT "Get how many characters from this file"; HowMany
1200 WantToSee$=INPUT$ (1,HowMany)

1300 PRINT

1400 PRINT WantToSee$

1500 END

This example has the INPUT$ statement fetch as many character from
the file of weekdays as the user specifies. Unlike INPUT#, INFPUT$
does not convert the end-of-line characters {(carriage rerturn-line
feed). Rather, it prints the entire string of characters without
breaking at the end of lines (except for the right margin).

NOTE: The OPEN output example creates a text file with the days of
the week in it. You can create the same file by invoking GRiDWRITE
and typing the days in a vertical list. The INPUT$ program above
can read it, as it can read any text file.

GRiDBASIC Reference Manual

RLILL

The KILL statement erases a file.

FORMAT
KILL filename

NOTES
Follow the KILL statement with the file name of the file you want to
erase. You can present this in the form of a string variable. 1In
fact, the most efficient way to issue a KILL is with a file form
created with the GETFILE$ statement (discussed earlier in this
chapter). GETFILE$% delivers its data to a string variable.

EXAMPLE

1000 OPEN "0",1,""f0*Testing*NewFile": CLOSE 1

1100 PRINT "NewFile created!"

1200 PRINT "KILL NewFile by selecting 1t."

1300 LET Joy$=GETFILE$ ("Select FloppyDisk-Testing-NewFile-Text and
confirm")

1400 KILL Joy$

1500 PRINT: PRINT "NewFile KiLLed. See if NewFile is still there."
1600 Search$=GETFILE$ ("Press ESC after viewing files")

1700 PRINT: PRINT "KILL erased the file."

1800 END

Line 1000 creates a file. In line 1300, the GETFILE$ statement
presents a file form. We recommend GETFILE$ over typing file name
syntax. Line 1400 erases the file named in the form. Line 1600
presents second file form, so that you can see for yourself that
KILL indeed erased the file.

Sequential Files 8-11

LOC

FORMAT

NOTES

EXAMPLE

The locating statement.

expression=L0OC (tag#)

LOC locates a portion of a file by returning a number from a file.
What that number represents depends on the type of file involved.

Random The record number of the last record read or
written.

Sequential The number of records read or written since the
last OPEN.

Communications The number of characters waiting to be read in the

input buffer.

1000 OPEN "I",1,"*f0°*Testing ‘AnotherDay™"
1100 PRINT "Record", "Byte":PRINT
1200 WHILE NOT EOF (1)

1300 LET MyByte=LOC(1)
1400 INFUT# 1, Day$
1500 PRINT Day$, MyByte
1600 WEND

1700 CLOSE 1

1800 END

This example reads a sequential file. This example gets the byte
number of each record in a days-of-the-week file. If you want to
run this file, you can create a text file called "‘AnotherDay" by
typing in the days of the week in GRiDWRITE, putting each day on its
own line.

When you run this example, the "S" beginning Sunday appears as the
byte 1. The "M" in Monday as the ninth character. Why? Because in
addition to the six characters in "Sunday," LOC also counts the two
invisible characters at the end of the line -- carriage return and
line feed. Remember: LOC returns the absolute position of each
byte.

B-12 GR1DBASIC Reference Manual

LOF

The lenqth of file statement.

FORMAT
expression=L0OF(fileTaq)

NOTES
LOF returns a file's length in bytes. You must supply the file's
file tag in paratheses.

EXAMPLE

1000 OPEN "I",1, "*f0°Testing*AnotherDay™"

1100 Length=LOF (1)

1200 PRINT

1300 PRINT "The length of this file is "; Length; " characters."”
1400 END

Sequential Files 8-13

OFEN

NOTES

This statement opens a file for a particular kind of access.

OPEN "accessMode"[#1fileTag,"fileName"

Here is a typical OFPEN statement:
1000 OPEN "I", 3, "‘wO'Taxes‘'January"

The accessMode parameter specifies the way that subsequent PRINT#
and INPUT# statements in a program can access this file. Further,
we can make subsequent references to this program with the number
three, instead of with the pathname "‘*wO‘*Taxes‘January."”
GRiDBASIC has three access modes:

Gl e specifies sequential input
"0" specifies sequential output
A specifies sequential output to be appended

Note that a single OFEN statement can only establish access for one
sequential activity at a time. A sequential file cannot be OFEN for
both input and output at the same time. To change the type of
access you have assigned to a file, you must first CLOSE the file,
then execute another OFEN statement specifying the new type of
access.

The fileTag parameter is a number that you specify to be associated
with this fileName for a particular OPEN operation. Subsequent
accesses to the file with PRINT# or INPUT# statements can then refer
to the file simply by the fileTag number; you need not specify the
file name or type of access. NOTE: GRiDBASIC allows the optional
number sign (#) that precedes the fileTag for compatibility with
other versions of BASIC.

A file can be open under only one fileTag number at a time. You
cannot have a file simultaneously OFPEN for input and output, for
multiple inputs, or for multiple outputs. To perform two access
operations, you need two open operations and two tag numbers. For
example:

1000 OPEN "I",1 "*MyFile"
1100 OPEN "0",2 "“YourFile"

This opens the file titled "“MyFile" for input and gives 1t tag
number 1. Line 1100 opens a second file to receive this data
(output), "*YourFile," with the tag number 2.

B-14 GRiDBASIC Reference Manual

The fileName parameter can be any name you have specified up to 80

characters in length.

near
file

For details, see "File Naming Conventions"

the end of Chapter Z. You can also use the standard Compass

form to get file names for your BASIC programs; see the

GETFILE$ statement earlier in this chapter.

EXAMPLE (OUTPUT)

1000
1100

OFEN "0",1,"*¥0"Testing "Weekly™"
DATA Sunday, Monday, Tuesday. Wednesday., Thursday, Friday,

Saturday

1200
1300
1400
1500
1600
1700
1800
1900

This

FOR Week=1 TO 7

READ Day$#

FRINT Day$

FRINT# 1, Day$

NEXT Week

CLOSE 1

PRINT: PRINT "The Weekly file is closed.”
END

example creates a file with the title "“Weekly" and writes

names of the days of the week into it.

EXAMPLE (INPUT)

1000
1100
1200
1300
1400
1300
1600
1700

This
from

OPEN "I",1,"*f0°Testing ‘Weekly™"

WHILE NOT EOF (1)

INPUTH 1, Day$

FRINT Day$

WEND

CLOSE 1

PRINT: PRINT "Those are the days of our lives."
END

example opens the previous file, retrieves the days of the
it, and prints them on the screen.

Sequential Files

the

week

B8-13

EXAMPLE

B-16

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900

This

(APPEND)

OPEN "A",1,"*f0°Testing ‘Weekly™"

DATA Yesterday, Today, Tomorrow, The Day after that
FOR Now = 1 TO 4

READ Day$

PRINT# 1, Day$

FRINT Day$

NEXT Now

CLOSE 1

PRINT: PRINT "Those were the days, my friend."

END

example appends four lines to the original file -- Yesterday,

Today, Tomorrow, and The Day after that. If you re-run the INPUT
example, you will see these new additions.

GR1DBASIC Reference Manual

FRINTH+

FORMAT

NOTES

The PRINT# statement writes data to a sequential file.

FRINT#fileTag,expressionl{,!:}][expression] ... [{,i32}]

The fileTag parameter is the number you specified when you opened
the file for output. It identifies the sequential file that is to
receive the data.

PRINT# writes the data contained in the expession{s) to the file
with appropriate delimiting characters automatically inserted. Your
choice of punctuation (either a comma or a semicolon) between
expressions determines the delimiting characters written to the file
to separate the items in each expression. You can use either commas
(,) or semicolons (;) as separators.

NOTE: If you intend to print to an Epson printer and want your
commas to perform a tabbing function, see the "Epson Notes" at the
end of this discussion.

If vou place a semicolon between two expressions, FRINT# writes the
values of the two expressions with no delimiting character between
them.

If you place a comma between two expressions, a horizontal tab
character is written to the file separating the contents of the
first expression from the contents of the second expression.

If a list of expressions terminates without a comma or semicolon,
PRINT# writes a carriage return-line feed at the end of the list.
If a comma terminates a list of expressions, FRINT# places a
horizontal tab character after the last expression. If a semicolon
terminates a list of expressions, it suppresses any delimiting
character. Thus a subsequent FRINT# statement begins writing data
to the file beginning at the point where the last FRINT# left off.

NOTE: The format of the file created by the PRINT# statement is
compatible with the interchange file format. As a result,
cell-based GRiD applications such as GRiDFLOT, GRiDFILE and GRiDFLAN
can work with these files.

Choose the INFUT# statement to input data from a file that vyou
created with the FRINT# statement.

Sequential Files 8-17

EPSON NOTES

EXAMPLE

For the Epson to interpret GRiDBASIC's commas correctly —- providing
tabs -- you must follow the PRINT# command with the file tag number,
an ESC D (represented by CHR$(27)+"D") and the column number of each
tab preceded by the CHR$ statement. Concatenate these tab positions
with the plus sign (+)., All such statements must end with the null
character (CHR$(0). Do NOT exceed an B0-character line. An example
command assigning 15 character-wide tabz follows:

PRINT# 1, CHR®(27)+"D"+CHR$ (15)+CHR$ (30) +...+CHR$ (0)

1000 OPEN "0",1,"*f0*Testing ‘Weekly™"

1100 DATA Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday

1200 FOR Week=1 TO 7

1300 REARD Day$

1400 PRINT Day$

1500 PRINT# 1, Day$

1600 NEXT Week

1700 CLOSE 1

1800 PRINT: PRINT "The Weekly file is closed."
1900 END

This example (from the OPEN statement) writes the days of the weeks
to a file called "‘*Weekly." The PRINT# statement in line 1300
transmits this data one string (or day!) at a time.

B-18 GR1DBASIC Reference Manual

FRINTH USING

FORMAT

NOTES

EXAMPLE

The PRINT# USING statement writes data to sequential files or to the
printer in a specified format.

PRINT# fileTag, USING; formatstring; {numericvaristringvar list}

FRINT# USING takes the same arguments as PRINT USING. The only
syntactical difference between the two is the presence of the number
sign (#) and tag number following the word "FRINT." For details on
this statement®s many formatting possibilities, see FRINT USING in
Chapter Seven.

1000 OPEN "0O",1, "“epson"
1100 FOR Times = 1 T0O 12
1200 LET Number = 100000XRND(1)

1300 PRINT Number;" "3: PRINT USING "$$######, . .#%"; Number
1400 PRINT# 1, Number:
1500 FRINT# 1, USING " SEH#HBHH, . #8" 1 Number

1600 NEXT Times
1700 CLOSE 1
1800 END

This example generates 12 random numbers and then prints and formats
them —- to the screen and to the printer. Line 1400 prints the
unformatted number; line 1500 does the formatting. In this case, we
have turned the number into a dollar amount and preceded that with
spaces to separate the unformatted and formatted numbers. Figure
8-2 below is a typical printout.

Note that to print, you must open your printer as a file (line 1000)
and give it a tag number. The PRINT#, PRINT# USING and CLOSE
statements all take advantage of this tag number.

This example creates a printout to the screen and on paper that
resembles the printout below in Figure 8-2. The left column
displays the random number we generated. The right column shows how
PRINT# USING formatted the same number.

Sequential Files 8-19

Figure 8-2.

6001.3733119707

62092.0119020371
38194.8577096208
82920.5767910277
7277.02754253452
B1165.7892729076
3288.31921873808
BB273.4416723888
89706.2638284886
52875.5626764324
65941.8631265736
53293.6598764019

PRINT# USING formatting of Random Numbers

GRiDBASIC Reference Manual

$6,001.37

$62,092.01
$38,194.86
$82,920.58
$7,277.03
$81,165.79
$3,268.32
$88, 273. 44
$89,706.26
$52,875.56
$65,941.86
$53,293. 66

CHAPTER NINE: RANDOM FILE STATEMENTS

Random access (also called "direct access") files differ from sequential files
in several important ways. First, each data unit or record is of a fixed
length (specified by the programmer). Second, you can go directly to anvy
record within a random access file, rather than having to go through the
entire file. This is true for both read and write activities. Third., random
files have a buffer in RAM memory. Your program interacts with the buffer,
rather than directly with your storage device.

Fandom access files share statements with sequential files. Note, however,
that some of these statements don’t behave exactly the same. For example, the
LOF statement in a sequential file returns the length of that file in bytes.
In a random file, LOF returns the total number of records in the file. These
two numbers only equal each other when a random file has one-byte long
records'

Another example. The OFEN statement has only one access mode for opening a
random access file —— "R" (Sequential files have three). With random files,
it doesn’t matter whether you are opening the file for INPUT or OUTFUT.
Further, the OFEN statement in a random access file also takes an optional
argument after the file name, the buffer length.

Although this chapter contains plenty of working examples, you may want to
look at the basic steps involved in creating random access write and read

files. First to create a random access file and write data to it, follow

these steps.

Random Files 9-1

’l’-\ RANDOM ACCESS WRITE FILE

(:) OPEN the file with an "R" and an optional buffer size specification.

®

®

®

1000 OFEN "R",1,"*f0*Testing ‘Demograf.i1™",30

Define the sizes of the fields in your record buffer with the FIELD
statement.

1100 FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS City$

Gather the data you want to write. You can do this by reading from other
files, with INPUT and/or READ DATA statements, for example.

1200 INFUT "Name"; N$%

Put this data into the buffer with the LSET or RSET statements. Use the
variable names you assigned to fields in the FIELD statement.

1600 LSET Name$=N$

@ Write the data to the file with the PUT statement.

®

2000 PUT 1

Close the file.

2200 CLOSE 1

Here’s an outline for reading data from a file.

’ A RANDOM ACCESS READ FILE

®

&

©@ O O

OPEN the file with an "R" and an optional buffer size specification.
1000 OPEN "R",1,"*f0°Testing*Demograf.1™",30
Define record buffer field sizes in with the FIELD statement.
1100 FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS Citys
Use the GET statement to read your data from the file.
1500 GET 1, RecordNo
Process this data and send it to the screen or other device.
1600 PRINT Name$;
Close the file.

2400 CLOSE 1

9-2 GRiDBASIC Reference Manual

CVI .

FORMAT

NOTES

EXAMPLE

cvs, CVD

The convert string to integer function.
The convert string to single-precicsion function.
The convert string to double-precision function.

CVI(2-byte string)
CVS(8-byte string)
CVD(16-byte string)

Programmers often convert numeric values to strings so they can
format these values with the LSET or RSET statements. However, the
system cannot perform mathematical operations on string values.
Only on numeric values. Therefore, they convert string values back
to numbers. CVI converts a 2-byte string, CVYS converts a 4-bvyte,

and CVD converts an 8-byte string.

Choose the CV function that matches the MK$ function that made the
original number into a string. Table 9-1 below illustrates this.

MKk$ Form CV Form No. of Bytes
MKI$ CVI 2
MES$ cvs)
MKD$ CVD 8

Table 9-1. Choosing MK$ and CV Functions

1000 OPEN "R",1," “f0"Testing *MyNumbers™~",8
1100 FIELD 1, B AS Number$

1200 FOR Count=1 TO 3

1300 INFUT "Any number"; N

1400 LSET Number $=MkD%$ (N)

1500 PUT 1

1600 NEXT Count

1700 PRINT:PRINT "MKD$ Form"; TAB(13) "After CYD": PRINT

1800 FOR Count=1 TO 3

1900 GET 1, Count

2000 PRINT Number$;

2100 PRINT TAB(13) CVD(Number%)
2200 NEXT Count

2300 PRINT

2400 END

Random Files 9-3

This program asks you to enter any three numbers. It then converts
them to string format in line 1400. It then writes these numbers tr
the screen and shows them in the form in which they are stored (the
"MKD$ Form") and the numeric form they take after conversion to
double precision (CVD). See the MKD$ function below for details on
its operation.

9-4 GRiDBASIC Reference Manual

FIELD

FORMAT

NOTES

EXAMPLE

FIELD sets up a random file buffer.

FIELD [#] tag#, number AS string$ [, number AS string$] ...

The FIELD statement breaks the buffer into individual fields. Thus
the buffer is the length of the record that comprises these fields.
To maximize efficient use of memory and storage space, add the
numbers of characters for each field together and give the resulting
sum as the optional buffer length parameter.

The AS statement assigns buffer space in characters f{(indicated by
the number preceding AS) to a variable (following AS).

1000 OFEN "R",1,"*f0°Testing ‘Demograf.1™",30
1100 FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS Citys
1200 WHILE NOT EOF (1)

1300 GET 1

1400 PRINT Name$;

1500 FPRINT Age%;

1600 PRINT City$

1700 PRINT

1800 WEND

1900 CLOSE 1

2000 END

This program reads in all the records from the ‘Demograf.l file. It
allots space in the (random) buffer for its three fields as follows:

12 characters for the string variable Name$, 3 characters for the
string variable AGE$, and 9 to the string variable ZIPS.

Random Files 9-5

GET

The GET statement retrieves data for random file access.

FORMAT
GET [#] tag#[. numberl

NOTES
The GET statement reads one record at a time into the buffer. If
you do not specify a number, any reading of these records causes
their content to appear in the order in which they exist in the
file. If you specify a number, the record belonging to that record
number appears. Thus if you ask for
1500 GET 1,3
line 1500 will get the third record from the file you assigned the
tag number of 1.

EXAMPLE

1000 OPEN "R",1,""*f0*Testing ‘Demograf.1™",30

1100 FIELD 1, 12 AS Name$, 3 AS Ages, 15 AS Citys
1200 LET Items=LOF(1)

1300 PRINT "Record number (between 1 and "; Items;
1400 INPUT ") please", RecordNo

1500 GET 1, RecordNo

1600 PRINT Name$;

1700 PRINT Age$;

1800 PRINT City$

1200 INPUT "This person’s true age", A%

2000 PRINT

2100 LSET Age$=A%

2200 PUT 1, RecordNo

2300 GOTO 1300

2400 CLOSE 1

2500 END

This example reads whatever record number you specify (in line 1400}

and prints the appropriate data on the screen. The program then
gives you the opportunity to change the age parameter.

9-6 GRiDBASIC Reference Manual

LOC

FORMAT

NOTES

EXAMPLE

LOC locates a record.

LOC (tag#)

LOC returns the record number of the next record that you can either
GET or PUT. When this function sees the EOF marker, it looks no
further.

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

This

OFEN "R",.1,"*f0°Testing‘Demograf.1™".30
FIELD 1, 12 AS Name$, I AS Age$, 15 AS City$
WHILE LOC(1)<=8

PRINT LOC(1)3" "3

GET 1

PRINT Name$;

FRINT Ages$:

PRINT City$

FRINT

WEND

CLOSE 1

END

example uses LOC to test whether the WHILE WEND should continue

{line 1200) and to print each record’s number before printing the
contents of the record (line 1300).

Random Files 9-7

LOF

The length of file statement

LOF(fileTag)

LOF returns a file’s lenagth in records.

FORMAT

NOTES

EXAMPLE
1000
1100

1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

In this example,

of records in the file (LOF).

OPEN "R",1,"*f0"Testing ‘Demograf.1™",30
FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS City$
WHILE LOC(1) <= LOF(1)

PRINT LOC(1)3" "3

GET 1

PRINT Name$;

PRINT Age$;

PRINT City$

PRINT

WEND

CLOSE 1

END

equal to LOF, the WHILE WEND loop continues.

9-8 GRiDBASIC Reference Manual

line 1200 we test whether to continue the WHILE
WEND loop by comparing the file record number (LOC) with the number
If the record number is less than or

A4

LSET

FORMAT

NOTES

EXAMPLE

and RSET

The LSET and RSET statements

LSET fieldString=programString
RSET fieldString=programString

LSET and RSET statements assign a string created within the current
program to one of the string variables defined in the FIELD
statement. In the event that a value does not take up all the
string space allotted to it, LSET will left-justify the value within
the space. Similarly, RSET right-justifies when space remains.
NOTE: You must convert numeric variables to string variables before
doing this. Either the MK$ statement (see below) or the S5TR$ can do
the job.

CAUTION: Do not use a field variable in an input statement nor put
it on the left side of an assignment (LET) statement. Either
practice causes the variable pointer to point not to the random file
buffer, but to string space. The result: garbage in your file.

1000 OFEN "R",1,""f0°Testing *Demograf.1™",30
1100 FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS City$
1200 INFUT "Name"; N$

1300 IF N$="=" THEN GOTO 2200

1400 INFUT "Age":; A%

1500 INFUT "City"; C%

1600 LSET Name$=N$

1700 LSET Age$=A%

1800 LSET City$=C%

1900 FRINT

2000 PUT 1

2100 GOTO 1200

2200 CLOSE 1

2300 PRINT: PRINT "This input session is over"
2400 END

This example writess data to a random access file. The LSET
statements (lines 1600-1800), it assign the values in the input
variables (lines 1200, 1400, and 1500) to the field variables
(assigned in line 1100). If you wanted your output right-justified
instead of left—justified. you would substitute RSET for each
occurence of LSET.

Random Files 9-9

MKIS,

FORMAT

NOTES

EXAMPLE

MKS$, MKDS$

The make string function.

MEI$ (expression)
MKS$ (expression)
MKD$ (expression)

The MK$ function converts numeric expressions (including variables
and numbers) into 4-byte strings. You must convert any numeric
expressions before submitting them to the LSET or RSET. (You must
choose one of these two to put data into the buffer).

As a general rule, choose MKD$ to convert your strings. At 8 bytes,
it yields the greatest precision and, with its corollary CVD,
minimizes the possibility for returning an inaccurate number from
storage.

1000 OPEN "R",1,"*f0*Testing *MyNumbers™",8
1100 FIELD 1, 8 AS Number$

1200 FOR Count=1 TO 3

1300 INPUT "Any number"; N

1400 LSET Number $=MkD%$ (N)

1500 PUT 1t

1600 NEXT Count

1700 PRINT:PRINT "MKD$ Form"; TAB(13) "After CVD": PRINT
1800 FOR Count=1 TO 3

1900 GET 1, Count

2000 PRINT Number$;

2100 PRINT TAE(13) CVD{(Number$)

2200 NEXT Count

2300 PRINT

2400 END

This program asks you to enter any three numbers. It then converts
them to string format in line 1400. Note that we put the result of
our MKD$ function in the string variable, Number$%. Lines 1900 to
2100 bring the numbers back from storage —— in the MK$ string form
and in the converted form. See the CVYD function above for details
on its use.

9-10 GRiDBASIC Reference Manual

OFEN

FORMAT

NOTES

The OFEN statement creates a buffer in RAM memory and prepares the
system to write data to or read data from the specified file. If
the file doesn’t exist, OFPEN creates the file title. It cannot,
however, create a subject.

OFPEN "R"[#]fileTag,"fileName",[bufferLengthl

Here is a typical OFEN statement:
1000 OPEN "R", 3, "‘*wQ‘Taxes‘*January", 63

When placed in the context of random access files, OPEN has only one

accessMode parameter -- "R" for Random. This specifies the kind of
file manipulation activities the fill allows. NOTE: where
sequential files have three possible letters -- "I," "0O," and "A,"
random files have just one accessmode -- "R."

NOTE: Unlike sequential files that must CLOSE and issue a new OPEN
statement before changing its access activity, random files can do
both input (GET) and output (PUT) under the same OFEN statement.
See the example under the MKD$ command. For details on sequential
files, see the OPEN statement in Chapter Eight.

The fileTag parameter is a number that you specify to be associated
with this fileName for a particular OFEN operation. Subsequent
accesses of the file with GET or PUT statements can then refer to
the file simply by the fileTag number; you need not specify the file
name or type of access. In the example above, this number is 3.

A file can be open under only one fileTag number at a time. NOTE:
GRiDBASIC allows the optional number sign (#) preceding fileTag for
compatibility with other versions of BASIC.

The fileName parameter can be any name you have specified up to 80
characters in length. For details, see "File Naming Conventions”
near the end of Chapter 2.

The optional bufferLength parameter sets the size of the buffer.

For greatest efficiency, you should assign this the same number of
bytes as the total number bytes in the field statement. In the
example above, we defined the length of the buffer as &3 characters.
The default length for the buffer is 128 bytes.

Random Files 9-11

EXAMPLE

9-12

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400

This

OPEN "R",1,"*f0'Testing ‘Demograf.1™",30
FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS Citys$
INPUT "Name"jy N$

IF Ng="=" THEN GOTO 2200

INFUT "Age"; A$%

INPUT "City"; C$

LSET Name$=N$

LSET Age$=A%

LSET City$=C$%

PRINT

FUT 1

GOTO 1200

CLOSE 1

PRINT: PRINT "This input session is over"
END

example inputs data to a random access file.

Its OPEN

statement assigns this file the access mode parameter., "R" and file

tag number "1."

It then specifies the floppy drive as the device,

"Testing" as the subject, and "Demograf.1" as the title. Finally,
it sets aside 30 bytes for the file’s buffer length. Note that 30
is the sum of the lengths of the three records given in the FIELD
statment (line 1100).

GRiDBASIC Reference Manual

FUT

FORMAT

NOTES

EXAMPLE

The PUT statement writes data toc a random buffer.

FUT [#]fileTag [, expressionl

The PUT statement writes data to a random file buffer for transfer
to the appropriate storage medium. PUT understands the optional
expression (whether a constant or a variable) as a record number.

If another record already has the number you specify, PUT will write
over it. If you fail to specify a number, PUT assigns the next
available number.

1000 OPEN "R",1,"*f0"Testing ‘Demograf.1™",30
1100 FIELD 1, 12 AS Name$, 3 AS Age$, 15 AS City$
1200 INPUT "Name"; N$

1300 IF N$="=" THEN GOTO 2200

1400 INPUT "Age": A%

1500 INPUT "City"; C%

1600 LSET Name$=N$

1700 LSET Age$=A%

1800 LSET City$=C$%

1900 FRINT

2000 PUT 1

2100 GOTO 1200

2200 CLOSE 1

2300 PRINT: PRINT "This input session i1s over"
2400 END

This program puts data into a file called °“Demoagraf.l. Each time
through the loop, it puts a record with three fields -- Name$, Age$
and Citys.

Random Files 9-13

CHAPTER TEN: GRAPHICS STATEMENTS

This chapter discusses GRiDBASIC’s graphics statements. With these statements
you can draw, invert, erase, and four figures:

e The box

e The circle
s The dot

@ The line

This manual has one example each for the circle, dot, and line statements (for
DRAW, INVERT, and ERASE). Each example shows how the graphic appears after a
particular statement by placing part of the graphic against the screen and
part against a white box. See Figures 10-1, 10-2, and 10-3 below. We place
these examples at the front of the chapter for easy access and comparison.

The programs that generated these figures are listed later in this with each
relevant statement.

You can also position character strings (DrawChars), create menus, move boxes,
and place prompt messages.

In graphics syntax, » and y represent (respectively) the horizontal and

vertical coordinates of the point being described. These points are screen
bits or "pixels." The screen is 320 pixels wide and 240 pixels deep.

Graphics Statements 10-1

DrawCircle (\
InvertCircle (f;

N-v

EraseCircle

Proaram stopped at line 1400,

Figure 10-1. The Three Circle Graphics

DrawDot

InvertDot

EraseDot

Program stopped at line 3200

Figure 10-2. The Three Dot Graphics

10-2 GRiDBASIC Reference Manual

Drawline

Invertline

Eraseline

Program stopped at line 1700

Figure 10-3. The Three Line Graphics

Graphics Statements 10-3

CLEARMSG

FORMAT

NOTES

EXAMPLE

10-4

The clear message statement.

CLEARMSEG

CLEARMSG clears any prompt previously specified by the STACKMSGE
statement. I+ you i1nclude a STACEMSG prompt 1nside a loop or want
to move on to a new message, vou must clear the old meszsage with
CLEARMSEG. If you don"t, mescagecs stack up., as shown 1n Figure 10-4,
See STACKMSG later 1n this chapter for detailes.

1000 FRINT "Fress a key"

1100 STACEMSG "Fress ESC to exat”

1200 STACKEMSG "The StackMsg Frogram”

1300 LET Key$=INEEY$

1400 IF Key$="" THEN GOTO 1300 ELSE FRINT "kKey 1s: "3 Kev$
1500 CLEARMSG

1600 STACKMSG "End

1700 STACKMSG "The

If it weren’t for line 1500, the prompt would look like the one 1in

Figure 10-4. CLEARMSG clears the first prompt =o that the final
prompt looks like the one in Figure 10-5.

Tha

End
Tha SteclkdMsa Program
Press ESC to exit

Figqure 10-4. Before CLEARMSG

Figure 10-5. After CLEARMSG

GR1DEASIC Reference Manual

DOMERNU

FORMAT

NOTES

EXAMPLE

This statement createcs a menu.

variable=DOMENU (prompt$. choice$ichoice¢lichoice$l ...)

The DOMENU statement draws a menu at the bottom of the screen. Thas
menu resembles the ones you have seen in GRiD applications. DOMENU
asks you to specify the prompt message (prompt$) at the bottom of
the screen and the various choices the menu will offer.

Separate each choice with a bar (i) by pressing CODE-SHIFT-;

DOMENU assigns a number to each choice, the first choice 1= 1, the
second Z, etc. In this way, you can execute the choice with an ON
GOTO or ON GOSUE statement. Only the size of the screen limits the
number of choices vou can present.

1000 LET Ficky$="Make your play"

1100 LET Yours=DOMENU(Picky$,"5tand and fightiFlee and retreatiBuy
“em out")

1200 IF Yours=0 THEN LET Ficky$="0Oh no vou don’t: Choose"

1300 ON Yours GOTO 1500,1600,1700

1400 END

1500 PRINT "Fire when ready., Gridley":END

1600 PRINT "Come back. come back, come....":END

1700 PRINT "Okay. Let’s talk, turkey":END

Thie example presents a menu as shown in Figure 10-4. "Ficky$" 1=
string variable to which we assign the prompt {("Make vour play").

Jztarnd and tiaht |

Flee and retreat
Bug 'em out

Figure 10-4. A Menu Created with DOMENU

Graphics Statements 10-5

DRAWEROX

The DRAWBOX statement draws a solid {(light-colored)

rectangle.

FORMAT
DRAWEDX topLeft (x.y) extent (x.,y)

NOTES
DRAWBOX needs tour coordinates. The first two describe the top left
corner ot the box. The second two describe the horizontal and
vertical extensions from the starting point.

EXAMPLE

1000 INFUT "Top left horizontal coordinate";A
1100 INFUT "Top lett vertical coordinate":E
1200 INFUT "Extend how far horizontally":C
1300 INFUT "Extend how far vertically":;D

1400 EraseBox ©,0,320,240

1500 DrawBox A. B, C, D

1600 FOR Pause=1 TO 100: NEXT Faucse

1700 LOCATE 3,210

1800 PRINT "This box has coordinates ": A;". ":B:",
1900 FOR Pause=1 TO 100: NEXT Pause

2000 END

This program asks you to describe a bnx and then draws that box.

See Figure 10-7 for an example.

This box has coordinates 48, 7@, 188, 130
Proaram stopped at line 2000

Figure 10-7. An Example of DRAWEDX

10-6 GR1DBASIC Reference Manual

(g

DRAWCHARS

FORMAT

NOTES

EXAMPLE

DRAWCHARS places characters on the screen at the stated coordinates.

DRAWCHARS string x.y

The coordinates in DRAWCHARS define the upper left pixel of the
first character in the string. This statement accepts strinas
surrounded bv guotation marks. strings defined by the CHR¢ statement
and ASCII numbers, or a combination of the two. You cannct join
strings with the semicolon {(as with the FRINT statement. Instead,
yvou must always concatenate them with the plus =ign (+).

1000 DRAWCHARS "What's that ringinag?",10.10
1100 FOR Starts=1 TO 100: MEXT Starts

1200 FOR Fhone=1 TO 3

1300 LET Ring=l1

1400 WHILE Ring+«<30

1500 DRAWCHARS CHR$(142) +CHR$(143), 40,40
1600 DRAWCHARS CHR$(142)+CHR$(143) ,42, 40
1700 LET Ring=Ring+1

1800 WEND -

1900 FOR Time=1 TO 100: NEXT Time

2000 NEXT Phone

2100 DRAWCHARS "Only the phone",10,70

2200 FOR FPause=1 TO 100: NEXT Fause

2300 DRAWCHARS "Another "+ CHR$(137)+CHR$ (138)+CHR$(139)+CHR%(140) +
" presentation",10, 90

2400 END

Lines 1000 and 2100 demonstrate placement of a string enclosed in
quotation marks. Lines 1500 and 1800 show concatenation of
individual ASCII characters {(Line 1600 the string repositions the
string for an animation effect). Line 2300 combines both quotes and
ASCII codes to print the program’s final message. The loops at
lines 1100 and 2200 delay execution of the program for another
effect. See Figure 10-8 for a picture of this program.

Graphics Statements 10-7

What's that ringing?

=]

Only the phone

Another GRID presentation

Proaram stopped at line 2498.

Figure 10-8. The DRAWCHARS Example

10-8 GR1DBASIC Reference Manual

DRAWCIRCLE

FORMAT

NOTES

EXAMPLE

This statement positions and draws the outline of a circle.

DRAWCIRCLE x,y, radius

The x.y coordinates specify the center of the circle.

measured in screen bits.

1000
1100
1200
1300
1400
1500
1600
1700

DRAWBOX 120, 30, 90, 140

DRAWCIRCLE 120,560,220

LOCATE 10, &0: PRINT "DrawCircle"
INVERTCIRCLE 120,100,20

LOCATE 10, 100: PRINT "InvertCircle"
ERASECIRCLE 120, 140, 20

LOCATE 10,140: PRINT "EraseCircle"
END

The radius 1s

Graphics Statements 10-9

DRAWDOT

FORMAT

NOTES

EXAMPLE

10-10

The DRAWDOT statement turns on one screen bit (also known as a
"nixel").

DRAWDOT x,vy

The two arguments are the dot’s horizontal and vertical coordinates.

1000 DRAWBOX 120, 30, 90, 140

1100 LOCATE 10, S55: PRINT "DrawDot"
1200 LOCATE 10, 95: PRINT "InvertDot"
1300 LOCATE 10, 135: PRINT "EraseDot"
1400 REM The DrawDot Routine

1500 LET X=B80: Y=60

1600 WHILE X<=160

1700 DRAWDOT X,Y

1800 LET X=X+5

1900 WEND

2000 REM The InvertDot Routine
2100 LET X=B0: LET Y=100

2200 WHILE X<=160

2300 INVERTDOT X,Y

2400 LET X=X+5

2500 WEND

2600 REM The EraseDot Routine

2700 LET X=B0:Y=140

2800 WHILE X<=160

2900 ERASEDOT X,Y

3000 LET X=X+5

3100 WEND

3200 END

This program differs from programs for the other figures in order to
put five pixels between the dots. Without these spaces, you cannot
tell the difference between similar statements for DOT and LINE.

GRiDBASIC Reference Manual

DRAWL INE

The DRAWLINE statement draws a line.

FORMAT
DRAWLINE startFoint (x.y) endpoint {(x,v)

NOTES
DRAWLINE needs four arquments —— the horizontal and vertical points
for the start of the line and the horizontal and vertical points for
the end of the line.

EXAMPLE

1000 DRAWBOX 120, 30, 90, 140

1100 DRAWLINE 100, 60, 130, 60

1200 LOCATE 10, 60: PRINT "Drawline"
1300 INVERTLINE 100, 100, 130, 100

1400 LOCATE 10, 100: FRINT "Invertline"
1500 ERASELINE 100, 140, 150, 140

1600 LOCATE 10,140: PRINT "Eraseline"
1700 END

Graphics Statements 10-11

ERASEROX

FORMAT

NOTES

EXAMPLE

10-12

This

statement erases a box in the position described by its

coordinates.

ERASEBOX topLeft (x,y) extent (x,y)

You cannot see ERASEBOX working against a dark backaround. Only
against a light background. The act of erasing only turns screen

bits

1000
1100
1200
1300
1400
1500
1600
1700
1800
1200
2000
2100
2200
2300

This

off.

LET A=120: B=B0: C=80: D=80

DrawBox A,B,C,D

FOR Pause=1 TO 200: NEXT Pause

LET A=140: B=100: C=40: D=40

PRINT "This erases the center of the box"
GOSUEB 2000

FRINT "And this erases everything."
LET A=0: B=0: C=320: D=240

GOSUEB 2000

END

FOR Fause=1 TO 200: NEXT Pause
EraseBox A,B,C.D

FOR Pause=1 TO 200: NEXT Fause
RETURN

example draws a box, erases its center, and then clears

(erases) the entire screen. Figure 10-9 shows the program run
through the first erasure.

GRiDBASIC Reference Manual

This eras==z the center of the box

Proaram stopped at line 2200

Figure 10-9. An Example of ERASEBOX

Graphics Statements 10=13

ERASECIRCLE

This statement erases a circle of the size and position described by \ .
ite coordinates.

FORMAT
ERASECIRCLE x.,y, radius

NOTES
You cannot see the circle described by ERASECIRCLE unless you erase
over a white area. The x.y coordinates specify the center of the
circle. The radius is measured in screen bits.

EXAMPLE

1000 DRAWEOX 120, 30, 20, 140

1100 DRAWCIRCLE 120,60,20

1200 LOCATE 10, &0: PRINT "DrawCircle"
1300 INVERTCIRCLE 120,100,20

1400 LOCATE 10, 100: PRINT "InvertCircle"
1500 ERASECIRCLE 120, 140, 20

1600 LOCATE 10,140: PRINT "EraseCircle"
1700 END

10-14 GRiDBASIC Reference Manual

ERASEDOT

FORMAT

NOTES

EXAMPLE

This statement erases a dot.

ERASEDOT x,vy

ERASEDOT turns off one screen bit. It is only visible when
resides on a light backaground.

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
23200
2400
2500
2600
2700
2800
2900
3000
3100
3200

This

DRAWEDX 120, 30, 90, 140
LOCATE 10, S5: PRINT "DrawDot"
LOCATE 10, 95: PRINT "InvertDot"
LOCATE 10, 135: PRINT "EraseDot"
REM The DrawDot Routine

LET X=B0: Y=60

WHILE X<=1&0

DRAWDOT X,Y

LET X=X+5

WEND

REM The InvertDot Routine

LET X=80: LET Y=100

WHILE X<=1&60

INVERTDOT X,Y

LET X=X+5

WEND

REM The EraseDot Routine

LET X=B80:Y=140

WHILE X<=160

ERASEDOT X.Y

LET X=X+5

WEND

END

program differs from programs for the other figures in

put five pixels between the dots. Without these spaces, you
tell the difference between similar statements for DOT and LINE.

Graphics Statements

the dot

order to
cannot

10-15

ERASEL INE

This statement erases a line in the position described by its
coordinates.

FORMAT
ERASELINE startPoint (x,y) endPoint (x,y)

NOTES
ERASELINE needs four arguments -- the horizontal and vertical points
for the start of the erasure and the horizontal and vertical points
for ending erasure.

EXAMPLE

1000 DRAWEOX 120, 30, 90, 140

1100 DRAWLINE 100, &0, 150, &0

1200 LOCATE 10, 60: PRINT "Drawline"
1300 INVERTLINE 100, 100, 150, 100
1400 LOCATE 10, 100: PRINT "Invertline"
1500 ERASELINE 100, 140, 150, 140

1600 LOCATE 10,140: PRINT "Eraseline"
1700 END

10-16 GRiDBASIC Reference Manual

INVERTEOX

This statement inverts the "colors" of a box in the position
described by its coordinates.

FORMAT
INVERTEOX ToplLeft ix.y) Extent (x,v)

NOTES
The inversion here amounts to turning off bits that are on and
turning on bits that are off. Acs a result, INVERTRBOX describes a
light rectangle on a dark backaround and a dark rectangle againcst a
light background. See Figure 10-10 below.

EXAMPLE

1000 DRAWEBOX 80,80,100, 100
1100 LET A=40: B=100: C=1: D=1
1200 WHILE A<Z00

1300 INVERTROX A,120,5,20

1400 A=A+S
1500 WEND
1600 END

Proaram stnpped at line 1600.

Figqure 10-10. An Example of INVERTBOX

Graphics Statements 10-17

INVERTCIRCLE

This statement positions and draws a circle the “colors" of which
are the opposite of the background area.

FORMAT
INVERTCIRCLE x,y, radius

NOTES
The inversion here amounts to turning off bits that are on and
turning on bits that are off. As a result, INVERTCIRCLE describes a
light circle on a dark background and a dark circle against a light
background. The x.y coordinates specify the center of the circle.
The radius is measured in screen bits.

EXAMPLE

1000 DRAWBOX 120, 30, 90, 140

1100 DRAWCIRCLE 120,60,20

1200 LOCATE 10, &0: PRINT "DrawCircle"
1300 INVERTCIRCLE 120,100,20

1400 LOCATE 10, 100: PRINT "InvertCircle"
1500 ERASECIRCLE 120, 140, 20

1600 LOCATE 10,140: PRINT "EraseCircle"
1700 END

10-18 GRiDBASIC Reference Manual

INVERTDOT

INVERTDOT draws a dot of a "color" opposite that of its background.

FORMAT
INVERTDOT topLeft (x,y) extent (x,y)

NOTES
INVERTDOT places a light dot on a dark background and a dark dot on
a light background. If a screen bit is on, INVERTDOT turns it off.
If off, it turns i1t on.

EXAMPLE

1000 DRAWBOX 120, 30, 90, 140

1100 LOCATE 10, 55: PRINT "DrawDot"
1200 LOCATE 10, 95: PRINT "InvertDot"
1300 LOCATE 10, 135: PRINT "EraseDot"
1400 REM The DrawDot Routine

1500 LET X=80: Y=60

1600 WHILE X<=1&0

1700 DRAWDOT X,Y

1800 LET X=X+5

1900 WEND

2000 REM The InvertDot Routine

2100 LET X=80: LET Y=100

2200 WHILE X<=1460

2300 INVERTDOT X,Y

2400 LET X=X+5

2500 WEND

2600 REM The EraseDot Routine

2700 LET X=B0:Y=140

2800 WHILE X<=160

2900 ERASEDOT X,Y

3000 LET X=X+5

3100 WEND

3200 END

This program differs from programs for the other figures in order to
put five pixels between the dots. Without these spaces, you cannot
tell the difference between similar statements for DOT and LINE.

Graphics Statements 10-19

INVERTL INE

INVERTLINE draws a line of a "color" opposite that of its
background.

FORMAT

INVERTLINE startFPoint (x,y) endPoint (x,y)

NOTES

INVERTLINE needs four arguments -- the horizontal and vertical
points for the start of the line and the horizontal and vertical
points for the end of the line.

The inversion here amounts to turning off bits that are on and
turning on bits that are off. As a result, INVERTLINE describes a
light line on a dark background and a dark line against a light
background.

EXAMPLE

1000 DRAWBOX 120, 30, 90, 140

1100 DRAWLINE 100, 40, 150, 60

1200 LOCATE 10, &0: PRINT "Drawline”
1300 INVERTLINE 100, 100, 150, 100

1400 LOCATE 10, 100: PRINT "Invertline"
1500 ERASELINE 100, 140, 150, 140

1600 LOCATE 10,140: PRINT "Eraseline"
1700 END

10-20 GR1DBASIC Reference Manual

MOVEROX

NOTES

EXAMPLE

This statement copies an existing box to a second set of
coordinates.

MOVEBOX toplLeft (x,y) extent (x,y) destination topLeft (x,y)

MOVEBOX copies, but does not erase, an existing box. If you need to
give the illusion of movement you must follow your MOVEBOX statement
with an ERASEBOX statement (the erase coordinates should be those of
the original box).

1000 LET A=100: B=80: C=80: D=80
1100 DrawBox A,B,C,D

1200 FOR Pause=1 TO 200: NEXT Pause
1300 MoveBox A,B,C,D,200,80

1400 EraseBox A,B,C,D

1500 END

Graphics Statements 10-21

STACKMSG

FORMAT

NOTES

EXAMPLE

10-22

This statement places a message in inverse video at the bottom of
the screen.

STACKMSG "PromptString"
[STACKMSG "PromptString"]

STACKMSG takes only one parameter —— the string character that
constitutes the prompt message. If you have a second STACKMSG
statement, the message area will expand to hold both messages.
NOTE: When writing two messages, place the first message second.
For example, the messages in

1000 STACKMSG "Press ESC to exit"
1100 STACKMSG "The StackMsg Program”

appear in reverse vertical order:

The StackMsg Frogram
Press ESC to exit

STACKMSG messages remain on the screen for a split second. To make
them stay longer, you can follow the STACKMSG statement with some
kind of loop. The most common loop displays the prompt until
someone presses a key. The message then disappears as program
execution continues. NOTE: Do not include a STACKMSG prompt inside
a loop unless you follow it immediately with a CLEARMSG statement.
Otherwise, the prompt area scrolls up the screen. Adding a third
and/or fourth message without CLEARMSG also causes scrolling. See
CLEARMSG earlier in this chapter for details.

1000 STACKMSG "FPress ESC to exit"

1100 STACKMSG "The StackMsg Program"

1200 LET Key$=INKEY$

1300 IF Key$ <> "" THEN PRINT Key$: " gets me out of the loop" ELSE
GOTO 1200

1400 END

In this example, lines 1000 and 1100 set up a two-line prompt.

Lines 1200 and 1300 create an INKEY$ loop that waits for a key press
to occur. When someone presses a key, line 1300 prints the key’s
character.

GRiDBASIC Reference Manual

' The StackMsg Progoram
Press ESC +o mxit

Figure 10-11. A STACKMSG Frompt Line

Graphics Statements 10=23

APPENDIX A: ERROR MESSAGES

GRiDBASIC error messages

Array is too large
What happened

What to do

are listed here in alphabetical order.

You tried to put over 65,535 bytes into an array.

Redimension the array so that its size falls within
legal limits.

Array reference is out of range

What happened

What to do

Attempt to read past end

What happened

What to do

You probably have a subscript of 0; you dimensioned
an array with a variable and still haven’t assigned a
number to that variable. O0Or, you have assigned a
number greater than the subscript allows.

Check your subscripts, especially those that are

variables. Remember: You can only have ten items in
an array without dimensioning.

of file
An INPUT# statement is executed after all the data in
a file has already been input, or the file is a null

(empty) file.

Flace the EOF function in your program to detect end

GRiDBASIC Reference Manual A-1

of file and aveoid this error.

ELSE encountered without matching IF

A 4
What happened You programmed an IF THEN ELSE, but managed to leave
out the IF.
What to do Put in the‘IF statement.
Empty line
What happened This is a system-level error.
What to do Nothing. You won’t see this error.
Expression error
What happened This is a system-level error.
What to do Nothing. You won’t see this error.
File already open
What happened This run-time error occurs when you try to reopen a
file you’ve already opened.
\ 4

What to do Check to see what file is open and its tag number.
Also, is it a random access file? Sometimes you try
to open a different file, but give a tag that is
already in use.

You can either write a CLOSE statement for the file
or (if the tag is the problem) give the correct
number. If the file is random access, make sure you
haven’t tried to read or write to it as you would
with a sequential file.

File is not open for random access.

What happened This run-time error indicates you’ve tried to read
from or write to a file (with GET or PUT), but vyou
haven’t opened it as a random access file.

What to do Check to see if you’ve opened the file. If you have,
check the file tag number and the number you’ve used
with the your access command. Also, did you assign
the file the "R" (for "random") mode? And remember:

A-2 Error Messages

Random access files require a FIELD statement to
allot buffer space.
File not open

What happened This run-time error indicates vou’ve tried to read
from or write to a file you haven’t opened.

What to do Check to see if you’ve opened the file. If you have,
check the file tag number and the number vou’ve used
with the your access command.

FOR encountered without matching NEXT

What happened You began a FOR NEXT loop, but failed to complete it
with a NEXT statement.

What to do Locate the place where the loop should end and put in
the NEXT statement with appropriate variable. Or
erase the FOR TO [STEF] if you no lonager want the
loop in your program.

Generation error

What happened This is a system-level error.

What to do Nothing. You won’t see this error.

Il1legal character
What happened This error message is reserved for later use.

What to do Mothing. It won’t happen.

Illegal value

What happened A number that is either too large or too small causes
this at the system level.

What to do Nothing. You won’t see this error.

Improper expression
What happened This is a system—level error.

What to do Mothing. You won’t see this error.

GR1DBASIC Reference Manual A-3

Improper function call

What happened

What to do

Improper loop nesting

What happened

What to do

This message covers a multitude of sins -- from usin
non-existent or unimplemented functions. -

Check to see that your program contains only current
functions. Are their names correctly spelled? If
everything looks okay, try re-running the program.
If that fails, reboot the system and then re-run the
program.

You written an inner loop and an outer loop so that
they overlap. A run-time error.

Untangle the offending loops so that no overlapping
takes place. See FOR NEXT and WHILE WEND for
details.

Improper paraseter in function call

What happened

What to do

Improper syntax

What happened

What to do

Invalid variable

What happened

What to do

A-4 Error Messages

This run-time error usually indicates an improper
number of parameters or parentheses.

Check to see that you gave the correct number of
paramenters and parentheses to the function. O

This is the catch-all phrase for any syntax problem.
It occurs while programming, when you press RETURN,
CODE-RETURN, or either vertical arrow key.

Check the syntax of all statements and functions on
the current line and confirm the line again to see if
the error remains.

The interpreter has encountered either a variable
with an illegal character in it (see Chapter Two) or
the name of a file the system can’t find.

Check the variables on the current line. If you are
making a file reference, make sure that it is on the

<

Mismatched quotes

What happened

What to do

device, under the subject. and of the kind you have
named.

This error occurs while vou’re programming and
indicates you don’t have the proper number of quotes
on the current line.

Check quotation marks (") to make sure you have the
correct number. NOTE: Don’t try to put double quotes
within double quotes. You can, however, put single
quotes (7) within double guotes.

Missing parameter in array reference

What happened

What to do

During programming, you have omitted one of the
dimensions that you declared when dimensioning (DIM)
the array.

Find the erring array and insert the missing
parameter.

Missing parameter in function reference

What happened

What to do

NEXT encountered without

What happened

What teo do

While programming, you have omitted a required
parameter from a function.

Find the function and determine which parameter is
missing. Then insert the parameter.

matching FOR

You have failed to include the upper portion of the
FOR MEXT loop —— FOR TO [STEF1. Or vou have given
the wrong variable after NEXT.

Fut the FOR TO [STEF] portion of the loop at its
proper place in your program. Or, if the wrong
variable follows NEXT, correct i1t. Or, 1f the NEXT
is an unwanted leftover, erase it.

Number of array dimensions disagrees with definition

What happened

You have given an array the wrong number of
dimensions. This message can occur while programming
or at run-time.

GR1DBASIC Reference Manual AR-5

What to do

Not implesented

What happened

What to do

Check any array(s) in the current line and determine
which has an improper number of dimensions.

You have used a word that GRiDBASIC has reserved for
later use, but which does not yet work as a
statement, function, or constant.

Figure out some other way to accomplish the purpose
achieved by the unimplemented word.

Number of parameters disagrees with definition

What happened

What to do

Out of memory

What happened

What to do

Ran out of data
What happened

What to do

You have given an array or a function the wrong
number of parameters. This message can occur while
programming or at run-time.

Check any array(s) or functions in the current line
and determine which has an improper number of
parameters.

You dimensioned an array so that it takes more memory
than the system offers.

Redimension the offending array.

A READ statement read all the available DATA items.

Add more data. Or put in a counter that causes the
program to stop reading before exhausting the items
in the data statement. Or put in a RESTORE statement
to cause the data to be reread.

RETURN encountered outside subroutine

What happened

What to do

A-6 Error Messages

You have a RETURN statement that lacks a preceding
matching GOSUB statement.

Either write the appropriate GOSUB statement or erase
the RETURN.

O

Statement witr syntax errors encountered

What happened

What to do

Type mismatch

What happened

What to do

Undefined line number

What happened

What to do

Variable expected here

What happened

What to do

WEND encountered without
What happened

What to do

This message repeats at run-time what you saw as
"Improper syntax" while proagramming. This means that
you didn’t correct the error.

Check the syntax of all statements and functions on
the current line and confirm the line again to see 1f
the error remains.

Every variable and most operations expect a
particular "tvpe" of data -- string, numeric, or
Boolean. Giving a foreign datum toc a variable or
operation causes this error. For example, giving a
string to a numeric operator or variable.

Find the offending datum (or its source!. Then

change either the datum or the receiving statment so
that a type match occurs.

You have placed a line number in a statement {(such as
GOTO or GOSUE) for which no matching line exists.

Change the line number to point to the proper line.
Or erase the pointer statement.

You type a statement requiring a varialbe (such as
INPUT) while programming, but didn’t include its
variable.

Find the statement and enter the variableis).

matching WHILE
A WHILE WEND loop lacks its WHILE statement.

Either insert the WHILE statement with 1ts condition
or erase WEND statement.

GR1DBASIC Reference Manual A=

WHILE encountered without watching WEND
What happened A WHILE WEND loop lacks its WEND statement.

What to do Either insert the WEND statement with its condition
or erase WHILE statement.

A-8 Error Messages

APPENDIX B: ASCII CHARACTERS

This appendix contains the ASCII (American Standard Code for Information
Interchange) character codes. Programmers use these codes in everything from
string handling functions (see Chapter Six) to communications work.

GRiDBASIC Reference Manual B-1

DEC HEX GRPH ABBR NAME PRESS
o0 oo " NUL null CTRL-SHIFT=-2
a1 01 % SOH start of heading CTRL-A
8z ez § STH start of text CTRL-E
ez a3 £ ETX end of text CTRL-C
04 04 £ EOT erd of transmission CTRL-D
25 (% 1] & ENG enquiry CTRL-E
B ac L ACK acknowl edge CTRL-F
a7 ar 'y BEL bell CTRL-G
(L1 (5 1] L3 BS backspace CTRL-H
as 83 [HT horizontal tab CTRL-I, TaB
18 vA 4 LF linefead CTRL-J
11 2B % T vertical tab CTRL-K
12 oc fr FF form feed CTRL-L
13 80 %) CR carriage return CTRL=-M
14 BE % <0 shift out CTRL-N
15 aF 5 SI shift in CTRL-0O
16 i@ g DLE data link escape CTRL-P
17 11 4 DC1 device control 1(XON)| CTRL-B
1& 12 & DC2 davice control 2 CTRL-F
19 13 [N DC3 device control 3(XOFF) CTRL-S
20 14 & DC4 device control 4 CTRL-T
21 15) NAE negative ack CTRL=-U
22 1€ L SYN synchronous idle CTRL-U
23 17 & ETE end trans. block CTRL-MW
24 15 1 CAN cancel CTRL=-X
25 12 & EM end medium CTRL=Y
2¢€ 1A % sue substitute CTRL=-2

7 1B k ESC escape CTRL-;
25 10 Fy FS file separator CTRL-SHIFT-,
29 10 2 GS aroup separator CTRL-=
38 1E re RS record separator CTRL=-SHIFT-.
31 1F % us unit separator CTRL-SHIFT-hyphen
3z 28 SP space
33 21 ! exclamation
34 22 " quotation marks
35 23 # number sign
3& 24 E dollar sign
a7 25 % percent sien
38 26 2 ampersand
32 i : apostrophe
48 25 C opening parenthesis
41 29) closing parenthesis
42 2A b 4 asterisk
43 2B + plus
e b{m ’ comma
45 20 - huphen
4 2E : period
47 cF /s slash
4 20 5]
49 21 1
50 32 2
51 33 3
Sz 24 4
52 35 5
54 36 [
- -] 37 7
Se 35 g
57 39 9

1] 3A : colon

59 3B i semicolon

€0 2C < less than

el 3D = equal to

2 3E > greater than

63 3IF 7

€4 40 @ commarical at sion

B-2 ASCII Characters

DEC HEX GRPH ABBR NAME PRESS
&S 41 A
6€E 42 E
67 43 [
€ 44 D
(3= 45 E
7 45 F
i 47 G
72 42 H
e 42 I
74 4R J
Fit 4B K
TE 4 L
rd 40 M
75 4E N
Fi-) 4F 0
8a sa P
21 S1 e
=3 D2 3
83 53 S
24 5S4 T
g5 55 u
2% 55 L
? 7 W
22 58 4
29 53 Y
S SH Z _
91 SE C openina bracket CoOE-,
32 SC N backslash CODE-SHIFT-.,
93 S0] closing bracket CODE-
9S4 SE A circumflex
=) SF _ underline
S€ [=15] b back quote CODE-"
a7 &1 a
as €2 b
99 €3 c
180 €4 d
191 €5 e
18z (X3 f
192 €7 Q
194 €8 Iy
185 69 i
186 &R J
187 &k ke
188 6C 1
192 aD M
119 EE n
111 6F [}
112 790 [
113 71 q
14 = r
15 73 s
15 74 t
17 Fi=) u
12 7€ L
119 i W
128 s x
121 79 d
122 rd) z
123 7B L 4 left curly bracket CODE-SHIFT~,
124 C | vertical line CODE-SHIFT-;
2 70 h rigoht curly bracket CODE-SHIFT-.
26 7E ~ tilde CODE-;
2v r B DEL dJelete CODE-SHIFT-haphen

GR1DBASIC Reference Manual B=3

INDEX

A (Append) B-14

ABS 5-3

Access mode B-14

ACOS S-4

AND 2-8| 5"5

Append access mode B-14
Arrays 2-7, 3-2

AS 9-5

ASC 6-2

ASCII characters &-2, B-1 +f
ASIN 5-6

ATN 5-7

Automatic line numbering 1-6

b0 B-1
Boolean Constants 5-13, 5-33
Buffer (RAM) 9-1, 9-5, 9-11

CDBL 5-8
CHRS 6-3
CINT 5-2, 5-9
CLEARMSG 10-4
CLOSE B-3
CODE-? 1-6
CODE-C 1-3
CODE-E 1-3
CODE-R 1-3
CoMMA 7-2, 7-6, 7-7, 7-10
Communications files B-10
Concatenation 2-11, 7-2, 7-11, 8-11
Constants 2-4
Boolean 5-13, 5-33
Numeric 2-5
String 2-4
Continuing a Program 1-3

GR1DBASIC Reference Manual

Convert 9-3

Convert to double precision 5-8
Convert to integer 5-9

Convert to single precision 5-11
CoOs 5-10

Cosine 5-10

CSNG 5-11

Cursor 1-5

CVD 9-3

cvl 9-3

cvs 9-3

DATA 3-4

DATES 7-4

Delimiters 2-13, 7-7
DIM 2-7, 3-2
DOMENU 10-5

DRAWBOX 10-6
DRAWCHARS 10-7
DRAWCIRCLE 10-9
DRAWDOT 10-10
DRAWLINE 10-11

e (exponential function) 5-12
ELSE 4-9

END 4-2, B-3

E notation 2-5

EOF B-4

EOLN B-5

Epson 7-2 f, B-18B
ERASEBOX 10-12
ERASECIRCLE 10-14
ERASEDOT 10-15
ERASELINE 10-1&
Erasing Line(s) 1-3

Index—1

Error messages A-1 ff.
ESCape key 1-3

EXP 5-12

Exponential S5-12
Expressions 2-7

f0 B8-1
FALSE 5-13
FIELD -5

Field variables 9-%9

File access mode B-14

File kinds 2-13

File naming conventions 2-12

file tag B-3
FIX $5-2, 514
FOR 4-3

FOR TO NEXT [STEP) 4-3

GET 9-6

GETFILES 2-12, B-7

GOSUB RETURN 4-6

GOTO 4-8

Greater than (>) 2-8

Greater than or equal to (>=) 2-8
BRiDBASIC environment 1-4
GRiDBASIC, Invoking 1-1
GRiDBASIC screen 1-4

Highlighting 1-5

I (Input) B-14

IF 4-9

IF THEN [ELSE] 4-9
INKEYS 7-5

INPUTH B-B

INPUTS 8-10

INPUT 7-6

Input access mode B-14
INSTR 6-4

INT 5-2, 5-15

Integer division 2-4, 2-8, 5-1&
Integer functions 5-2
Integers 2-6, 5-2
INVERTBOX 10-17
INVERTCIRCLE 10-18
INVERTDOT 10-19
INVERTLINE 10-20

Keybocard 7-3
KILL 8-11

LEFTS &-&

LEN &-7

Less than (<) 2-8

Less than or equal to ({=) 2-8

Index-2 GRiDBASIC Reference Manual

LET 3-4

Line number field 1-4

Lines and line numbering 1-é
Loc e-12, 9-7

LOCATE 7-9

LOF B-13, 9-8

LOG10 5-18

Logarithm 5-17, 5-18
Logical operators 2-8 f, 5-5, 5-20, 5-21, 5-35
LOG S5-17

LSET 9-9

Make string function 9-10
Manual line numbering 1-6
Menu 10-5
Message line 1-5, 10-4, 10-22
Messages 10-4, 10-22
MIDS &4-8
MKDS$ 9-10
MKI$ 9-10
MKS$ 9-10
MOD 2-8, 5-19
Mode
Access B8-14, 9-11
Direct 1-4
Indirect 1-2
Programming 1-2
MOVEBOX 10-21
Multiple statements 1-7

Nesting 4-4, 4-14

NEXT 4-3

NOT 2-8, 2-9, 5-20

Not equal to (<>) 2-B
Numeric constants 2-5
Numeric operators 2-7, 5-1

0 (Dutput) B-14

ON GOSUB 4-11

ON GOTOD 4-11

OPEN (Random files) 9-11

OPEN (Sequential files) B8-1, B-14
Operators 2-7

OrR 2-8, 5-21

Outline 1-4

Output access mode B-14

Padding digits 7-14

Pathname syntax 2-12, B-7

rl S5-22

pixel 7-9, 10-1

Precedence, Order of 2-7, 2-8
PRINT 8-17

PRINTH USING B-19

PRINT 7-10

Printer 7-2 ¢, B8-18

PRINT USING 7-12

Program editing screen 1-2, 1-5
Prompt 10-5, 10-22

PUT 9-13

R (Random) 9-1

Random access mode 9-1
RANDOMIZE 5-23

Random numbers 5-24 ¢4
READ 3-S5

READ DATA [RESTORE] 3-S5
Real-time clock 5-23, 7-4, 7-21
Reformatting listings 1-7
Relational operators 2-8
REM 3-9

Renumbering 1-6

Reserved words 2-3
RESTORE 3-6

RETURN 4-6&

RIGHTS &-9

RND 5-24

ROUND 5-2, 5-28

RSET 9-9

Running a program 1-3

Screen dimensions 9-1
Scrolling 1-2
SEMICOLON 7-6, 7-7, 7-10, 7-19
SGN 5-29

SHIFT-RETURN 1-B

SIN 5-30

SPACES 6-10

SER 5-31

STACKMSG 10-22
Statement field 1-4
STEP 4-3

STOP 4-13

Stopping a program 1-3
STR$ 6-11

STRINGS 6-12

String constants 2-4
String operators 2-11
Syntax diagrams 2-1

TAB 7-20

Tabbing 7-2, 7-10
TAN 5-32

THEN 4-%9

TIMES 7-21

T0 4-3

TRUE 5-33

TRUNC 5-2, 5-34

VAL &-13
Variables 2-6

w0 B8-1
WEND 4-14
WHILE 4-14

WHILE WEND 4-14
Worksheet example B-6

XOR 2-8, 5-35, 7-12

A NN E =

2-4,
2-4,
7-17
2-3,
2-4,
7-13
3-9

2-4,
2-4,

7-10

7-14, 8-3, B-14

2-6, 61
2-6, 7-15

2-B
2-8

118 7-17

~ 1+

e
'\JN?-JNI'J?‘IJNNNN
N bHODHDDODDOS D

o= a2 I AA A ue

GR1DBASIC Reference Manual

7-16
2-4,
2-4,
2-4,
2-4,

2-8, 51, 7-17

2-8, 2-11, 5-1, 7-1%5
2-7, 2-3, 5-1, 7-15

2_B| 5—1

7-2 £f, 7-14

1-7,

K -
-]
&1

w

2-4, 2-13
7-19
2-8

2-8
2-8

2-8, 5-1&,
2-12, 2-13

2-12, 2-13

7-13

Index -3

